Law of Gravity For Spherical Mass:

Spherical Coordinates Integration Exercise


Click Here If You Would Rather Fire Up A Maple Worksheet, Rather than this ugly HTML.


# ## Newton's Law of Gravitation is Good for Spheres; 
# ## Originally Law was for Point Masses; 
# ## Object to Show Validity for Spheres by Integrating 
# ## over All Mass Differentials in the Sphere: 
# ##  dF := -G*m*De*dV*Xvector/|Xvector|^3; 
# ##  Assume Test Mass (m) at Position (0,0,Lm); 
# ##  Sphere = IdealEarthModel (e); 
# ##  Me:=MassOfSphere; RE:=RadiusOfSphere;  
# ##  Ce:=CenterOfSphere:=(0,0,0);   
# ##  Lm:=DistanceFromenterToTestMass; 
# ##  G:=UniversalGravitationalConstant; 
# ##  De:=DensityOfSphere; 
# ##  Assume TestMass at (0,0,Lm) for Simplicity, so that 
# ##  ForceOfGravity:=F:=(0,0,Fz), by Symmetry 
# ##  with Fx:=0 and Fy:=0; 
# ##  Assume Lm > RE;
# ## Constant Density is Mass Me Divided by SphereVolume 

> De:=3*Me/(4*pi*RE^3);
<                                        Me
<                            De := 3/4 ------
<                                           3
<                                      pi RE

# ## Total z-Component of Force of Gravity  
# ## in Spherical Coordinates (rho, theta, phi), 
# ## where z = rho*cos(phi);  
# ## (x,y) = rho*sin(phi)*(cos(theta),sin(theta)); 
# ## dV := rho^2*sin(phi)*d(theta)*d(phi)d(rho) 
# ## in Simplest Order of Integration:

> Fz:=-G*De*m*Int(Int(Int(rho^2*sin(phi)*(Lm-rho*cos(phi))/       \
> (Lm^2+rho^2-2*rho*cos(phi))^(3/2),theta=0..2*pi), phi=0..pi),rho=0..RE);
# ## Display Math Only:

< Fz :=
< 
<                 RE   pi  2 pi
<                 /    /    /      2
<                |    |    |    rho  sin(phi) (Lm - rho cos(phi))
<        G Me m  |    |    |    --------------------------------- dtheta dphi drho
<                |    |    |        2      2                  3/2
<               /    /    /      (Lm  + rho  - 2 rho cos(phi))
<               0    0    0
<  - 3/4 -------------------------------------------------------------------------
<                                               3
<                                          pi RE

# ## First:  Partial Integration Over theta:
> Fz_rho_phi:=-G*De*m*int(rho^2*sin(phi)*(Lm-rho*cos(phi))/       \
> (Lm^2+rho^2-2*rho*cos(phi))^(3/2), theta=0..2*pi);

<                                  2
<                        G Me m rho  sin(phi) (- Lm + rho cos(phi))
<      Fz_rho_phi := 3/2 ------------------------------------------
<                             3    2      2                  3/2
<                           RE  (Lm  + rho  - 2 rho cos(phi))
<

# ## Second: Partial Integration Over phi:
> Fz_rho:=int(Fz_rho_phi, phi=0..pi);

<                                    2      2
<                          (- Lm + Lm  + rho  - rho cos(pi)) G Me m rho
<          Fz_rho := - 3/2 --------------------------------------------
<                                  2      2                 1/2   3
<                               (Lm  + rho  - 2 rho cos(pi))    RE
<
<                               2      2
<                     (- Lm + Lm  + rho  - rho) G Me m rho
<               + 3/2 ------------------------------------
<                             2      2         1/2   3
<                          (Lm  + rho  - 2 rho)    RE

# ## Third:  Partial Integration Over rho:
> Fz:=int(Fz_rho, rho=0..RE);

<                      1/2   2            3                     1/2
<Fz := - 1/2 G Me m (%1    RE  + 3 cos(pi)  ln(RE - cos(pi) + %1   )
<
<                                     1/2                2   1/2
<     - 3 cos(pi) ln(RE - cos(pi) + %1   ) Lm + 3 cos(pi)  %1
<
<                 1/2          1/2                       2     2        1/2
<     + cos(pi) %1    RE - 3 %1    Lm + 3 ln(RE - 1 + (Lm  + RE  - 2 RE)   ) Lm
<
<         2   1/2      2     2        1/2         2     2        1/2   2
<     + Lm  %1    - (Lm  + RE  - 2 RE)    RE - (Lm  + RE  - 2 RE)    RE
<
<                        2     2        1/2      2    2     2        1/2
<     - 3 ln(RE - 1 + (Lm  + RE  - 2 RE)   ) - Lm  (Lm  + RE  - 2 RE)
<
<            2     2        1/2        2     2        1/2       /   3
<     - 3 (Lm  + RE  - 2 RE)    + 3 (Lm  + RE  - 2 RE)    Lm)  /  RE  - 3/2 G Me
<                                                             /
<
<                3                   2 1/2       2 1/2          2    2 1/2
<    m (- cos(pi)  ln(- cos(pi) + (Lm )   ) + (Lm )    - cos(pi)  (Lm )
<
<                   2 1/2                2 1/2
<     + ln(- 1 + (Lm )   ) - ln(- 1 + (Lm )   ) Lm
<
<                                 2 1/2        /   3
<     + cos(pi) ln(- cos(pi) + (Lm )   ) Lm)  /  RE
<                                            /
<
<                             2     2
<%1 :=                      Lm  + RE  - 2 cos(pi) RE
<

# ## Maple having Trouble with phi Integration; 
# ## Try Change of Variables for Singular Denominator:  
# ## U^2= Lm^2+rho^2-2*rho*Lm*cos(phi);  
# ## (L-rho*cos(phi))*rho^2*sin(phi)*d(phi)/U^3 
# ##  = rho*(Lm^2-rho^2+U^2)*dU/(2*Lm^2*U^2);
> U1:=Lm-rho; U2:=Lm+rho;

<                                 U1 := Lm - rho
<
<                                 U2 := Lm + rho

> Fz_rho_u:=-2*pi*G*De*m/(2*Lm^2)*Int(rho*(Lm^2-rho^2+U^2)/U^2,U=U1..U2);

<                                     Lm + rho
<                                        /            2      2    2
<                                       |      rho (Lm  - rho  + U )
<                            G Me m     |      --------------------- dU
<                                       |                 2
<                                      /                 U
<                                   Lm - rho
<          Fz_rho_u := - 3/4 ------------------------------------------
<                                                3   2
<                                              RE  Lm

> Fz_rho:=value(");

<                                                    2
<                                          G Me m rho
<                            Fz_rho := - 3 -----------
<                                              3   2
<                                            RE  Lm

> Fz:=Int(Fz_rho, rho=0..RE);

<                                 RE
<                                 /                2
<                                |       G Me m rho
<                         Fz :=  |   - 3 ----------- drho
<                                |           3   2
<                               /          RE  Lm
<                               0

> Fz:=value(");

<                                         G Me m
<                                 Fz := - ------
<                                             2
<                                           Lm

# ## Z-Component For Newton's Law Of Gravity Is As If 
# ## Me:=MassOfSphere Were Concentrated At Its Ce:=Center 
# ## For m:=TesTMass At Lm:=Distance From Ce!

Web Source: http://www.math.uic.edu/~hanson/math210/GravityForSphericalMass.html

Email Comments or Questions to hanson@uic.edu