Math 586 Computational Finance - Hanson - Spring 2008

Homework 1 - Compound Interest and Stochastic Differential Equations

- Homework due 06 February 2008 in class.
- Justify all steps by supplying the reason(s).
- This is individual homework: you may discuss generally with others if cited, but final submission must be your own work.
- MATLAB, Maple or Mathematica solutions are acceptable, if appropriate.

1. (a) Compute the future value of a $\$ 1000$ investment in a money market fund with interest compounded quarterly at 4.5% annual interest over 5 years.
(b) Compute the present value of a future balance of $\$ 1000$ at the end of 5 years at 4.5% annual interest compounded quarterly.
2. (a) Compute the future value of a $\$ 1000$ investment in a money market fund with interest compounded continuously at 4.5% annual interest over 5 years. Also, compute the percentage difference between the the future value obtained in problem 1 with the future value obtained in this part.
(b) Compute the present value of a future balance of $\$ 1000$ at the end of 5 years at 4.5% annual interest compounded continuously. Also, compute the percentage difference between the the present value obtained in problem 1 with the present value obtained in this part.
3. Compute the present value of a cash stream at the end of 5 years compounded continuously, but with a variable annual interest rate of 4.5% the first year, 4.75% the second, 5.25% the third, 5.75% the fourth and 5.50% the fifth, final year. The continuous cash stream has the functional form $P(t)=\$ 1000 \cdot \exp (-0.025 \cdot t)$ for $t \in[0,5.0]$ years.
4. For the diffusion process differential:
(a) Show that $\mathrm{E}\left[(d W)^{3}(t)\right]=0$, exactly.
(b) Show that $\mathrm{E}\left[(d W)^{4}(t)\right]=3(d t)^{2}$, exactly.
5. Simulate the solution to the following variable coefficient diffusion SDE:

$$
d S(t)=S(t) \cdot(\mu(t) \cdot d t+\sigma(t) \cdot d W(t))
$$

where $S(0)=\$ 1000, \mu(t)=0.20 \cdot(1+t) /(1+2 \cdot t)$, and $\sigma(t)=0.30 \cdot(1+2 \cdot t) /(1+3 \cdot t)$ on $[0,2]$ years, using $N=4000$ time steps. Also, plot the simulated trajectory with proper title and axis labels. Include your code or worksheet. (For sample MATLAB code, see
http://www.math.uic.edu/~hanson/math586/Class08Codes/linear_diffusion08sims.m, "Linear-Diffusion Stock Price, $\mathrm{S}(\mathrm{t})$ ", or see Math 586 Spring 2008 Codes on class homepage.

