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Abstract

This paper treats jump-diffusion processes in continuous
time, with emphasis on the jump-amplitude distributions,
developing more appropriate models using parameter
estimation for the market. The proposed method of
parameter estimation is weighted least squares of the
difference between theoretical and experimental bin
frequencies, where the weights or reciprocal variances
are chosen as by the theory of jump-diffusion simula-
tion applied to bin frequencies. The empirical data is
taken from a decade of Standard & Poor 500 index of
stock closings and are viewed as one moderately large
simulation. The new developments are the combined use
of uniform jump-amplitude distributions, least squares
weights and time-varying market parameters, introducing
more realism into the model, a Log-Normal-Diffusion,
Log-Uniform-Jump financial market model. The optimal
parameter estimation is highly nonlinear, computationally
intensive, and the optimization is with respect to the three
parameters of the log-uniform jump distribution, while
the diffusion parameters are constrained by the first two
moments of the S&P500 data.

1. Introduction

The actual distribution of daily log-returns for financial
market data differ in significant ways from the ideal log-
normal diffusion process as assumed in the Black-Scholes
model [1] and other option pricing models. The log-returns,
the log-differences between two successive market closings,
approximate the logarithm of the relative change. The most
significant difference is that actual log-returns exhibit occa-
sional large jumps in value, whereas the diffusion process
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in Black-Scholes [1] is continuous. A second difference is
that the empirical log-returns are usually negatively skewed,
since the crashes are likely to be larger or more numerous
than the positive jumps, whereas the normal distribution as-
sociated with the diffusion process is symmetric. Thus, the
coefficient of skew [2] is negative, η3 ≡ M3/(M2)

1.5 < 0,
where M2 and M3 are the 2nd and 3rd central moments
of the log-return distribution. A third difference is that
the distribution from market closings is usually leptokurtic
since the coefficient of kurtosis [2], η4 ≡ M4/(M2)

2 > 3,
where the normal distribution kurtosis value is 3 and M4

is the fourth central moment. This means that the tails
are fatter than a normal distribution with the same mean
and standard deviation, so that the distribution is also more
slender about the mode (local maximum) to conserve prob-
ability. A fourth difference is that the market exhibits time-
dependence in the distributions of log-returns, so that the
associated parameters are time-dependent.

Merton [12, Chap. 9] introduced Poisson jumps with in-
dependent identically distributed random jump-amplitudes
with fixed mean and variances into the Black-Scholes
model, but the ability to hedge the volatilities was not
very satisfactory. Kou [11] uses a jump-diffusion model
with a double exponential jump-amplitude distribution with
mean κ and variance 2η, having leptokurtic and negative
skewness properties and has many analytical advantages,
although it is difficult to see the empirical justification for
this distribution.

Hanson and Westman [5] reformulated an important exter-
nal events model of Rishel [13] solely in terms of stochas-
tic differential equations and applied it to the computation
of the optimal portfolio and consumption policies problem
for a portfolio of stocks and a bond. The stock prices
depend on both scheduled and unscheduled jump external
events. The computations were illustrated with a simple
log-bi-discrete (i.e., 2 discrete jumps in the log-return, one
negative and one positive) jump-amplitude model, either
negative or positive jumps, such that both stochastic and
quasi-deterministic jump magnitudes were estimated. In
[7], they constructed a jump-diffusion model with marked
Poisson jumps that had a log-normally distributed jump-
amplitude and rigorously derived the density function for
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the log-normal-diffusion and log-normal-jump stock price
log-return model. In [6], this financial model is applied to
the optimal portfolio and consumption problem for a port-
folio of stocks and bonds including computational results.
In [9], they treated the case of time-dependent parameters
with uniformly distributed jump amplitudes estimating the
jump intensity using an unweighted least squares method
with constraints on the other jump diffusion parameters. In
[8], they derived a proper weighting from jump-diffusion
theory for a weighted least squares that emphasized the
jump component of the distribution more, thus yielding
better fits to the jump parameters. This paper presents an
improved fitting using a weighted least squares to estimate
the jump intensity and the jump amplitude interval.

In particular, this paper treats the log-normal-diffusion, log-
uniform-jump problem. In Section 2, the derivation of the
jump-diffusion density is briefly discussed using a modifi-
cation of our prior theorem [7]. In Section 3, the time de-
pendent parameters for this log-return process are estimated
using this theoretical density and the S&P500 Index daily
closing data for the prior decade. Concluding remarks are
given in Section 4.

