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Abstract

A computational solution is found for a optimal

consumption and portfolio policy problem in which the

underlying stock satisfies a geometric jump–diffusion in

which both the diffusion and jump amplitude are log–

normally distributed. The optimal objective is to maximize

the expected, discounted utility of terminal wealth and the

cumulative discounted utility of instantaneous consumption.

The jump–diffusion allows for a more realistic distribution,

skewed toward negative jumps and having leptokurtic

behavior in which the tails are thicker so that the distribution

is more slender around the peak than normal. Computational

issues pertinent to jump–diffusion calculations are discussed.

This is a corrected version of the published paper.

1. Introduction

The Black–Scholes [2] option pricing model based upon

geometric Brownian motion has been widely used in spite

of its deficiencies. However, many financial engineers have

tried to correct the deficiences of this basic model. One

big deficiency is that Brownian motion, having continuous

sample paths, lacks the sudden jumps in value of real finan-

cial instruments. Merton [8, Chapter 9] applied discontin-

uous sample path Poisson processes, along with Brownian

motion processes, i.e., jump–diffusions, to the problem of

pricing options. Merton derived several extensions of the al-

ready classical diffusion theory of Black–Scholes minimizing

the portfolio variance for jump–diffusion models using tech-

niques modified from those used to derive the Black–Scholes

formulae.

Prior to the Black–Scholes model, Merton [8, Chap-

ter 5-6] analyzed the optimal consumption and investment

portfolio with either geometric Brownian motion or Pois-

son noise and illustrated explicit solutions for constant risk–
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aversion utility. In [8, Chapter 4] , Merton also exam-

ined constant risk–aversion problems. Sethi and Taksar [11]

present corrections to certain formulae Merton’s finite hori-

zon consumption–investment model. Merton [8, Chapter 6]

revisited the problem in his continuous–time and reprint fi-

nance book, correcting his earlier work by adding an ab-

sorbing boundary condition at zero wealth and using other

techniques. Wilmott’s [13] presents a good discussion on

hedging with jump–diffusion models in finance, coming to

the conclusion that for a single option perfect risk–free hedg-

ing is impossible when there are jumps in the underlying.

In the paper of Hanson and Westman [6], a complex op-

timal portfolio and consumption policies problem was solved

computationally. The financial model was modified from a

theoretical important event model proposed by Rishel [10]

that is an optimal portfolio and consumption model for a

portfolio of stocks and a bond. The stock prices are de-

pendent on both scheduled (deterministic) and unscheduled

(stochastic) jump external events in an environment of ge-

ometric jump–diffusion processes. The jumps affect both

the stock prices directly or indirectly through parameters.

The scheduled jumps are actually quasi–deterministic, in that

the timing of the event is deterministic, but the magnitude

of the jump is random. The computations were illustrated

for a simple discrete jump model, such that both stochas-

tic and quasi–deterministic jump magnitudes were heuristi-

cally estimated discretely distributed single negative or pos-

itive jumps. Motivation for this quasi–deterministic process

are the more or less monthly announcements of the Federal

Open Market Committee [3], but the response of the market

to changes in Federal Funds Rate or Federal Discount Rate is

not too predictable. This quasi–deterministic process might

be called the Greenspan Process. The current paper applies

log–normal jump amplitude distribution to the optimal port-

folio and consumption problem, without quasi–deterministic

processes.

It is well known that the distribution daily investment

returns, i.e., the relative change in the instrument, can have
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fatter tails and be more slender near the mode than the corre-

sponding normal distribution with the same mean and vari-

ance as the investment sample. Such a property is called lep-

tokurtic since the kurtosis of the distribution is larger than

that of the normal distribution. Also, the negative market

tails tend to be fatter than the positive tails, so that the skew

of the distribution will be negative.

In his discontinuous returns paper, Merton [8, Chapter

9] considers the case of option pricing modeled by a jump–

diffusion process where the jumps have a log–normal distri-

bution in one important example. Andersen and Andreasen

[1] treat the log–normal jump–diffusion option pricing prob-

lem in much more detail, both analytically through forward

partial integral–differential equations and numerically mainly

through alternating direction implicit methods.

