
FINM345/STAT390 Stochastic Calculus – Hanson – Autumn 2009

Take-Home Final Examination:

Due by 6:30pm CST Monday 07 December 2009 (7:30pm EST at UBS; 7:30am
Tuesday 08 Dec. in Singapore) in Chalk FINM345 Assignment Submenu

• You must show your work, code and/or worksheet for full credit. The work
must also be your own and points will be deducted for likely copies.

• There are multiple points per question and grades depend on both the
correct answer and the quality as well as quantity of the justification.

• Points will be deducted for late submission by a point per hour per problem
to begin, not to exceed one half the total of earned points.

• The exam is open Lecture notes and course textbook, but any other refer-
ences used must be cited in a scholarly fashion.

• In your exam submission, include a copy or reasonable facsimle of this
signed statement:

On my honor this take-home exam is my own work,
except for any citation to resources that I have used.

Signed: . (10 points)

Corrections or emphasis are in Red as are comments, December 5, 2009

0. Innovations beyond what the problem asks for. (variable points)

1. JD SDE Transformations:

{Comment: Note that for sufficiently small ∆t, and dt, you can use the zero-one jump
law, but for general values you need the jump form below.}

(a) Given

dS(t) = S(t) · (µ(t)dt + σ(t)dW (t)) +

dP (t)∑
j=1

S(T−
j )ν(T−

j , Qj), (1)

show that

d

(
1

S(t)

)
=

(
1

S(t)

)
·(f(S(t), t)dt + g(S(t), t)dW (t))+

dP (t)∑
j=1

h(S(T−
j ), T−

j , ν(T−
j , Qj)), (1.5)

by finding the functions f(s, t), g(s, t) and h(s, t, ν(q)) explicitly. (10 points)

(b) Given

dY (t) = µ(Y (t), t)dt + σ(Y (t), t)dW (t) +

dP (t)∑
j=1

ν(Y (T−
j ), T−

j , Qj), (2)

show that

d(exp(Y (t)) = F (Y (t), t)dt + G(Y (t), t)dW (t) +

dP (t)∑
j=1

H(Y (T−
j ), T−

j , ν(Y (T−
j ), T−

j , Qj)), (3)

by finding the functions F (y, t), G(y, t) and H(y, t, ν(y, t, q)) explicitly. (15 points)
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2. Stochastic Calculus Example from Forward Contracts∗:

Consider the price of a forward contract for energy at time t expiring at T , satisfying

dF (t, T )=F (t, T )σ(t, T )dW (t). (4)

(a) Show that

F (t, T )=F (0, T ) exp

(∫ t

0

(
σ(s, T )dW (s)− 0.5σ2(s, T )ds

))
, (5)

by stochastic calculus. (15 points)

(b) If the spot price is S(t) = F (t, t) at t and if Y (t) = ln(S(t)), show that

dY (t)=
∂ ln(F )

∂T
(0, t)·dt+σ(t, t)dW (t)− 0.5σ2(t, t)dt+dt·

∫ t

0

∂σ

∂T
(s, t) ·(dW (s)−σ(s, t)ds), (6)

where the partial with respect to T is the partial with respect to the second
argument of F or σ. (20 points)

(c) Show that

dS(t) = S(t)
(
dY (t) + 0.5σ2(t, t)dt

)
. (7)

(10 points)

{∗Background note: You do not have to know anything about forward contracts for this
problem, but ONLY about stochastic calculus. This problem and problem 1(a) arose out
of the course or from book questions. Also, from calculus or advanced calculus/analysis,
you will need to know how to handle the derivative of a doubly time-dependent integral
like

∫ t

0
f(s, t)ds with respect to t or be able to derive it in dt-precision.}

{An extended hint: For sufficiently small ∆t, or just using dt with dt-
precision (={dt}), you want to consider the increment∫ t+dt