2. Log-Return Density for Log-Normal-Diffusion,
Log-Uniform Jump

Let S(t) be the price of a stock or mutual fund, that is gov-
erned by a geometric jump-diffusion stochastic differential
equation (SDE) with time-dependent coefficients,

dS(t) = S(t) [µd(t)dt+ σd(t)dZ(t) + J(t)dP (t)] , (1)

with S(0) = S0, S(t) > 0, where µd(t) is the diffusive drift
at time t, σd(t) is the diffusive volatility, Z(t) is is a con-
tinuous, one-dimensional Gaussian process, P (t) is a dis-
continuous, one-dimensional standard Poisson process with
jump rate λ(t), and associated jump-amplitude J(t) with
log-return mean µj(t) and variance σ2

j (t). The stochas-
tic processes Z(t) and P (t) are assumed to be Markov and
pairwise independent. The jump-amplitude J(t), given that
a Poisson jump in time occurs, is also independently dis-
tributed. The stock price SDE (1) is similar in our prior
work [7, 6], except that time-dependent coefficients intro-
duce more realism as in [9].

The continuous, differential diffusion process dZ(t) is
the standard Gaussian process with zero mean and dt

variance. The symbolic notation for the discontinu-
ous space-time jump process, J(t)dP (t), is better de-
fined in terms of the Poisson random measure, P(dt, dq),
by the stochastic integral, J(t)dP (t) =

R
Q
bJ(t; q)P(dt, dq),

where Q = q is the Poisson spatial mark variable for
the jump amplitude process, and bJ(t; q) is the kernel
of the Poisson operator J(t), such that −1 < bJ(t; q) < ∞
so that a single jump does not make the underly-
ing non-positive. The infinitesimal moments of the

jump process are E[J(t)dP (t)] = λ(t)dt
R
Q
bJ(t; q)φQ(q; t)dq

and Var[J(t)dP (t)] = λ(t)dt
R
Q
bJ2(t; q)φQ(q; t)dq, neglect-

ing O2(dt) here, where φQ(q; t) is the Poisson ampli-
tude mark density. The differential Poisson process
is a counting process with the probability of the
jump count given by the usual Poisson distribution,
pk(λ(t)dt) = exp(−λ(t)dt)(λ(t)dt)k/k!, k = 0, 1, 2, . . ., with
parameter λ(t)dt > 0. For a clear, more rigorous presenta-
tion of jump-diffusion theory see Runggaldier’s [14] hand-
book chapter.

Since the stock price process is geometric, the common
multiplicative factor of S(t) can be transformed away
yielding the SDE of the stock price log-return with state-
independent right hand side using the stochastic chain rule
for Markov processes in continuous time,

d[ln(S(t))] = µld(t)dt+ σd(t)dZ(t)
+ ln(1 + J(t))dP (t),

(2)

where µld(t) ≡ µd(t)− σ2
d(t)/2 is the log-diffusion (ld) drift

and ln(1 + bJ(t; q)) is the stock log-return jump-amplitude,
the logarithm of the relative post-jump-amplitude. This log-
return SDE (2) will be the model that will used for com-
parison to the S&P500 log-returns. Since bJ(t; q) > −1, it
is convenient to select the mark process to be the jump-
amplitude random variable, Q = ln

³
1 + bJ(t;Q)´, on the

mark space Q = (−∞,+∞). Though this is a convenient
mark selection, it implies the time-independence of the
jump-amplitude, so bJ(t;Q) = bJ0(Q) or J(t) = J0. Since
market jumps are rare and the tails are relatively flat, a
reasonable approximation is a uniform jump-amplitude dis-
tribution with density φQ(q; t) on the finite, time-dependent
mark interval [Qa(t), Qb(t)],

φQ(q; t) ≡ H(Qb(t)− q)− H(Qa(t)− q)

Qb(t)− Qa(t)
, (3)

where H(x) is the Heaviside, unit step func-
tion. The density φQ(q; t) yields a mean
EQ[Q] = µj(t) = (Qb(t) +Qa(t))/2 and variance
VarQ[Q] = σ2

j (t) = (Qb(t)− Qa(t))
2/12, which define

the basic log-return jump amplitude moments. It is
assumed that Qa(t) < 0 < Qb(t), to make sure that both
negative and positive jumps are represented, which was a
problem for the log-normal jump-amplitude distribution in
[6]. The uniform distribution is treated as time-dependent
in this paper, so Qa(t), Qb(t), µj(t) and σ2

j (t) all depend
on t.