Hanson and Westman [4] derived the probability density

of the log–normal jump–diffusion using probabilistic meth-

ods by treating the log–return process as a triad, X+Y*Z,

random variables. The product, Y*Z, represents the space–

time Poisson process, the product of the log–normal ran-

dom jump amplitude and the Poisson jump counting process.

Once the distribution of the product is determined, then sum

of the log–normal diffusion and the space–time Poisson fol-

lows from the well–known convolution of distributions of

the summands. The parameters of this log–normal jump–

diffusion were estimated by fitting the distribution Standard

and Poor’s 500 (S&P500) log–returns for daily closings based

upon minimum variance between the S&P500 empirical dis-

tribution and the theoretical discretized log–return density of

the corresponding log–normal jump–diffusion.

In this paper, these jump–diffusion parameter values,

supplemented by additional economic data are applied to

the optimal portfolio and consumption control with constant

relative risk–adverse utilities problem. In Section 2, the

optimal portfolio and consumption control problem is

defined and reduced to a stochastic dynamic programming

problem. In Section 3, the problem is then simplified by

transforming to the canonical constant relative risk–adverse

utility problem with corresponding elimination of the

dimensional computational complexity of the wealth state

space. In Section 4, computational results for the optimal

value, portfolio and consumption are presented. Finally, the

concluding remarks are in Section 5.

2. Optimal Portfolio and Consumption Control Problem

Let S(t) be the price of a single stock or mutual fund that
satisfies the Markov, geometric, log–normal jump–diffusion
stochastic differential equation (SDE),

dS(t) = S(t) [µddt + σddZ(t) + JdP (t)] , (1)

S(0) = S0, S(t) > 0, where µd is the mean appreciation re-

turn rate, σd is the diffusive volatility, Z(t) is a continuous,

one–dimensional Brownian motion process, J is a random

jump amplitude with log–return mean µj and variance σ2
j ,

and P (t) is a discontinuous, one–dimensional, standard Pois-

son process with jump rate λ. Here, we will assume that the

jump–diffusion parameters µd, σd, µj , σj and λ are constant.

The stochastic processes Z(t) and P (t) are Markov and pair-

wise independent. The jump amplitude process J , given a

Poisson jump in time, is also independently distributed.

The continuous, diffusion process Z(t) is standard, so
has infinitesimal moments E[dZ(t)] = 0 and Var[dZ(t)] =
dt. The discontinuous space–time jump process JdP (t) is
just a symbol and can be defined by a stochastic integral
of Poisson random measure P(dt, dq) or as a sum of dP (t)
jumps of a compound Poisson process,

JdP(t) =

∫

Q

J(q)P(dt,dq) =

dP(t)∑

i=1

J(Qi)

with E[P(dt, dq)] = λdtφQ(q)dq and
∑0

i=1
J(Qi) ≡ 0,

where q is the mark for the jump amplitude process corre-

sponding to the underlying random variable Qi, such that

−1 < J(q) < ∞ so that one jump does not make the underly-

ing worthless, and where φQ(q) is the Poisson mark density,

providing it exists on the mark space Q. The infinitesimal

moments of the jump process are E[JdP (t)] = E[J ]λdt and

Var[JdP(t)] = E[J2]λdt .

Before describing the mark distribution in more detail,
it is helpful to first transform the stock price SDE (1) to the
SDE of the stock log–returns using the stochastic chain rule
for Markov processes in continuous time,

d[ln(S(t))] = µlddt + σddZ(t) + ln(1 + J(Q))dP (t) , (2)

where the log–diffusion drift µld ≡ µd − σ2
d/2 includes an

Itô calculus shift of the mean appreciation rate by the dif-

fusion coefficient and the log–return jump amplitude is the

logarithm of the relative post–jump amplitude ln(1+J(Q)).
This log–return SDE (2) is the model that was compared in

[4] to the S&P500 log–returns, since they are preferred finan-

cial investment metric as a measure of the relative changes

in investment value, as opposed to the absolute change of

the stock price represented by the geometric jump–diffusion

SDE in (1).

