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FinM 345 Stochastic Calculus:
9. Stochastic-Volatility, Jump-Diffusion (SVJD)

Option Pricing:
• 9.1. SVJD European Option Pricing:

• 9.1.1 Joint Stock and Variance SDE Dynamics:
Along with jump effects in equity returns, a Northwestern
University financial econometric group (Torben Anderson,
with Benzoni and Lund, 2002) found that stochastic volatility
was important too in estimating parameter for returns, and
this is confirmed by other financial econometric investigators,
like Bates (1996) in exchange rates and Bakshi et al. (1997)
in options pricing. The SVJD European option pricing
solution, with log-uniform jump-amplitudes, discussed here
is adapted from a paper of Yan and Hanson (2006).
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A much used model for stochastic volatility (mostly posed as
a stochastic variance V(t) model) is the square root diffusion
model, here written for the asset or stock in risk-neutral form,

dS(rn)(t)/S(rn)(t)=(r0−λ0ν)dt+
√
V (t)dWs(t)

+dCP(t, Q),
(9.1)

with initial condition S(0)=S0>0, risk-neutral rate r0,
jump rate λ0 =E[P (t)]/t, mean jump-amplitude
ν=E[ν(Q)], stochastic variance V (t), stock stochastic
diffusionWs(t), compound Poisson jump process
CP(t, Q)=

∑P (t)
j=1 ν(Qj), IID mark is uniform

φQ(q)=U(q; (a, b)/(b−a) (U is the unit step function), where
Q = ln(1 + ν(Q)) and a< 0< b. So ν=(eb−ea)/(b−a)−1.
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The so-called stochastic volatility
(
SV=

√
V (t)

)
SDE shares

the square root diffusion term,
dV (t)=κv(t)(θv(t)−V (t))dt+σv(t)

√
V (t)dWv(t), (9.2)

with V (0)=V0>0, mean-reversion rate κv(t)>0,
mean-reversion level θv(t), volatility of volatility (i.e., of
variance, also called “vol of vol”) σv(t), and variance
stochastic diffusionWv(t), having the joint correlation
coefficient with the stock price,
ρv(t)=Corr[Ws(t),Wv(t)]=

Cov[dWs(t), dWv(t)]√
Var[dWs(t)]Var[dWv(t)]

.

The square root diffusions like (9.2) go back to Feller (1951)
who worked out a lot of the details of this kind of model and
other diffusion properties parallel to the work of Kolmogorov,
both working with the corresponding PDEs rather than the
SDEs that are now “in fashion”.
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However, (9.2) is commonly called the Heston SV model
and also the CIR model for Cox, Ingersoll and Ross (1985),
working on interest rate models.

The square-root Heston model allow for inclusion of
systematic volatility risk and can generate analytically
tractable method of option pricing without sacrificing
accuracy.

This SV model is very singular to transformations and the Itô
chain rule due to the square root term leading to problems
unless the variance is bounded away from zero, unlike the
diffusion or jump-diffusion where any singularity due the
log-transformation Y (t)=ln(S(t)) is automatically
removed. This Heston model discussion is adapted from a
SVJD optimal portfolio paper appendix of Hanson (2008).
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* Mean Reversion Level: The mean-reversion level stems
from the observation that excess or deficiency of volatility at
some V0>0 for t0 = 0, say, should decay back to some
reasonable level, θv 6=V0, so consider the deterministic SV
equation for V (det)(t),

dV (det)(t)=κv(θv−V (det)(t))dt,

let Z(t)=ln(|V (det)(t)−θv|) and {κv, θv} be constants,
so dZ(t)=dV (det)(t)/(V (det)(t)−θv)=−κvdt,
Z(t)=Z(0)−κvt=ln(|V0−θv|)−κvt, and
|V (det)(t)−θv|=exp(Z(t))= |V0−θv| exp(−κvt),
representing exponential decay of the absolute excess from
V0 to θv at rate κv, the decay or growth of V (det)(t) toward
θv depends on the sign, sgnv ≡sgn(V0−θv).
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* Nonnegativity of V (t) and Consistency with respect to
Itô’s Diffusion Approximation: Feller (1951) settled the
nonnegativity long ago for square root diffusions using very
elaborate Laplace transform techniques on the corresponding
Kolmogorov forward equation, finding a noncentral
chi-squared distribution for the solution. Feller classified the
boundary conditions finding in the time-independent form
notation here, positivity is assured if 1<2κvθv/σ

2
v with

zero boundary conditions in value and flux, while if
0<2κvθv/σ

2
v<1 then only non negativity can be assured.