The difficulty in separating out the small jumps about the
mode or maximum of real market distributions is explained
by the fact that a diffusion approximation for small marks
can be used for the jump process that will be indistinguish-
able from the continuous Gaussian process anyway. Thus,
there does not seem that there can be a theoretical justifi-
cation for use of the double exponential jump distribution
[11] with peak in the diffusion part of the distribution, ex-
cept for the convenience of extensive analysis. The use
of the simple uniform jump distribution is quite sufficient
since the jumps are most clearly detectable as outliers in
the tail of the financial market distribution.
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The basic moments of the stock log-return increment
(dt → ∆t) are

M
(jd)
1 ≡ E[∆[ln(S(t))]] = (µld(t) + λ(t)µj(t))∆t, (4)

M
(jd)
2 ≡ Var[∆[ln(S(t))]]

� ¡
σ2

d(t) + λ(t)
¡
σ2

j (t)µ
2
j(t)

¢¢
∆t,

(5)

where the O2(∆t) term has been neglected in the variance,
since the discrete return time, dt = ∆t, the daily fraction of
one trading year (about 250 days), will be small.

The log-normal-diffusion, log-uniform-jump density can be
found by basic probabilistic methods following a slight
modification for time-dependent coefficients of constant co-
efficient theorem found our paper [7],
Theorem 2.1:
The probability density for the log-normal-diffusion, log-
uniform-jump amplitude log-return increment ∆[ln(S(t))]
specified in the SDE (2) with time-dependent coefficients
is given by

φ(jdth)(x) ∼ p0(λ(t)∆t)φ(n)
¡
x;µld(t)∆t, σ2

d(t)∆t
¢

+ p1(λ(t)∆t)
(Qb(t)−Qa(t))

·
h
Φ(n)

¡
Qb(t)− x+ µld(t)∆t; 0, σ2

d(t)∆t
¢

− Φ(n)
¡
Qa(t)− x+ µld(t)∆t; 0, σ2

d(t)∆t
¢i

,

(6)

for sufficiently small ∆t and −∞ < x < +∞, where
pk(λ(t)∆t) is the Poisson distribution and the normal dis-
tribution with mean µld∆t and variance σ2

d∆t is

Φ(n)(x;µld∆t, σ2
d∆t) =

Z x

−∞
φ(n)(y;µld∆t, σ2

d∆t)dy

associated with d ln(S(t)), the diffusion part of the log-
return process,

φµld∆t+σddZ(t)(x) = φ(n)(x;µld(t)∆t, σ2
d(t)∆t) .

The proof, which is only briefly sketched here, follows
from the density of a triad of independent random vari-
ables, ξ + η · ζ given the densities of the three component
processes ξ, η, and ζ. Here, (1) ξ = µld(t)∆t+ σd(t)∆Z(t)
is the log-normal plus log-drift diffusion process, (2)
η = Q = ln(1 + bJ0(Q)) is the log-uniform jump-amplitude,
and (3) ζ = ∆P (t) is the differential Poisson process.
The density of a sum of independent random vari-
ables, as in the sum operation of ξ + (η · ζ), is very
well-known and is given by a convolution of densities
φξ+ηζ(z) =

R +∞
−∞ φξ(z − y)φηζ(y)dy (see Feller [3]). How-

ever, the distribution of the product of two random variables
η · ζ is not so well-known [7] and has the density,

φηζ(x) ∼ p0(λ(t)∆t)δ(x)

+ p1(λ(t)∆t)[H(Qb(t)−x)−H(Qa(t)−x)]
(Qb(t)−Qa(t))

,
(7)

for the log-uniform-jump process and sufficiently small ∆t.
The probabilistic mass at x = 0 is represented by the Dirac
δ(x) and corresponds to the zero jump event case. Finally,
applying the convolution formula for density of the sum
ξ + (ηζ) leads to the density for the jump-diffusion random
variable triad ξ + ηζ given asymptotically in (6) of the the-
orem.

