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Abstract— The growth and treatment of brain tumors
is mathematically examined using a distributed parameters
model. The model is a system of three coupled reaction
diffusion equations involving the tumor cells, normal tissue
and the drug concentration. An optimal control problem is
designed, with the drug delivery rate as the control and
solved to obtain the state and co-state equations as well as
the regular control. This gives rise to a coupled system of
equations with a forward state equation and a backward co-
state equation, which are solved using a modified double shot,
forward-backward method.

A numerical procedure based upon the Crank-Nicolson
method is used to solve the coupled nonlinear system of six one-
dimension partial differential equations, along with a quasi-
linear approximation of the nonlinearites using extrapolator-
predictor-corrector iteration techniques.

I. I NTRODUCTION

The growth and control of brain tumors have been the
subject of medical and scientific scrutiny for a very long
time [15]. Simply speaking a tumor, like most cancerous
cells originates from a single cell, that proliferates and
effects its neighboring normal tissues. As the tumor cells
become malignant they become more dangerous for the
host. Understanding the mechanism of tumor progression
is necessary for its diagnosis and treatment. The most
common and deadly form of brain tumor are thegliomas,
which account for more than half of the brain tumor
cases. Gliomas are highly invasive and severely infiltrate
the surrounding tissues [16]. Despite improved diagnostic
procedures such as computerized tomography (CT) scan and
magnetic resonance imaging (MRI), their benefits have been
restricted by the treatment options available. One major
impediment to administering the drugs to the brain tumor
site is the blood brain barrier (BBB) [4], which exists
as a protection for the brain cells and as a restriction
on the transport of water soluble substances between the
blood and the central nervous system. Another problem
that arises is the resection of a tumor after the core mass
of the tumor has been surgically removed. The reader can
consult the recent work by Araujo et al.[3], for more details
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on solid tumors. Websites provide very useful information
on Clinical Trials and Noteworthy Treatments for Brain
Tumorslike BCNU [1] and Gliadel wafers [2]. Wang et al.
[17], [18] have modeled drug delivery behavior to tumors
in three dimensions for drugs like IgG and BCNU.

In this paper, the focus will be mostly on the distribution
and optimal control of the drug about the original tumor
site. First the mechanisms behind the growth of tumor cells
as well as normal tissues and the drug concentration in the
tumor are considered. Unlike a lot of other tumors, gliomas
can be highly diffusive [15]. Gatenby et al. [5] and Mansuri
[13] study the mechanism of reaction diffusion in the
growth of tumors. They also take into account the effects of
competition for resources between the cancerous cells and
the healthy tissues. Westman et al. [19] look at the various
types of tumor growth, namely exponential, logistic and
Gompertz. Murray’s books [14], [15] are excellent refer-
ences for the study of different types of growth mechanisms.
Also, Woodward et al. [20] study a model of glioma growth
and the effects of surgical resection. Here, we set up a
fairly generalized distributed parameters model for the PDE
driven system, define an objective functional to minimize
drug delivery and tumor burden costs, and use a modified
Lagrange multiplier method[6] for including constraints
in the control problem. Finally adouble shot, forward-
backward iteration method is given to approximate the state,
co-state and regular control. For implementing this method
for the PDEs, a substantial modification is developed from
the Crank-Nicolson predictor-corrector method developed
by Hanson et al. [9] and Hanson [10] for stochastic dy-
namic programming of biological control applications. It is
important to point out that the model presented is applicable
to many cancer and non-cancer model applications.

II. M ATHEMATICAL MODEL

Let Y1 = n1(x, t) be the density of tumor cells,Y2 =
n2(x, t) be the density of normal tissue andY3 = c(x, t)
be the drug concentration at any vector positionx and time
t. This spatio-temporal model is a system of three coupled
reaction-diffusion equations.