Since J > −1, let the mark process be the log–return
jump amplitude Q = ln(1 + J), which has the inverse
J(Q) = exp(Q) − 1, on the mark space Q = (−∞, +∞).
Further, on the full infinite domain, the natural choice for the
mark density is the normal density, φn(q; µj , σ

2
j ), so

φQ(q) = φn(q; µj , σ
2
j ) ≡

exp(−(q − µj)
2/(2σ2

j ))√
2πσ2

j

, (3)

having a mean E[Q] = µj and variance Var[Q] = σ2
j .

Hence, J(Q) + 1 is log–normally distributed. The moments
of the log–return differential are

M
(jd)
1 ≡ E[d[ln(S(t))]] = (µld + λµj)dt , (4)
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M
(jd)
2 ≡ Var[d[ln(S(t))]] = (σ2

d + λ(σ2
j + µ2

j ))dt . (5)

The log–return is of primary interest, as the investor is in-

terested in the per cent or relative change in a portfolio and

the log–return is the continuous limit of the relative change.

Let the portfolio consist of one riskless asset, say a bond,
with price at time t of B(t) dollars and one risky asset, a
stock or mutual fund, with price S(t) at time t. Further, let
U0(t) be the fraction of the instantaneous portfolio change in
the bond investment at time t and U1(t) be the fraction of the
change in the stock investment, such that the sum adds up to
the whole portfolio change in investment: U0(t)+U1(t) = 1.
The instantaneous bond fraction U0(t) ≥ 0, i.e., must be
non–negative. It will also be assumed that the stock fraction
U1(t) will be non–negative to keep the multitude of special
cases to a minimum, so that 0 ≤ U1 ≤ 1. The bond is
assumed to satisfy a deterministic exponential process

dB(t) = rB(t)dt , B(0) = B0 . (6)

with the bond price continuously compounded at a fixed rate

of interest, r.

The wealth process at time t changes due to changes
in the portfolio fraction depending on the relative change in
portfolio prices less instantaneous consumption of wealth:

dW (t) = W (t)

[
U0(t)

dB(t)

B(t)
+ U1(t)

dS(t)

S(t)

]
− C(t)dt

= W (t) [rdt + U1(t) {(µd − r)dt (7)

+ σddZ(t) + JdP (t)}] − C(t)dt ,

where C(t) is the instantaneous rate of consumption, as-

sumed to be non–negative as well as constrained relative

to wealth, i.e., 0 ≤ C(t) ≤ C
(0)
maxW (t) and U0(t) =

1 − U1(t) has been eliminated by the fraction constraint.

At the ℓth Poisson jump time Tℓ, the wealth jumps by

[W ](Tk) ≡ W (T +
k ) − W (T−

k ) = U1(T
−

k )J(qk)W (T−

k ),
for k = 1, 2, 3, . . . jumps with random amplitude J(qk) =
eqk − 1, where qk is a normally distributed mark variable at

the kth jump with mean µj and variance σ2
j .

The investor’s objective is to maximize the conditional,
expected current value of the discounted utility Uf (w) of
terminal wealth at the end of the investment terminal time T
and the discounted utility of instantaneous consumption, i.e.,

v∗(t, w) = max
{u,c}[t,T )

[
E
[
e−β(T−t)Uf (W (T ))

+

∫ T

t

e−β(τ−t)U(C(τ ))dτ

]]
, (8)

conditioned on the state–control set C = {W (t) =
w, U1(t) = u, C(t) = c}, where 0 ≤ t < T , 0 ≤ u ≤
1, 0 ≤ c ≤ C