3. Jump-Diffusion Parameter Estimation

Given the log-normal-diffusion, log-uniform-jump density
(6), it is necessary to fit this theoretical model to realis-
tic empirical data to estimate the parameters of the log-
return model (2) for d[ln(S(t))]. For realistic empirical
data, the daily closings of the S&P500 Index during the
decade from 1992 to 2001 are used from data available on-
line [15]. The data consists of n

(sp)
= 2522 daily closings.

The S&P500 data can be viewed as an example of one
large mutual fund rather than a single stock. The data has
been transformed into the discrete analog of the continu-
ous log-return, i.e., into changes in the natural logarithm
of the index closings, ∆[ln(SPi)] ≡ ln(SPi+1)− ln(SPi)

for i = 1, . . . , n
(sp) − 1 daily closing pairs. For the

decade, the mean is M
(sp)
1 � 4.015 × 10−4 and the vari-

ance is M
(sp)
2 � 9.874 × 10−5, the coefficient of skewness

is η
(sp)
3 ≡ M

(sp)
3 /(M

(sp)
2 )1.5 � −0.2913 < 0, demonstrating

the typical negative skewness property, and the coefficient
of kurtosis is η

(sp)
4 ≡ M

(sp)
4 /(M

(sp)
2 )2 � 7.804 > 3, demon-

strating the typical leptokurtic behavior of many real mar-
kets.

The S&P500 log-returns, ∆[ln(SPi)] for i = 1 : n
(sp)

decade data points, are partitioned into 10 yearly data
sets, ∆[ln(SP

(spy)
jy ,k )] for k = 1 : n

(sp)

y,jy
yearly data points for

jy = 1 : 10 years, where
P10

jy=1 n
(sp)

y,jy
= n

(sp) . For each of
these yearly sets, the parameter estimation objective is to
find the least sum of weighted squares of the deviation
between the empirical S&P500 log-return histograms for
the year and the analogous theoretical log-normal-diffusion,
log-uniform-jump distribution histogram based upon the
same bin structure of 100 bins for each year. In partic-
ular, the weighted formulation is given as

χ2 =
N(bin)X

i=1

ωi ·
³
f

(jdth)
i − f

(sp)
i

´2

, (8)

where ωi is the weight of the ith bin, f
(sp)
i is the ith

empirical S&P500 bin frequency data and f
(jdth)
i is the

ith theoretical jump-diffusion bin frequency corresponding
to the same sample size N(sp) = 2521.

In [8], we derived the proper weights for this least squares
procedure from the jump-diffusion distribution and the the-
ory by which the distribution is approximated by jump-
diffusion simulations. This result is summarized in the
following:

Theorem 3.1:
If f

(jdsim)
i =

∑N
j=1 U(∆S

(jdsim)
j ; xi, x

−
i+1) for i = 1 :

N (bin) are the frequencies of the ith bin [xi, xi+1) and
∆S

(jdsim)
j is the jth jump-diffusion simulation, using N

samples, as prescribed for (2), then the bin frequency ex-
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pectation and variance are

µ
f
(jdsim)
i

= E
h
f

(jdsim)
i

i
= f

(jdth)
i

σ2

f
(jdsim)
i

= Var
h
f

(jdsim)
i

i
= N ·

³
1− 1

N
f

(jdth)
i

´2

f
(jdth)
i ,

(9)

respectively, where the ith expected bin frequency after N
simulations is

f
(jdth)
i = N ·

∫ xi+1

xi

φ
(jdth)
i (x)dx.

Here, U(x; a, b) is the unit step function on (a, b).

The bin weights are chosen as the normalized theoretical
values,

ωi = ω
(jdth)
i =

³
1/σ2

(f
(jdth)
i

)

´,N(bin)X
j=1

µ
1/σ2

(f
(jdth)
j

)

¶
, (10)

for i = 1 : N (bin) bins, normalized to a unit sum for
convenience of small minima.