This is important in finance because the volatility often
occurs as a divisor as in the Black-Scholes option pricing
formula and and Merton’s optimal portfolio problem.
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Feller’s approach is far too difficult to present here, but we
can use the methods of the course to show that there is a
perfect square solution form.
Letting Y (t)=F (V (t), t) and using Itô’s lemma to get the
transformed SDE,

dY (t)= Ft(V (t), t)dt+Fv(V (t), t)dV (t)

+0.5Fvv(V (t), t)σ2
v(t)V (t)dt,

(9.3)

to dt-precision. Then a simpler form is sought with
volatility-independent noise term, i.e.,
dY (t)=

(
µ(0)

y (t)+µ(1)
y (t)

/√
V (t)

)
dt+σy(t)dWv(t), (9.4)

with Y (0)=F (V0, 0), where µ(0)
y (t), µ(1)

y (t) and σy(t) are
time-dependent coefficients to be determined. Due to the
appearance of the singular term 1/

√
V (t) as V (t)→0+, the

variance has to be bounded away from zero, V (t)≥εv>0.
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Equating the coefficients of dWv(t) terms between (9.3)
and (9.4), given V (t)=v≥0, leads to

Fv(v, t)=
(
σy

σv

)
(t)

1
√
v
, (9.5)

and then partially integrating (9.5) yields

F (v, t)=2
(
σy

σv

)
(t)

√
v + c1(t), (9.6)

which is the desired transformation with a function of
integration c1(t).
Additional differentiations of (9.5) produce

Ft(v, t)=2
(
σy

σv

)′

(t)
√
v+c′

1(t) & Fvv(v, t)=−
1

2

(
σy

σv

)
(t)v−3/2.

Terms of order v0dt=dt imply that c′
1(t)=µ(0)

y (t), but
this equates two unknown coefficients, so we set µ(0)

y (t)=0

for simplicity.
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Equating terms of order
√
vdt and integrating imply(

2
(
σy

σv

)′

− κv

(
σy

σv

))
(t)=0

imply (
σy

σv

)
(t) =

(
σy

σv

)
(0)eκv(t)/2,

where
κv(t) ≡

∫ t

0

κv(y)dy.

For convenience, we set σy(0)=σv(0). For order v−1/2dt,
we obtain

µ(1)
y (t)=eκv(t)/2(κvθv − 0.25σ2

v

)
(t),

completing the coefficient determination.

Assembling these results we form the solution as follows,

Y (t)=2eκv(t)/2
√
V (t).
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Inverting for V (t) yields the desired nonnegativity result:
V (t) = 0.25e−κv(t)Y 2(t) ≥ 0, (9.7)

due to the perfect square form, where
Y (t)/2=

√
V0 + Ig(t) (9.8)

and where

Ig(t)= 0.5
∫ t

0

eκv(s)/2


κvθv−

1

4
σ2

v
√
V

(s)ds+(σvdWv)(s)

. (9.9)

This is an implicit form that is also singular unless the
variance V (t) is bounded away from zero, V (t)≥εv>0.
Ideally, it would be desiraable that the reciprocal volatility
1
/√
V (t) is integrable in t as V (t)→0+, so the singularity

will be ignorable in theory, but after all V (t) is only
implicitly defined as a solution in (9.7).
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However, it is necessary to check the consistency of the Itô
diffusion approximation in (9.3) because of the competing
limits as the time-increment ∆t→0+ as a proxy for
dt-precision and variance singularity as V (t)→0+, i.e.,
εv →0+. The partial derivatives of F (v, t) given in (9.5) and
following equations imply that the satisfy the power relation
∂kF/∂vk =βk(t)v−(2k−1)/2 for some βk(t) while the mean
estimate of of the dominant diffusion term factor is
E[|σvv∆Wv|k]=αkv

k(∆t)k/2, so that the products of these
terms are an estimate of the corresponding significant terms
in the Taylor,