0
f(s, t + dt)ds−

∫ t

0
f(s, t)ds ={dt} (f(t, t) +

∫ t

0
fT (s, t)ds) · dt,

where fT (t, T ) = (∂f/∂T )(t, T ). and the integral with dW (s) can be handled
similarly since the dW (s) is not expanded with dt.}
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3. Stock-Variance Covariance: Given the risk-neutral, option pricing, stock-variance
stochastic dynamical system,

dS(t) = S(t)((r0 − λ0ν)dt +
√

V (t)dWs(t)) +

dP (t)∑
j=1

S(T−
j )ν(Qj), S(0) = S0 > 0, (8)

and

dV (t) = κ0(θ0 − V (t))dt + σ0

√
V (t)dWv(t), V (0) = V0 ≥ ε0, (9)

such that V (t + dt) = max(V (t) + dV (t), ε0), E[dP (t)] = λ0dt
and Cov[dWs(t), dWv(t)] = ρ0dt.

(a) Show that, if ∆t sufficiently small and ignoring the bound v ≥ ε0, then

Cov[S(t + ∆t), V (t + ∆t)|S(t) = s, V (t) = v] ' ρ0σ0sv∆t. (10)

(10 points)

(b) Produce and plot simulations of the system {S(t), V (t)} versus t for the following
parameter values [L10-p27 or Yan-Hanson (ACC2007), from OEX 10 April 2006,
mostly],

Table 1: Estimated JD-Uniform Parameters
JD Parameter r0 a b λ0 S0 T N

JD Values 0.015 -0.140 0.011 0.549 100 2 5000

Table 2: Estimated SV Parameters
SV Parameter κ0 θ0 σ0 ρ0 V0 ε0 T N

SV Values 10.62 0.0136 0.175 -0.547 0.0083 0.005 2 5000

where N is the number of time intervals in [0, T ]. (20 points)

(c) Calculate the unbiased sample covariance,

S(s,v)
N =

1

N

N∑
i=0

(Si − SN)(Vi − V N), (11)

from the simulation data {Si, Vi|i = 1 : N} and sample means
{
SN , V N

}
, plus

initial data {S0, V0}. Also, represent S(s,v)
N as a correlation coefficient { Hint: It is

calculated like the continuous time version given in class with the normalization
by function of the two sample variances.}. (10 points)

(d) Calculate the simple moving average covariances, also unbiased, from the same
simulation data, i.e.,

S(s,v)
j,k,N =

1

n

jn∑
i=(j−1)n

(Si − Sj,k,N)(Vi − V j,k,N), (12)

for j = 1 : k for k = 20 windows, where n = N/k must be an integer and
{Sj,k,N , V j,k,N} are the corresponding moving average means, e.g.,

Sj,k,N = 1
n+1

∑jn
i=(j−1)n Si. Also, plot the S(s,v)

j,k,N of each window as correlation

coefficients versus t using the midpoint in time for each window. (20 points)

(e) Discuss the significance of the results. (5 points)
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4. Very Heuristic Model of American Option Smooth Contact to Put Payoff
Function
Consider the first order put option price model

PQ(s) = sa(α + β(s− S∗)) (13)

that can mimic the basic properties in the Continuation region, S > S∗, pre-optimal
exercise at S∗, given on L10-p9 for S → (S∗)+ for PQ and P ′

Q, noting that the extreme
limit as S →∞ is satisfied if a < 0 is assumed and implied by the heuristic quadratic
approximation on L10-p13.

(a) Find the parameters {α, β} that satisfy the near exercise limits as S → (S∗)+ for
PQ and P ′

Q, writing PQ(s) in terms of s and parameters {a, S∗, K} only.
(10 points).

(b) Now suppose you do not know S∗ and want to find it using Eq. (13), as a black
box or source of data, but to do that let K = $100, S∗ = 0.85K, a = −2 and
starting iterate S0 = 1.3K.