Keeping the number of free parameters as small as practi-
cal, we require that the mean and variances of the yearly
log-returns be the same for both empirical and theoretical
distributions, i.e., our moment constraints are

M
(spy)
1,jy

≡ Meann
(sp)
y,jy

k=1

h
∆
h
ln
³
SP

(spy)
jy ,k

´ii
= M

(jdy)
1,jy

(11)

using (4) and

M
(spy)
2,jy

≡ Varn
(sp)
y,jy

k=1

h
∆
h
ln
³
SP

(spy)
jy ,k

´ii
= M

(jdy)
2,jy

(12)

using (5), for each jy = 1 : 10 years. Since the primary
interest here is the jump component of the process, the
constraints (11,12 are chosen to constrain the log-diffusion
parameters, such that

µld,jy =
³
M

(spy)
1,jy

− (λ dtµj)jy

´
/∆Tjy , (13)

σ2
d,jy

=
³
M

(spy)
2,jy

− (λdt((1 + λdt)σ2
j + µ2

j )jy )
´

/∆Tjy , (14)

with σ2
d,jy

> 0 for each jy = 1 : 10 years. Of the six
parameters {µld,jy , σ2

d,jy
, µj,jy , σ2

j,jy
, λjy ,∆Tjy}, needed for

each year jy to specify the jump-diffusion log-return dis-
tribution, only the three jump parameters {Qa, Qb, λ∆T}jy

needs to be estimated by a three dimensional nonlinear least
squares, using the first two moments for constraints. The
time step ∆t = ∆Tjy is given as the reciprocal of the num-
ber of trading days per year, close to 250 days, but varies
a little for jy = 1 : 10 and has values lying in the range,
[0.003936, 0.004050], of small values and are used here
for parameter estimation.

Thus, we have a three dimensional global minimization
problem for a highly complex discretized jump-diffusion
density function (6). The analytical complexity indicates
that a general global optimization method that does not re-
quire derivatives would be useful. For this purpose, such a

method, Golden Super Finder (GSF) [10], was developed
for [6, 9, 8] and implemented in MATLABTM , since sim-
ple techniques are desirable in financial engineering. The
GSF method is an extensive modification to the Golden
Section Search method [4], extended to multi-dimensions
and allowing search beyond the initial hyper-cube domain
by including the endpoints in the local optimization test
with the two golden section interior points per dimension,
moving rather than shrinking the hypercube when the local
optimum is at an edge or corner. The method, as a gen-
eral method, is slow, but systematically moves the search
until the uni-modal optimum is found at a interior point
and then approaches the optimum if within the original
search bounds. Additional constraints can be added to the
objective function, such as (13,14). If the diffusion coef-
ficient vanishes, σ2

d → 0+, then (14) implies a maximum
jump count constraint,

max[λ ·∆t] = 0.5(
p
((σ2

j + µ2
j )

2 + 4σ2
j · M2)

−(σ2
j + µ2

j ))/σ
2
j .

An additional compatibility constraint, σj(t) > 0, does not
need enforcement as long as Qa(t) < Qb(t) and is not vio-
lated here.

In the next three figures, a a sample comparison can be
made of the empirical S&P500 histogram on the left of
each yearly figure with the corresponding theoretical jump-
diffusion histogram on the right. The jump-diffusion his-
togram is a very idealized version of the empirical distri-
bution, with the asymmetry of the tails clearly illustrated,
noting that the years 1997-present are more noisier than the
quieter years from 1992-1995. Figure 1 for 1993 represents
a quieter year, Figure 2 for 1996 represents an intermediate
year, and Figure 3 for 2000 represents a noisier year, The
histograms for the yearly empirical data on the left sides
suggest that it may take more than a year of 250 or so
closings to develop a more typical market log-return distri-
bution. For interpreting these results one needs to keep in
mind what a moderate number of simulations of an under-
lying distribution looks like and the yearly sample of about
250 closings is not very large.

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04
0

2

4

6

8

10

12

14

16

18

20
Daily Closings Log−Returns, f (sp)

F
re

qu
en

cy
, f

 (s
p)

S&P500 Log Returns, DLog(S)

1993

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04
0

2

4

6

8

10

12

14

16

18

20
Post−GSF JD Theory Fit, f(jdth)

F
re

qu
en

cy
, f

(j
dt

h)

Log−Returns, x
i+0.5

1993

Figure 1: Comparison for the relatively quiet year 1993 of the
empirical S&P500 histogram on the left with the cor-
responding fitted theoretical jump-diffusion histogram
on the right, using 100 bins.