∂kF

∂vk
E[(σv∆Wv)k]=γk

∆t
√
v

(
∆t

v

)
(k−2)/2,

separated into the order ∆t/
√
v of the diffusion (k=2) term

and the factor relative to it. Hence, for all of the term higher
order than k=2, we need ∆t/v�1, i.e., ∆t �εv �1.
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* Consistent Singular Limit Formulation for Theory and
Computation: Since as V (t) → 0+, the singular integral
with (9.7) needs a proper method of integration specified.

First (9.7)-(9.9) is reformulated as a recursion using some
algebra for the next time increment ∆t and the method of
integration is specified for each subsequent time step, i.e.,

V (t+ ∆t)= e−∆κv(t) lim
εv→0+

(√
V (εv)(t)

+ e−κv(t)/2∆I(εv)
g (t)

)2
,

(9.10)

where V (εv)(t)=max(V (t), εv) with εv > 0 such that
∆t�εv �1 as ∆t → 0+ to ensure that the time-step goes to
zero faster than the cutoff singular denominator, where

∆κv(t)≡
∫ t+∆t

t

κv(s)ds → κv(t)∆t

as ∆t→0+.

FINM 345/Stat 390 Stochastic Calculus — Lecture9–page13 — Floyd B. Hanson



Similarly, a scaled increment of integral I(εv)
g is defined by

e−κv(t)/2∆I(εv)
g (t)≡ 0.5

∫ t+∆t

t

e(κv(s)−κv(t)/2

0.5

((
κvθv− 1

4
σ2

v√
V (εv)

)
(s)ds+ (σvdWv)(s)

)

→ 0.5

((
κvθv − 1

4
σ2

v√
V

)
(t)∆t+(σv∆Wv)(t)

)
,

(9.11)

as ∆t→0+ & εv →0+ such that ∆t�εv �1 to ensure
that the time-step goes to zero faster than the cutoff singular
denominator, for Itô diffusion approximation (9.3)
consistency and the numerical consistency of the solution
(9.10). We have also been using a modification of the method
of ignoring the singularity of Davis and Rabinowitz (1965).
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In fact, a Taylor expansion for small ∆t�1 and ε�1 such
that ∆t�εv �1 confirms that (9.10)-(9.11) recovers the
Heston (1993) model, proving solution consistency. Thus, the
square in (9.10) formally justifies the nonnegativity of the
variance and the volatility of the Heston model, for a proper
computational nonnegativity-preserving procedure.

However, for the general validity of applications of the chain
rule and simulations, the ∆t-variance limit

∆t�εv �1 (9.12)
required for (9.10)-(9.11) implies that the non-negative
variance condition V (t)≥0 is questionable in both theory
and simulation.
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* A Nonsingular, Explicit, Exact Solution: In any event,
the singular term in (9.7)-(9.9) vanishes in the special
parameter case, such that

κv(t)θv(t)=
1

4
σ2

v(t), ∀ t.

Hence, we obtain a nonnegative, nonsingular exact solution

V (t)=e−κv(t)
(√

V0+0.5
∫ t

0

eκv(s)/2(σvdWv)(s)
)2

, (9.13)

with the numerical form corresponding to (9.10)-(9.11)
simplifies to,
V (t+ ∆t)= e−∆κv(t)

(√
V (t)

+ 0.5e−κv(t)/2
∫ t+∆t

t

eκv(s)/2(σvdWv)(s)

)2

.
(9.14)
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Similarly, the chain rule for the integrating factor form
exp(κv(t))V (t) with constant θv(t)=θ0 for the stochastic
volatility SDE (9.2) leads to a somewhat simpler integrated
form,

V (t)=max
(
V (det)(t)+

∫ t

0

eκv(s)−κv(t)
(
σv

√
V dWv

)
(s), 0

)
, (9.15)

using the maximum with respect to zero to remove spurious
numerical simulations in absence of a perfect square form.
In (9.15),

V (det)(t)=V0e
−κv(t)+θ0

(
1−e−κv(t)

)
is the deterministic part of V (t) for constant θ0 . Note that
there is only a linear change of dependent variable according
to the stochastic chain rule [Hanson (2007)] using the
transformation Y (t)=exp(κv(t))V (t).
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So the deterministic part is easily separated out from the
square-root dependence and replaces the mean-reverting drift
term. The V (det)(t) will be positive for positive parameters.