(0)
maxw for non–negative consumption feasi-

bility with maximal relative limits, w ≥ 0 for non–negative
wealth feasibility, and β is the fixed discount rate. Thus,
the instantaneous consumption c = C(t) and stock portfo-
lio fraction u = U1(t) serve as control variables, while the

wealth w = W (t) is the state variable. Bellman’s Principle
of Optimality has the form,

v∗(t, w) = max
{u,c}[t,t+dt)

[
E[t,t+dt) [U(c)dt

+ (1 − βdt)v∗(t + dt,w + dW (t))]] , (9)

conditioned on set C, for sufficiently small dt when 0 ≤ t ≤
T , subject to the zero wealth absorbing boundary condition
to avoid the possibility of arbitrage [8],

v∗(t, 0+) = Uf (0)e−β(T−t) + U(0)(1 − e−β(T−t))/β (10)

and assuming that the consumption must be zero when the

wealth is zero. The bequest or terminal wealth condition

v∗(T, w) = Uf (w). must also be satisfied and as a final con-

dition means that the problem will be a final value problem

rather than an initial value problem.

Assuming the v∗(t, w) is continuously differentiable in t
and twice continuously differentiable in w, then the stochastic
dynamic programming equation (see Kushner [7] for early
Poisson jump versions) follows from an application of the
Itô stochastic chain rule to the principle of optimality form
(9):

0 = v∗
t (t, w) − βv∗(t, w) + U(c∗)

+ [(r + (µd − r)u∗)w − c∗] v∗
w(t, w)

+
1

2
σ2

d(u∗)2w2v∗
ww(t,w) (11)

+λ

∫ +∞

−∞

[v∗(t, (1 + J(q)u∗)w)

− v∗(t,w)] φn(q; µj , σ
2
j )dq ,

where u∗ = u∗(t, w) ∈ [0, 1] and c∗ = c∗(t, w) ∈
[0, C

(0)
maxw] are the optimal controls if they exist, while

v∗w(t, w) and v∗ww(t, w) are the partial derivatives with re-

spect to wealth w when 0 ≤ t < T . Non–negativity of

wealth implies an additional consistency condition for the

control since the jump in wealth argument (1 + J(q)u∗)w
requires that 1 + J(q)u ≥ 0,which is requires 0 ≤ u ≤ 1.

When the maximum in (8) is unconstrained and is at-
tainable, then the controls are the regular controls ureg(t, w)
and creg(t, w), which are given implicitly, provided sufficient
differentiability in c and u, by the dual critical conditions,
U ′(creg(t, w)) = v∗w(t, w) for consumption and

σ2
dw2v∗

ww(t, w)ureg(t, w) = −(µd − r)wv∗
w(t, w)

−λw
∫ +∞

−∞
J(q)v∗

w(t, (1 + J(q)ureg(t, w))w)

·φn(q; µj , σ
2
j )dq

for portfolio policies.

3. Constant Relative Risk–Adverse Utility Canonical

Problem Reduction

Assuming the investor is risk adverse, the utilities will
be taken to be Constant Relative Risk–Aversion (CRRA)
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power utilities with the same power for wealth and consump-
tion:

U(x) = Uf (x) = xγ/γ , x ≥ 0, 0 < γ < 1 , (12)

which is consistent with the non–negativity requirements of

w and c. The CRRA utilities are a special case of Hyperbolic

Absolute Risk Aversion (HARA) utility treated by Merton [8,

Chapter 4-6].

These power utilities lead for the optimal consumption
and portfolio problem to a canonical reduction of the stochas-
tic dynamic programming PDE problem to a simpler ODE
problem. The optimal value function has a solution that sep-
arates the wealth state variable from the time dependence,

v∗(t, w) = Uf (w)v0(t) , (13)

where the wealth dependence is given explicitly and the time

function is to be determined. Since Uf (0+) = U(0+) = 0
from (12), the absorbing boundary (10), i.e., v∗(t, 0+), is

automatically satisfied.