For a simple and short way to approximate S∗, combine the two exercise conditions
as the sum of quadratics (both terms must be zero at the minimum of G(s)),

G(s) = (PQ(s)− (K − s))2 + (P ′
Q(s) + 1)2. (14)

Next, produce a plot of G(s) versus s for s = (2 ∗K − S0) : 0.1 ∗K : S0. Then
report the minimum, G1, and second smallest, G2, of the discrete G-values. Also
give their locations, si for i = 1 : 2, and give the weighted average location, s∗1,2,
of the two as a simple approximation of S∗, with the weights proportional to
opposites values (Gj with si for j 6= i) and relative to the sum of the G-values
{i.e., s∗1,2 = (G2s1 + G1s2)/(G1 + G2)}. Compare your approximation s∗1,2 with
the preassumed value S∗ = 0.85K in terms of a relative error.

{Comment: If PQ(S) were the trajectory of the risk-neutral put price instead, then
you could use a MATLAB optimization like the basic, derivative-free fminsearch

using avfinal stopping tolerance such as |Si∗ − Si∗−1| ≤ 0.01 or the Optimization
Toolbox lsqnonlin, if that toolbox is available.} (20 points)

(c) Discuss the results, bearing in mind that trying to find a smooth contact is much
harder than finding the intersection between two functions. (5 points).
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5. RGW (Roll, Geske, Whaley) Approximations for American Call Option
Prices with Early Exercise Only Optimal on the Final Discrete Dividend:
Let S0 = $100, r0 = 2.0% p.a., σ0 = 25%, K = 80 : 5 : 120 dollars and T = 6 months,
with a known final dividend amount D1 = 1 : 0.5 : 3 in US dollars per share at date
T1 = 5 months. There are two prefinal dividends of D0 = 1 (alternate better value is
D0 = 0.25) dollar per share at months T0 = 2 and 4.

(a) Compute the RGW early-exercise American call prices for strike prices and divi-
dends. You can use Sivakumar’s rogewhaley.m Roll, Geske, Whaley (Single Div-
idend) code at Global-Derivatives GD MATLAB Code List and information
at American Pricing Models: RGW section . You can also write mod-
ifications of the code or write your own code. All needed functions called are
contained in the RGW package, but you still need to write the proper driver code
and necessary modifications. (10 points)

(b) Plot the RGW approximation to American call prices versus the moneyness S0/K
with D1-values as the parameter for each respective curve using different symbols
or other distinct markings. (10 points)

(c) Plot the critical stock price S∗, in the code Sstar for calls, versus K for D1 = 0 =
D0 (alternate better values are D0 = 0.25 and D1 = 1.5). (10 points)

(d) Discuss the effects of the dividend payout. (5 points)

{Hint: watch your units carefully.}
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6. BAW (Barone-Adesi, Whaley) Modified Quadratic Approximation for Amer-
ican Put (or Call?) Option Pricing with Constant Yield Dividend:

{Note: The dividend yield problem is a continuous rate dividend, UNLIKE the previous
discrete dividend problem, but is used because it can be easily included along with the
spot rate (See the BAW code), although it is not as realistic as the discrete case.}
Let S0 = $100, r0 = 2.0% p.a., σ0 = 25% and T = 6 months with a single known
dividend yield D. Strike prices of interest are K = 80 : 5 : 120 dollars and dividend
yields are D = {0, 1 : 0.25 : 1.5} percent.

(a) Compute and plot the American put option prices versus moneyness (the natural
variable for the approximation), S0/K, using the given K values for the fixed S0,
with individual curves parameterized by 4 dividend values D = 0, 1, 1.25, 1.5. You
can use another of Kevin’s codes, Barone-Adesi, Whaley (Quadratic Approxima-
tion) code at Global-Derivatives GD MATLAB Code List and information at
American Pricing Models: BAW section . You can also use modifications
of the code or write your own code. All needed called-functions are contained in
the package, but you still need to write the encompassing driver code and neces-
sary modifications.

(20 points)

(b) Similarly, compute and plot the American call option prices versus moneyness,
S0/K, using the given K values for the fixed S0, with individual curves parame-
terized by 4 dividend values D = 0, 1, 1.25, 1.5.