However, asLord et al. (2007) point out, a sufficiently
accurate simulation scheme and a large number of simulation
nodes are required so that the right-hand side of SV
SDE (9.2) generates nonnegative values. Nonnegative values
using the stochastic Euler simulation have been verified for
Heston’s (1993) constant risk-neutralized parameter values
(κv =2.00, θv =0.01, σv =0.10) as long as the scaled
number of nodes per unit timeN/(κvT )>100.
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Hence, since the variance by definition for real processes
cannot be negative, practical considerations suggest replacing
occurrences of V (t) by max(V (t), εv), where
∆t�εv �1 for numerically consistent variance values by
keeping by keeping the small variance cut-off larger than the
small computational time step.

For more information on stochastic volatility models see the
texts Fouque, Papanicolaou and Sircar, Derivatives in
Financial Markets with Stochastic Volatility, 2000 or
Gatheral, The Volatility of Surface, 2006 or Lewis, Option
Valuation under Stochastic Volatility, 2000.
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* Risk-Neutral SVJD European Call Option Pricing:
The risk-neutral interest rate is specified by the risk-neutral
expectation, E(rn)[S(T )|S(t0)]=S(t0) exp(r0(T−t0))
for risk-free spot rate r0 and some reference time t0 ≥0 with
risk-neutral drift µ(rn) =r0−λ0ν.

Let C denote the price at time t of a European style call
option on S(t) with strike priceK and expiration time T .
Using the fact that the terminal payoff of a European call
option on the underlying stock S with strike priceK is
max(S(T ) −K, 0) and assuming the short-term interest
rate r0 is constant over the lifetime of the option.
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The price of the European call at time t equals the
discounted, conditional expected payoff,
C(s, v, t;K,T )= e−r0(T −t)E(rn)[max(S(T )−K, 0)

|S(t)=s, V (t)=v]

= e−r0(T −t)

(∫ ∞

K

yφS(rn)(T )(y|s, v)dy

−K
∫ ∞

K

φS(rn)(T )(y|s, v)dy
)

= sP1(s, v, t;K,T )

−Ke−r0(T −t)P2(s, v, t;K,T ),

(9.16)

where E(rn) is the expectation with respect to the risk-neutral
conditional probability density,
φS(rn)(T )(y|S(t)=s, V (t)=v), given (S(t), V (t)).
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The risk-neutral tail probability that S(T )>K is

P1(s, v, t;K,T )= e−r0(T −t)

∫ ∞

K

yφS(rn)(T )(y|s, v)dy/S(t)

=
∫ ∞

K

yφS(rn)(T )(y|s, v)dy

/E(rn)[S(T )|S(t)=s, V (t)=v],

(9.17)

by the risk-neutral property, since the integrand is
nonnegative and the integral over [0,∞) is one.
The risk-neutral in-the-money (ITM) tail probability,
P2(S(t), V (t), t;K,T )=Prob[S(T )>K|S(t)=s, V (t)=v], (9.18)

is the complementary risk-neutral distribution function. The
European option evaluation problem is to evaluate
P1 =P

(rn)
1 and P2 =P

(rn)
2 under the distribution

assumptions embedded in the risk-neutral probabilities
(measures).
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The difficulty is that the cumulative distribution function for
most distributions is infeasible [Bates (1996)]. We use some
of techniques of Bates (1996), Heston (1993 and Bakshi et al.
(1997).
The usual change of variable is made from the stock price
S(rn)(t) to to the risk-neutral stock log-return
L(t)≡ ln(S(rn)(t)). By the Itô’s chain rule, the log-return
process satisfies the SDE

dL(t)=(r0−λ0ν−V (t)/2)dt+
√
V (t)dWs(t)+

dP (t)∑
j=1

Qj (9.19)

