Math 574 Applied Optimal Control — Hanson Fall 2006

(Stochastic Processes and Control for Jump-Diffusions)

Homework 1 — Jump-Diffusions: Basic Properties (see Chapter 1 Text)

Homework due 04 October 2006 in class.

Justify all steps by supplying the reason(s).
See corrections, 24 February 2006.

1. Show formally that

Gaw (1) (w) L 6(w) + %dté"(w) ; (1)

i.e., has a delta~density in the generalized sense, where §(x) is the Dirac delta function (0.158)
and 8" (z) is its 2nd derivative (0.163), by showing that

+o0
BN = [ baw(w)fw)dw ™ f0) + Jdt(0)

[e.e]
i.e., to precision-dt, neglecting terms o(dt). Assume that f(w) is three times continuously
differentiable, with f(w) and its derivatives vanishing sufficiently at infinity.
{Hint: Only a formal expansion of f(w) should be needed here, the exponential properties of
Gaw ) (w) ensure sufficient uniformity to allow expansion and truncation with respect to dt
inside the integral.}

2. Show the following characteristic function (Fourier transform) formulas in the constant co-
efficient case, (you need only assume that the imaginary unit i = \/—1 is a constant with
i? = —1 when integrating for the expectation or that ¢ =i -z can be treated the same as a

real variable):

(a) for the Gaussian process with time-linear drift, G(t) = pot + oW (t), where uo and
oo > 0 are constants,

C[G](z) = Elexp(izG(t))] = exp (izpot — 2°03t/2) ;

(b) for the Poisson process, vy P, with constant jump rate A9 > 0 and constant jump ampli-
tude vy,
ClvoP](z) = Elexp(izvyP(t))] = exp (Aot (exp(izrp) — 1)) ;

(c) and finally for the jump-diffusion process X (t) = pot + ooW (t) + v P(t), assuming that
W (t) and P(t) are independent processes,

C[X](2) = Elexp(izX (t))] = exp (izpot — 2203t /24 Mot (exp(izvp)—1)) .

3. Let {t; : tix1 =t;+At;,i =0:n,tg = 0;t,+1 = T} be an variably-spaced partition of the time
interval [0, 7] with At; > 0. Show the following increment properties, justifying by giving a
reason for every step, such as a property of the process or a property of expectations.



(a) Let G(t) = pot + ooW(t) and AG(t;) = G(t; + At;) — G(t;)with pg > 0 and o9 > 0
constants, then show

COV[AG(ti), AG(t])] = O‘%Ati 51"]' s
for i,5 = 0 : n, where ¢; ; is the Kronecker delta.
(b) Let H(t) = voP(t) and AH(t;) = H(t; + At;) — H(t;), with A\g > 0 and v constants,

then show
COV[AH(E), AH(tj)] = ungAti(sm 5
fori,7=0:n.
(C) Let AW(tZ) = W(ti—l-Ati)—W(ti), but AGW(tZ) = W(tz+9AtZ)—W(tz) with 0 < 6 < 1,
then show
COV{AW(ti), AQW(tj)] = QAtZ (51'7]' 5
for i, =0:n.

4. (a) Show that when 0 < s <t that
E [W?’(t) ‘ W(r),0 <r< s] = W3(s) +3(t—s)W(s),

justifying every step with a reason, such as a property of the process or a property of
conditional expectations.

(b) Use this result to verify the martingale form
E [WS(t) — 3tW(t) ’ W(r),0<r<s|= W3(s) — 3sW (s).
{Remark: The general technique is to seek the expectation of mth power in the separable form,

E [Mé;”)(W(t),t) ‘ W(r),0 <r < s} = MU (W(s),s),

where )
MW (1)) = W™ (5 + Y- ar (W),
k=0
satisfied for the sequence of functions {ag(t),...,am—1(t)}, that can be recursively solved

using the separable form ay(t) in the order k = 0:m — 1; or just use the binomial theorem.
Obviously, m = 3 here.}

5. (a) Verify that when 0 < s <t and A\g > 0 that
E[P?(t) | P(r),0<r <s| = P?(s)+2Xo(t — s)P(s)+Ao(t—s5)(14+Xo(t — 5)) ,

justifying every step with a reason, such as a property of the process or a property of
conditional expectations.

(b) Find the time polynomials ag(t) and «q(t) such that

M (t) = PA(t) + an(t) P(t) + aolt)
is a Martingale.
{Remark: The primary martingale property is that E[X(t)|X(r),0 < r < s] = X(s)

for some process X (t) and in this case X(t) = f(P(t)), but there are also additional
technical conditions to define a martingale form.}