Further, the regular consumption control is a linear func-
tion of the wealth,

creg(t, w) ≡ w · c
(0)
reg(t) = w/v

1/(1−γ)
0 (t) , (14)

since v∗w(t, w) = U ′(w)v0(t) = U ′(creg(t, w)) and U ′(x) =
xγ−1 using (12). The regular stock fraction reduces to a

wealth and time independent control, ureg(t, w) = u
(0)
reg , de-

fined implicitly by

u
(0)
reg = G(u

(0)
reg) ≡

1

(1 − γ)σ2
d

[
µd − r + λI1(u

(0)
reg)
]
,(15)

I1(u) ≡

∫ +∞

−∞

J(q) (1 + J(q)u)γ−1 φn(q; µj , σ
2
j )dq,

since w2v∗(t, w) = γ(γ−1)U(w)v0(t) and U((1+Ju)w) =
U(1 + Ju)U(w). This wealth independent property of the
regular stock fraction is essential for the separability of the

optimal value function (13). Since (15) only defines u
(0)
reg

implicitly in fixed point form, u
(0)
reg must be found by iteration

and a good choice is Newton’s method, a fast and accurate
fixed point method, assuming |G′(uk) − 1| > ε > 0 and

uk+1 = uk − (G(uk) − uk) / (G′(uk) − 1) ,

G′(u) = λ
(1−γ)σ2

d

I ′
1(u) − 1 ,

I ′
1(u) = (1 − γ)

∫ +∞

−∞
J(q)2 (1 + J(q)u)γ−2

φn(q; µj , σ
2
j )dq .

The integrals are efficiently approximated by a 3–point

Gauss–Statistics quadrature [12] (a general Gaussian quadra-

ture that, with a log–normal jump density, is a variation of

the Gauss–Hermite quadrature, except with simpler nodes

{−
√

3, 0,
√

3} and weights {1/6, 2/3, 1/6}, having fifth de-

gree polynomial precision), using the standardized normal

density upon transforming the jump density.

The optimal controls, when there are constraints,

are given in piecewise form as c∗(t, w)/w = c∗0(t) =

max[min[c
(0)
reg (t), C

(0)
max], 0], provided w > 0, and u∗ =

max[min[u
(0)
reg , 1], 0], independent of w and t along with u

(0)
reg .

Substitution of the separable power solution (13) and
the regular controls in (14-15) into the stochastic dynamic
programming equation (11), leads to an ODE,

0 = v′
0(t) + (1 − γ)

(
g1(u

∗)v0(t) + g2(t)v
γ

γ−1

0 (t)
)

, (16)

g1(u) ≡
1

1 − γ
[−β + γ (r + u(µd − r))

−
γ(1 − γ)

2
σ2

du2 + λ(I2(u) − 1)

]

g2(t) ≡
1

1 − γ

[(
c∗0(t)

c
(0)
reg(t)

)γ

− γ

(
c∗0(t)

c
(0)
reg(t)

)]
, (17)

I2(u) ≡ γ

∫ +∞

−∞

U(1 + J(q)u)φn(q; µj , σ
2
j )dq ,

for 0 ≤ t < T . The coupling of v0(t) to the time dependent

part of the consumption term c
(0)
reg (t) in g2(t) (17), and the

relationship of c
(0)
reg (t) to v0(t) in (14), means that the ODE

(16) is actually highly nonlinear and thus (16) is only of

Bernoulli type implicitly.

The implicit Bernoulli equation (16) can be transformed

to a linear differential equation by using θ(t) = v
1/(1−γ)
0 (t),

to obtain, 0 = θ′(t) + g1(u
∗)θ(t) + g2(t), whose general

solution can be inverse transformed to the particular solution
for the separated time function implicitly given by

v0(t) = θ1−γ(t) =
[
e−g1(u∗)(T−t) (1 (18)

+

∫ T

t

g2(τ )eg1(u∗)(T−τ)dτ

)]1−γ

,

using the final condition v0(T ) = 1, since v0(t) depends

on c
(0)
reg (t) in (17), while c

(0)
reg (t) depends on v0(t) in (14).