(20 points)

(c) Plot the critical stock price S∗, in the code Sp for puts and Sc for calls, versus K
for D = 1.5 (replacing D = 0, else a problem with the call early exercise and Sc),
each on separate graphs. (15 points)

(d) Compute the discrepancy in the put-call parity relation, modified for the divi-
dend yield for American options, when D = 1.5 and plot versus moneyness using
K = 80 : 5 : 120 and the given S0. {Hint: Put-Call Parity for dividend yield,
from Hull Eq. (14.3) 6th Ed., is C + K ∗ exp(−r0T ) = P + S0 ∗ exp(−DT ).}

(10 points)

(e) Discuss the effects of the constant dividend yield relative to the results of the
non-dividend case. Also, discuss the put-call parity discrepancy, in particular,
whether it confirms the lack of general validity for American options.

(10 points)

{Hint: watch your units carefully.}
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7. Merton-Like Optimal Portfolio and Consumption Problem for Multiple As-
sets and SVJD:

Let there be n assets in addition to a bond, so that the stochastic dynamics are given
by

dS0(t) = S0(t)(µ0dt + σ0

√
V dW0(t)) + dCP0(t, S0(t)ν0) for bond, (15)

dSi(t) = Si(t)(µidt + σi

√
V dWi(t)) + dCPi(t, Si(t)νi) for stock i, (16)

for i = 1 : n, where µj = µj(Sj(t), t), σj = σj(Sj(t), t) (these are “vol-vol” coefficients),
and νj = νj(Sj(t), t, Qj) = exp(Qj)− 1, for j = 0 : n. The compound Poisson terms
are independent of the Gaussian terms, but the Gaussian terms are correlated with
Cov[dWi(t), dWj(t)] = ρi,j(t)dt for i, j = 0 : n such that ρj,j = 1, while E[dPj(t) = λjdt
for the independent Poisson counting processes. The stochastic variance is the usual
square-root diffusion model,

dV (t) = κv(t)(θ(t)− V (t)dt + σv(t)
√

V (t)dW (t), (17)

where V (t + dt) = max((V + dV )(t), εv) and εv > 0. Here, Cov[dWj(t), dWv(t)] =
ρj,v(t)dt. Let the portfolio fractions satisfy U0(t) +

∑n
i=1 Ui(t) = 1. The objective is to

maximize the expected discounted utility of final wealth W (T ) plus the running dis-
counted utility of consumption, starting at the current time t with the state conditions
S = {W (t) = w, V (t) = v}, control conditions C = {~U(t) = ~u ≡ [ui]n×1, C(t) = c},
differing utilities {Uw(W (t)),Uc(C(t))}, instant discount rate β(t) and cumulative dis-
count β(t), so that,

e−β(t)J∗(w, v, t) = max
{~u,c}

[
E

[
e−β(T )Uw(W (T )) +

∫ T

t

e−β(s)Uc(C(s))ds

∣∣∣∣ C,S
]]

. (18)

(a) For the wealth W (t), derive the stochastic dynamic equation for dW (t), begin-
ning by modifying (10.17) of L10-p37 for the n+1 assets, assuming self-financing,
less the consumption in [t, t+dt), in dt-precision. {Hint: Recall, that the portfolio
return for a single risky asset and bond is the sum the relative returns (not the ab-
solute returns) weighted by the portfolio fractions, as in the lecture on Merton’s BS
paper, so dW (t)/W (t) = (1−U(t))∗dB(t)/B(t)+U(t)∗dS(t)/S(t)−C(t)dt/W (t),
less the consumption relative to the wealth.} (15points)

(b) Justify the final condition at t = T and the absorbing boundary condition as
w → 0+ and c → 0+, in this multi-asset case. (10 points)

(c) Derive the stochastic dynamic programming PIDE by stochastic calculus in dt-
precision, assuming a corresponding form of Bellman’s principle of optimality and,
in particular, show where and how the expectations of all the stochastic terms are
evaluated. (30 points)
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