The fitting procedure is a highly nonlinear application of
least squares, since the fitted jump-diffusion distribution
and the weights on dependent on the parameters in a highly
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Figure 2: Comparison for the intermediate year 1996 of the em-
pirical S&P500 histogram on the left with the corre-
sponding fitted theoretical jump-diffusion histogram
on the right, using 100 bins.
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Figure 3: Comparison for the intermediate year 1996 of the em-
pirical S&P500 histogram on the left with the corre-
sponding fitted theoretical jump-diffusion histogram
on the right, using 100 bins.

nonlinear way. The computation is also highly computa-
tionally intensive even though only about 12 iterations were
needed for a hybrid value-position relative change converge
to a tolerance of 5.e-3. The three dimensional free pa-
rameter space search required 43 = 64 function evalua-
tions of χ2 per iteration, taking about 4 hours per year on
a 400MHz Pentium II. The weights ωi in (10) also sig-
nificantly participate in the highly nonlinear least squares
parameter optimization. In Fig. 4, the histograms of the
bin frequency standard deviations, σ

f
(jdth)
i

, proportional to
the reciprocal square root of the weights, are exhibited for
the quieter year 1993 and the noisier year 2000. The bin
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Figure 4: Optimal jump-diffusion bin standard deviations
σ

f
(jdth)
i

for the relatively quiet year 1993 on the left
and the relatively noisier year 2000 on the right.

standard deviations resemble the theoretical jump-diffusion
histograms “on steroids”, in that the tails are more exag-
gerated, giving more weight and thus more importance to
the outlying jumps. Note that the actual parameters are
more than the size of the hybrid relative tolerance would
indicate, since parameters during the final interval undergo
much smaller changes.

The final free parameters fit in this highly nonlinear least
squares are listed in Table 1. Note that the uniform inter-

Table 1: Summary of estimated yearly free parameters for Log-
Normal-Diffusion, Log-Uniform-Jump distribution by
weighted least squares based on the deviation between
S&P500 and jump-diffusion histograms, with respect to
the free parameter set {Qa, Qb, λ∆t}Tjy given ∆t =
∆Tjy and constraints cited in the text.

Yearjy Qa,jy Qb,jy (λ∆T )jy

1992 -0.01418 0.01373 0.2549
1993 -0.01957 0.01518 0.1471
1994 -0.01425 0.01430 0.2891
1995 -0.01948 0.01749 0.2118
1996 -0.03765 0.01794 0.1185
1997 -0.05310 0.02364 0.1671
1998 -0.06138 0.03627 0.1147
1999 -0.01957 0.04116 0.2841
2000 -0.04503 0.02732 0.2287
2001 -0.05109 0.03177 0.1682

vals Qa,jy , Qb,jy are much smaller during the quieter period,
1992-1995, than in the noisier period 1997-2001, exclud-
ing for the exceptional year of 1999. In [9], difficulty was
found trying to fit the jump-diffusion using the one para-
meter fit with only (λ∆T )jy free due to requiring many
more iterations and finding a negligible jump rate, whereas
the three parameter values for 1999 are not that different
in the extreme.

Using these approximately optimized free jump parameters,
the values of the yearly jump-diffusion parameters can be
derived, using the two moment constraints and the yearly
time step, with the diffusion means and variances given
in Table 2, while the jump means and variances are given
in Table 3. Viewing Table 3, the nearly zero diffusive

Table 2: Summary of derived yearly diffusion distribution para-
meters for Log-Normal-Diffusion, Log-Uniform-Jump
distribution by weighted least squares.

Yearjy µd,jy σd,jy

1992 +0.05957 0.07211
1993 +0.1502 0.05900
1994 -0.01319 0.06867
1995 +0.3545 2.366e-7?
1996 +0.04700 0.05728
1997 +0.9040 0.05568
1998 +0.6005 0.1170
1999 -0.6022 0.04690
2000 +0.3949 0.1423
2001 +0.2987 0.1308

volatility σd,jy for 1995 puts it out of place in the quieter
period 1992-1995, while the diffusive volatility for the year
1999 is about half of that of the other years on the nois-
ier period of 1997-2001. These peculiarities bear further
investigation. The typical jump rate is about 50 per year,
except for the the years 1997-1998 where it is almost half
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Table 3: Summary of derived yearly jump distribution para-
meters for Log-Normal-Diffusion, Log-Uniform-Jump
distribution by weighted least squares.