convert the call price to log-return variables,
Ĉ(L(t), V (t), t;κc, T )≡C(S(t), V (t), t;K,T ), (9.20)

i.e.,
Ĉ(`, v, t;κc, T )= e−r0(T −t)E(rn)[max(eL(T )−eκc , 0)

|L(t)=`, V (t)=v]
(9.21)

where the log-strike-price is κc ≡ ln(K) orK=exp(κc).
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* Risk-Neutral PIDE Derivation: As in Merton’s (1973)
BS justification paper, we need to convert our SDE
formulation to a numerically and analytically more desirable
PDE. So using a Merton-like Itô-expansion of
Ĉ(`, v, t)= Ĉ(L(t), V (t), t;κc, T ) with respect to the
processes L(t) and V (t) along with t, except the jump-chain
rule is included, to change from an system of SDEs to a
single PDE, called a PIDE (partial integro-differential
equation):

0=
∂Ĉ

∂t
+A

[
Ĉ
]
(`, v, t)

≡
∂Ĉ

∂t
+
(
r0−λ0ν−

1

2
v

)
∂Ĉ

∂`

+κv(θv−v)
∂Ĉ

∂v
+

1

2
v
∂2Ĉ

∂`2
+ρvσvv

∂2Ĉ

∂`∂v
+

1

2
σ2

vv
∂2Ĉ

∂v2

−r0Ĉ+λ0

∫ ∞

−∞

(
Ĉ(`+ q, v, t)−Ĉ(`, v, t)

)
φQ(q)dq.

(9.22)
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Technically, the resulting formula is called Dynkin’s
Theorem or Formula (see [Hanson (2007), Chapt. 7]).
which says, in our case, that (9.21) is the solution to the
SVJD option price backward PIDE (9.22).
The risk neutral call formula (9.16) can be written in the
current state variables,
Ĉ(`, v, t;κc, T )=e`P̂1(`, v, t;κc, T )−eκc−r(T−t)P̂2(`, v, t;κc, T ).

Inserting this into (9.22) and separating assumed independent
terms P̂1 and P̂2, produces two PIDEs for the risk-neutralized
probabilities P̂i(`, v, t;κc, T ) for i=1:2,

0=
∂P̂1

∂t
+ A1[P̂1](`, v, t;κc, T )

≡
∂P̂1

∂t
+A[P̂1](`, v, t;κc, T )+v

∂P̂1

∂`
+ρvσvv

∂P̂1

∂v

+ (r0−λvν) P̂1+λv

∫ ∞

−∞
(eq − 1)P̂1(`+ q, v, t)φQ(q)dq.

(9.23)

FINM 345/Stat 390 Stochastic Calculus — Lecture9–page25 — Floyd B. Hanson



This is subject to the boundary condition at the expiration
time t=T :

P̂1(`, v, T ;κc, T )= I`>κc
, (9.24)

where I`>κc is the indicator function for the set {`>κc}.
Similarly,

0=
∂P̂2

∂t
+ A2[P̂2](`, v, t;κc, T )

≡
∂P̂2

∂t
+ A[P̂2](`, v, t;κc, T ) + r0P̂2,

(9.25)

subject to the boundary condition at the expiration time
t=T :

P̂2(`, v, T ;κc, T )= I`>κc
. (9.26)
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* Dynkin’s Formula for Multi-State Jump-Diffusions:
Given an n-state system ~X(t)=[Xi(t)]n×1 such that

dXi =µidt+σidWi(t)+νidPi(t),
with state-time ( ~X(t), t) coefficients, νi also depending on
the ith mark Qi, an integrable “payoff ” function U(~x) ,
“time-discount factor” ψ(t) and a “pricing” functional

u(~x, t)≡ψ(t)·E
[
U( ~X(T )) |~X(t) = ~x

]
,

then u(~x, t) satisfies the following PIDE:
0= ut(~x, t)+ψ′(t)u(~x, t)/ψ(t)

+
n∑

i=1

µiuxi(~x, t)+0.5
n∑

i=1

n∑
j=1

ρi,jσiσjuxi,xj(~x, t)