A. Tumor Cells

It is assumed that the density of tumor cells,n1 =
n1(x, t), satisfy a reaction-diffusion equation subject to
competition with the normal cells,n2 = n2(x, t),

∂n1

∂t
=D1∇

2
x[n1]+a1n1g1(n1)−(α1,2n2+κ1,3c) n1, (1)



where the tumor diffusivity isD1. Let the terma1n1g1(n1)
be the growth rate of the tumor cells, wheren1g1(n1) could
be exponential, logistic or Gompertz growth,g1(n1) = 1,
(1−n1/k1) or ln(k1/n1), respectively, wherea1 is the tumor
cell intrinsic growth rate andk1 is the tumor cell carrying
capacity. Letα1,2 denote the death rate of the tumor cells
due to competition for resources with the normal tissue. Let
κ1,3c be the death rate of tumor cells due to drug treatment,
although it could be a nonlinear function.

B. Normal Tissue
Similar assumptions are made for the density of normal

cells n2 = n2(x, t) with similar coefficients. Thus, the
reaction-diffusion equation for normal tissue evolution is

∂n2

∂t
=D2∇

2
x[n2]+a2n2g2(n2)−(α2,1n1+κ2,3c) n2, (2)

wherea2 is the normal cell intrinsic growth rate and the
normal cell growth functionn2g2(n2) is either exponential,
logistic or Gompertz growth,g2(n2) = 1, (1−n2/k2) or
ln(k2/n2), respectively, wherek2 is the normal tissue
carrying capacity. Note that theκ2,3c term indicates that
some normal tissues could die as a result of the treatment.

C. Concentration
The drug exhibits a diffusive behavior and there is a

reabsorption at the ratea3. Let u = u(x, t) be the rate
at which the drug is being injected and is the control
variable in an optimal control system. The equation for drug
concentration at positionx and timet is,

∂c

∂t
=D3∇

2
x[c]+a3cg3(c)+u, (3)

wherecg3(c)=−c is the reabsorption function [18].

D. Global State Vector
Let the global state vector be

Y(x, t) = [Yi(x, t)]3×1 = [n1(x, t) n2(x, t) c(x, t)]⊤, (4)

at positionx in the state domaininterior Ω and timet on
[0, tf ].

E. Initial and Boundary Conditions
Let the initial conditions for the state be

Y(x, 0) ≡ Y0(x), (5)

for x in Ω. Murray [15] recommends using Gaussian
distribution for the initial distributions of tumors. Theno
flux boundary conditions are

−D
“

bN · ∇x

”
[Y](x, t)=

h
−Di( bN·∇x)[Yi](x, t)

i
3×1

(6)

for x ∈ Γ = ∂Ω, i.e., on the boundary of the domain,
and for t ∈ [0, tf ], assumingDi 6= 0 or else theDi

would not be used in the condition, wherebN(x, t) is the
normal to the boundary, and the diffusion matrix is diagonal,
D(x)=[Diδi,j ]3×1 and could be inhomogeneous depending
on the brain matter [16], whereδi,j is the Kronecker delta.
Note that the no flux condition at the boundary is motivated
by the physical reality that the brain is a finite and closed
domain.

III. O PTIMAL CONTROL PROBLEM

The objective functional is taken to be a quadratic form
of running and terminal costs,

J(u) =
1

2

Z tf

0

dt

Z

Ω

dx
`
r1n

2
1(x, t)+s3 (u−u0)

2 (x, t)
´

+

Z

Ω

dx
`
q1n

2
1(x, tf ) + q3c

2(x, tf )
´
. (7)

The goal is to minimize this functional with respect to
the drug input rateu(x, t) relative to some threshold rate
u0(x, t) and the terminal costs attf , i.e.,minu [J(u)]. Note
that herer1 > 0 is the tumor burden cost coefficient and
s3 > 0 is the drug delivery cost coefficient, whileq1 > 0
and q3 > 0 are the corresponding final costs. We could
have chosen a linear control which would have been less
realistic, but would give rise to singular control complica-
tions. In addition no assumption is made about the control
constraints, butu0(x, t) serves as physical restriction on the
amount and costs of drugs that can be administered.

IV. V ECTORFORM

For the sake ofbrevity we put the mathematical model
in vector form with vectors in boldface.