Yearjy µj,jy σj,jy λjy

1992 -2.218e-4 8.058e-3 53.34
1993 -2.196e-3 3.271e-3 45.62
1994 +2.546e-5 8.242e-3 52.92
1995 -9.968e-4 1.067e-2 52.92
1996 -9.854e-3 1.605e-2 53.34
1997 -1.473e-2 2.215e-2 24.76
1998 -1.256e-2 2.819e-2 31.46
1999 +1.080e-2 1.753e-2 52.92
2000 -8.858e-3 2.089e-2 50.29
2001 -9.662e-3 2.392e-2 51.87

of that. This typical high rate, though, counts those jumps
in the central diffusive region of the distribution since the
uniform jump distribution spans that region. A bi-normal
uniform distribution could be used that skips most of the
central diffusive region, but then 2 more parameters would
be needed to cut off the central part of the positive jump
part and the negative jump part of the bi-uniform distrib-
ution, plus still a third additional parameter that would be
needed to represent the relative probability of positive or
negative jumps.

The summaries of the coefficients of skewness and kurtosis
are given in Table 4 for the empirical S&P500 data and the
estimated theoretical jump-diffusion distribution for com-
parison. Note that the theoretical jump-diffusion values
seem to be better in the noisier period than in the quieter
period, with the years 1995 and 1999 being especially dif-
ferent. There are obvious numerical difficulties in trying to
reproduce statistical moments as high as third and fourth
order, due to limitations on well-conditioning the calcula-
tion against catastrophic cancellation.

Table 4: Summary of yearly coefficients of skewness, η3,
and kurtosis less the normal value, η4 − 3, for both
the estimated theoretical jump–diffusion (superscript
(jdth)) model and empirical S&P500 (superscript
(sp)) decade data.

Yearjy η
(jd)
3,jy

η
(sp)
3,jy

η
(jd)
4,jy

− 3 η
(sp)
4,jy

− 3
1992 -3.6e-1 +5.9e-2 8.1e-1 2.4e-1
1993 -5.3e-1 -1.8e-1 2.7 2.4
1994 +4.5e-3 -3.0e-1 8.4e-1 1.3
1995 -8.6e-1 -8.1e-2 3.6e+1 1.0
1996 -2.2 -6.0e-1 8.0 1.7
1997 -2.4 -6.9e-1 7.2 6.5
1998 -1.5 -6.2e-1 6.3 4.7
1999 +1.6 +6.8e-2 3.0 -1.5e-1
2000 -7.8e-1 -1.4e-2 1.8 1.3
2001 -1.0 +3.1e-2 3.2 1.5

Further, the concept that the market data is usually neg-
atively skewed does not hold for periods as short as one
trading year, since 1999 has positive skew in both empir-

ical data and jump diffusion model, while 1992 exhibited
positive skew from the data. Also, the concept that the
market data is usually leptokurtic apparently refers to long
term data and not to shorter term data, since the 1999 kur-
tosis coefficient less the normal value is negative, though
small in magnitude.

4. Conclusions

The main contributions of this paper are the introduction
of the uniformly distributed jump-amplitude into the jump-
diffusion stock price model model and the fitting of time-
dependent in the jump-diffusion parameters using a novel
combination of jump-diffusion motivated by a highly non-
linear weighted least squares. The uniformly distributed
jump-amplitude feature of the model is a reasonable as-
sumption for rare, large jumps when there is only a sparse
population of isolated jumps in the tails of the market
distribution. The jump-diffusion weighted least squares
method gives greater emphasis to the jumps than the non-
weighted (unit weights) version of least squares. While
in many statistical analyses, the outlier are discarded, but
in finance they represent important market events. The
jumps, whether crashes or buying frenzies, represent impor-
tant events in the market in the background of continuous
diffusive noise. Additional realism in the jump-diffusion
model is given by the introduction of time dependence in
the distribution and in the associated parameters.

Further improvements, but with greater computational com-
plexity, would be to estimate the uniform distribution limits
[Qa, Qb] by fitting the theoretical distribution to real market
distributions, using longer and overlapping partitioning of
the market data to reduce the effects of small sample sizes.
Other future directions, is to apply the results to optimal
portfolio computations and approximate hedging.
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