+
n∑

i=1

λi

∫
Qi

(u(~x+νi(~x, t, qi)~ei, t)−u(~x, t))φQi
(qi)dqi,

(9.27)

where ρi,j is the correlation coefficient between diffusions,
λi is the jump-rate for independent Poissons and ei is the ith
state unit vector, only one jump being likely at any instant.
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* Characteristic Function Formulation for Solution:
Character functions are Fourier or complex variable
transforms for functions, e.g., processes here, that are related
to moment generating functions and are used in the definition
of a kind of jump-diffusion called Lévy processes.
• The characteristic functions (constant i=

√
−1) are

fj(`, v, t; y, T )≡−
∫ ∞

−∞
eiyκdP̂j(`, v, t;κ, T ), (9.28)

• Satisfying the same PIDEs as the P̂j(`, v, t;κ, T ):

∂fj

∂t
+ Aj[fj](`, v, t;κ, T )=0, (9.29)

where Aj represents the corresponding full backward
operators in (9.23) and (9.25) with boundary conditions,
fj(`, v, T ; y, T )=+eiy`, respectively for j = 1 : 2.
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* Solution Details:
• For the Fourier transforms fj for j = 1:2,

hj(τ )=
(η2

j −∆2
j)(e

∆jτ −1)

σ2
v(ηj+∆j −(ηj −∆j)e∆jτ )

; (9.30)

gj(τ ) = ((r0−λvν)iy−λ0νδj,1 − r0δj,2)τ

+λ0τ

∫ ∞

−∞
(e(iy+δj,1)q−1)φQ(q)dq (9.31)

−
κvθv

σ2
v

(
2ln

(
1−

(∆j +ηj)(1−e−∆jτ )

2∆j

)
+(∆j +ηj)τ

)
,

where
ηj =ρσ(iy+δj,1)−k & ∆j =

√
η2

j −σ2iy(iy ± 1);

∫ ∞

−∞
(e(iy+1)q−1)φQ(q)dq =

e(iy+1)b−e(iy+1)a

(b−a)(iy + 1)
−1.
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• The tail probabilities Pj for j = 1:2 are

Pj(S(t), V (t), t;K,T )=
1

2
(9.32)

+
1

π

∫ +∞

0+

Re

[
e−iy ln(K)fj(ln(S(t)), V (t), t; y, T )

iy

]
dy,

by complex integration on equivalent contours yielding
a residue of 1/2 and a principal value integral in the limit
to the left of the apparent singularity at y=0+, since the
integrand is bounded in the singular limit.

• Put Option by Put-Call Parity: Since we are dealing
with European options with fixed exercise time, the parity
is still valid, so the European put option price at fixed
(K,T ) is

P (S(t), V (t), t)=C(S(t), V (t), t)+Ke−r0(T −t)−S(t), (9.33)

easily calculated once the call option price is known.
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* Computing Inverse Fourier Integrals: The inverse
Fourier integral (9.32) can be computed by means of standard
procedures of numerical integration with some precautions.
Two methods are compared: the discrete Fourier transform
(DFT) with Gaussian Quadrature sub-integral refinement for
accuracy and the other is the fast Fourier transform (FFT) for
speed of computation.
◦ Discrete Fourier Transform (DFT) Approximations:
Since the integrand of (9.32) has a bounded limit as y→0+,
is otherwise smooth and decays very fast, it is rewritten in the
general approximate form for DFT,

I[F ](κ)≡
∫∞
0
F (y;κ)dy

'
N∑

j=1

Ij(κ)=
N∑

j=1

∫ jh

(j−1)h

F (y;κ)dy,
(9.34)

for sufficiently largeN .
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Such integrals are the basis of the discrete Fourier transform,
where h is a fixed gross step size depending on some
integral cutoffRy =max[y]'N ∗h. The sub-integrals on
((j−1)h, jh) in (9.34) for j = 1:N are computed by
means of ten-point Gauss-Legendre formula for refined
accuracy need for oscillatory integrands and for the fact that
it is an open quadrature formula that avoids any
non-smooth behavior as y → 0+. The number of steps N

is not static, but ultimately determined by a local stopping
criterion: the integration loop is stopped if the ratio of the
contribution of the last strip to the total integration becomes
smaller than 0.5e-7. By trials, h=5 is a good choice that we
can get sufficiently fast convergence and good precision.
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◦ Using Fast Fourier Transform (FFT):
(After Carr and Madan (1999))