Hence, both v0(t) and c
(0)
reg (t) must be found by computa-

tional iteration, so a much more efficient and backward in-

tegration form upon transformation and decomposition, is

used and is given by v0(t − ∆t) = θ1−γ(t − ∆) where

θ(t − ∆t) = ω∗

1(−∆t)(θ(t) +
∫ t

t−∆t
g2(τ)ω∗

1(t − τ)dτ) and

ω∗

1(t) ≡ exp(g1(u
∗)t). An exponentially weighted, 2–point

trapezoidal rule with weight ω∗

1(t − τ) is used to approx-

imate the short integral over g2(τ) (17), evaluated at the

current value t and at the backward iterate t − ∆t, iterating

until the last change, |v0(t−∆t)− v0(t)|, is smaller in than

a prescribed tolerance.

The solution for the optimal value function is

v∗(t, w) = Uf (w)v0(t), requiring only multiplication by

the utility. The optimal portfolio fraction control is the
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constant u∗ under control constraints, using solutions from

(15). The optimal consumption control c∗(t, w) is time and

wealth dependent and under constraints from (14). However,

the feasibility of calculating the solution by iteration is

extremely good.

4. Computational Finance Results

In our paper [4] the log–normal density of the log–

returns is derived and proven by basic probabilistic methods,

as summarized and corrected here in the following result:

Theorem: The probability density for the log–normal
jump–diffusion log–return differential d[ln(S(t))] specified
in the SDE (2) is

φd ln(S(t))(z) =

∞∑

k=0

pk(λdt) (19)

·φn(z; µlddt + µjk, σ2
ddt + σ2

j k),

−∞ < z < +∞, where pk(λdt) = exp(−λdt)(λdt)k/k! for

k = 0, 1, 2, . . ., is the well–known Poisson distribution with

parameter λdt, and the normal density φn is defined above

in (3).

The proof relies on the fact that the density for a

sum of random variables is a nested series of convolu-

tions of the component densities. In the special case of

a jump-diffusion where the Poisson jump amplitudes are

normally distributed as is the diffusion process, for each

jump count k the convoluted density is also normally dis-

tributed such that the mean is the sum of the means and

the variance is the sum of the variances. For total density

of the jump-diffusion is the sum of all the Poisson jump

counts weighted by the Poisson distribution according to

the law of total probability.

The log–normal jump–diffusion density (19) was fit in
[4] to realistic data. The 1657 daily closings of the Stan-
dard and Poor’s 500 (S&P500) stock index from 1995 to
July 2001 were used from data available on–line [14]. The
S&P500 data is an example of one large mutual fund rather
than a single stock but has the advantage of not being bi-
ased severely to the extremes of any one stock. The data
was transformed into changes in the natural logarithm of
the index closings, ∆[ln(SPi)] ≡ ln(SPi+1) − ln(SPi) for
i = 1, . . . , 1656 points. Using 50 bin histograms the empiri-
cal S&P500 log–return data was compared to the correspond-
ing histogram for the theoretical log–return jump–diffusion
density φd ln(S(t)) in (19). The five parameter set of un-

knowns, {µd, σ
2
d, µj , σ

2
j , λdt} was to be reduced to a more

manageable set of three to avoid large fitting errors by con-
straining both distributions to have the same mean (M1) and
variance (M2), selecting the diffusive parameters for elimi-
nation:

σ2
d = (M2 − λdt(σ2

j + µ2
j ))/dt , (20)

µd = (M1 − λdtµj)/dt .

The reduced set {µj, σ
2
j , λdt} was then found by minimizing

the variance between the bins of the two histograms. Due to
the complexity of the jump–diffusion density and the need
to keep finance methods simple, a multi–dimensional mod-
ification of Golden Section Search was derived that needs
no derivatives and searches beyond the current range when a
local minimum is not found in the current search hypercube
[5]. In addition, hypercube constraints were implemented so
that the free model parameters {−µj, σ

2
j , λdt} would remain

non–negative and be bounded. The final parameter results
reported in [4] are

µd ≃ 0.2712 , σ2
d ≃ 0.01048 , (21)

µj ≃ −0.0007474 , σ2
j ≃ 0.00007812 , λ ≃ 161.7 .