• Initial call option price (dP̂2 = p̂(rn)dκc):

Ĉ(`, v, t;κc, T )=−
∫ ∞

κc

e−r(T −t)(e`−ek)dP̂2(`,v, t; k, T ). (9.35)

• Modified call option price to remove the singularity:
Ĉ(mod)(`, v, t;κc, T, α)=eακcĈ(`, v, t;κcT ). (9.36)

• Fourier transform of Ĉ(mod)(`, v, t;κc, T, α):

Ψ(`, v, t; y, T, α) =
∫ ∞

−∞
eiyκĈ(mod)(`, v, t;κ, T, α)dκ. (9.37)

• Thus,

Ĉ(`, v, t;κc, T )=
e−ακc

π

∫ ∞

0

e−iyκΨ(`, v, t; y, T, α)dy. (9.38)
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where, by putting (9.35)-(9.37) together,

Ψ(`, v, t; y, T, α) = −e−r(T −t)

∫ ∞

−∞
e(α+iy)κ

∫ ∞

κ

(e` − ek)

·dP̂2(`, v, t; k, T )dκ

=
e−r(T −t)f2(y − (α+ 1)i)

α2 + α− y2 + i(2α+ 1)y
; (9.39)

• Transfer the Fourier integral into discrete Fourier
transform (DFT) and incorporate Simpson’s rule (Carr
and Madan (1999)) to increase accuracy of the FFT
application for Fourier inverses:

C(S(t), V (t), t;κ, T ) =
e−ακ

π

N∑
j=1

e−i 2π
N jkeiyj(L−ln(S))Ψ(yj)

·
∆y

3
[3 + (−1)(j+1) − δj,1], (9.40)

where α=2.0 and for the Simpson’s rule (a Carr
accuracy innovation?) ∆y=0.25 are used.
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◦ Numerical Results for Call and Put Options

• Two numerical algorithms give the same results within
accuracy standard. The FFT method can compute
different levels strike price near at-the-money (ATM) in 5
seconds. The standard integration method can give out
the results for one specific strike price in about 0.5
seconds. The implementations are using MATLAB 6.5
and on the PC with 2.4GHz CPU.

• The option prices from the stochastic-volatility
jump-diffusion (SVJD) model are compared with
those of Black-Scholes model:
Parameters: r0 =3%, S0 =$100, V0 =0.012,
ρv =−0.622, θv =0.53, κv =0.012, σv =7%,
λ0 =64, a=−0.028, b=0.026 (various sources) .
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◦ Call Option Prices:
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(a) Call prices for T = 0.25.
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(b) Call prices for T = 1.0.

Figure 9.1: Call option prices for the SVJD model compared to the corre-
sponding pure diffusion Black-Scholes values for T ={0.25, 1.0}.
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◦ Put Option Prices:
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(a) Put prices for T = 0.25.
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(b) Put prices for T = 1.0.

Figure 9.2: Put option prices for the SVJD model by put-call parity
compared to the corresponding pure diffusion Black-Scholes values for
T ={0.25, 1.0}.
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◦ Conclusions on SVJD Option Pricing [Yan-Hanson (2006)]:
• Proposed an alternative stochastic-volatility,

jump-diffusion (SVJD) model. The stochastic variance
has mean-reversion with square-root noise and the
jump-amplitude has log-uniform distribution.

• Characteristic functions of the log-terminal stock price
and the conditional risk neutral probability are derived.

• The option prices are expressed in terms of characteristic
functions in formally closed form.

• Accurate and fast computing algorithms are compared,
using a 10-point Gauss, discrete Fourier transform
(DFT) and an FFT, but FFT is fast for many (K,T )
values, but DFT is better for selected discrete (K,T ).

• The Black-Scholes prices are higher than SVJD model
option prices, especially for longer T and near-ATMK.
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Summary of Lecture 9?

1.

2.

3.

4.

5.
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