The return time, dt ≃ 0.003964, is the reciprocal of the

average number of trading days per year or 252.3 days. A

comparison of the coefficients of skew and kurtosis are given

in Table 1.

Table 1: Comparison of coefficients of skew and kurtosis.

Coeff. Skew Coeff. Kurtosis

Distribution η3 = M3/M
1.5
2 η4 = M4/M

2
2

S&P500 -0.2867 6.862

Jump-Diffusion -0.2114 8.082

Normal +0.0000 3.000

Additional economic parameters are the average rate

r = 7.054% for Moody AAA bonds, the average discount

rate β = 4.617% from the Federal Reserve Bank, γ = 0.20
is taken as the common power of the CRRA terminal wealth

and consumption utilities, and C
(0)
max = 0.75 as an upper

bound on the consumption relative to wealth. Some com-

putational parameters are Wmax = 100 as a finite bound

for wealth output representation only divided into Nw = 20
sub–intervals and T = 1 trading year is the investment ter-

minal time divided into 100 subdivisions. The regular stock

fraction control, found once and for all as a constant, in-

dependent of time and wealth, is u
(0)
reg ≃ 4.62, so that the

optimal control u∗ = 1.00 constrained on [0.0, 1.00], taking

only 3 iterates to get u
(0)
reg to 3 significant digits.

For financial engineering applications, it is very impor-

tant to have very feasible finance computations for quick and

accurate approximate solutions. Hence, these computations

were mainly carried out in the popular code development sys-

tem of MATLABTM [9] due to its facility for developing

rapid prototype solutions.

In Figure 1, the optimal value v∗(t, w) solution is shown

in three–dimensions versus the wealth w in dollars and t in

trading years. For fixed time, the optimal value follows the

CRRA utility of wealth template. However, the scaling of the

optimal value function and the dependence on time t for fixed

wealth w depends on the separated time solution v0(t). Since

the wealth utility U(w) = wγ/γ is badly behaved due to the

non–differentiability at w = 0 if 0 < γ < 1, the wealth mesh
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has been transformed to constant intervals in wγ , rather than

on w itself. The way this stochastic dynamic programming

solution is interpreted is that given a time t and wealth w
position, than the optimal value of the portfolio is v∗(t, w)
using the optimal stock fraction policy of u∗ given above.

Since the problem is autonomous due to time–independent

parameters, the results are also valid for investment terminal

times between t = 0.0 and T = 1.0.
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Figure 1: Optimal expected value approximation v∗(t, w) versus

time t and wealth w in numerical results for CRRA

model.

In Figure 2, the computational approximation of the op-

timal consumption policy or control c∗(t, w) is displayed ver-

sus the time t in trading years and the wealth w in dollars

using the CRRA power utility model. Recall that c∗(t, w)
is linear in the wealth w, but inversely proportional to the

separated optimal value time function v0(t) to the power

1/(1− γ) = 1.25 here when γ = 0.2. Hence, lines constant

in time are straight lines, while the dependence in time t for

fixed wealth w in [0, 100] are roughly the reciprocal of v0(t),
i.e., v−1.25

0 (t).

5. Conclusions

The log–normal jump–diffusion distribution has been

demonstrated on the canonical optimal portfolio and con-

sumption control problem. Computational techniques are

presented for handling the iterations for implicitly defined

solutions such as the optimal stock fraction policy u∗ and the

coupled optimal value separated time function v0(t) and the

optimal consumption policy c∗. Also, the Gauss–Statistics

quadrature for handling the log–normal jump amplitude in-

tegral has been used, but this technique is also useful for

other jump distribution by using the appropriate standard-

ized distribution.
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Figure 2: Optimal consumption policy approximation c∗(t, w) ver-

sus time t and wealth w in numerical results for CRRA

model.
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