A. Governing equations

The vector state is governed by a nonlinear PDE:

∂Y

∂t
= D∇2

x[Y] + A(Y)Y + B(Y, t)Y + U, (8)

where

A(Y) = [aigi(Yi)δi,j ]3×3, U(x, t) = U3(x, t)e3, (9)

B(Y, t) = −(α1,2n2 + κ1,3c)e1e
⊤
1 − (α2,1n1 + κ2,3c)e2e

⊤
2 ,

ei is the ith unit vector andU3(x, t)=u(x, t).

B. Objective Functional

The quadratic objective in vector form is

J [Y,U] =
1

2

Z tf

0

dt

Z

Ω

dx
“
Y

⊤RY+(U−U0)
⊤S (U−U0)

”

+
1

2

Z

Ω

dx
“
Y

⊤QY
”
(x, tf ), (10)

whereR = r1e1e
⊤
1 , S = s3e3e

⊤
3 , Q = q1e1e

⊤
1 + q3e3e

⊤
3 and

U0 = u0(x, t)e3 .

V. DEFINING THE PSEUDO-HAMILTONIAN

There are three vectorLagrange multipliers, two of which
are functions of space and time and one is independent
of time, needed to include the optimization constraints in
the extended objective for the state PDE (8), the boundary
condition (6) and the initial condition (5),

ξ(x, t)=[ξi]3×1 , η(x, t)=[ηi]3×1 , χ(x)=[χi]3×1, (11)



i.e., ξi = ξi(x, t), ηi = ηi(x, t) and χi=χi(x), for i = 1:3.
Let Z = (Y,U, ξ, η, χ) be an extended state vector and
define thepseudo-Hamiltonian:

H(Z) ≡
1

2

Z tf

0

dt

Z

Ω

dx
“
Y

⊤RY+(U−U0)
⊤S (U−U0)

”

+
1

2

Z

Ω

dx
“
Y

⊤QY
”
(x, tf )

+

Z tf

0

dt

Z

Ω

dx ξ
⊤

„
∂Y

∂t
−D∇2

x[Y]−A(Y)Y

−B(Y, t)Y − U

«

+

Z tf

0

dt

Z

∂Ω

dΓ η
⊤

“
−D

“
bN·∇x

”
[Y]

”

+

Z

Ω

dx
“
χ

⊤(Y−Y0)
”
(x, 0). (12)

VI. OPTIMAL CONTROL VARIATIONAL FORMULATION

The calculus of variationsis used to find differential
equation of optimal control for the control, state and the
co-state (adjoint or Lagrange multiplier) by seeking the
functional critical point necessary conditions for the first
variation [6], [12] of thepseudo-HamiltonianH(Z).

A. Pseudo-Hamiltonian First Variation

Let the extended state vector be perturbed about the
optimal trajectoryZ∗, so thatZ = Z∗ + δZ, where δZ
is the perturbation. Next expand the pseudo-Hamiltonian

H(Z∗ + δZ) = H(Z∗) + δH(Z∗, δZ) + O((δZ)2).

Neglecting the quadratic order terms, including the 2nd
variation ofH, the first variation is given by terms linear
in δZ using (12),

δH(Z∗, δZ) =

Z tf

0

dt

Z

Ω

dx
“
(Y∗)⊤RδY+(U∗−U0)

⊤
SδU

”

+

Z

Ω

dx
“
(Y∗)⊤QδY

”
(x, tf )

+

Z tf

0

dt

Z

Ω

dx

„
(ξ∗)⊤̀ δYt−D∇2

x[δY]

−A(Y∗)δY−(δY·∇Y )[A](Y∗)

−B(Y∗, t)δY−(δY·∇Y )[B](Y∗, t)Y∗−δU)

+δξ⊤̀
Y

∗
t −D∇2

x[Y∗]−A(Y∗)Y∗

−B(Y∗, t)Y∗−U
∗

«
(13)

−

Z tf

0

dt

Z

∂Ω

dΓ
“
(η∗)⊤D

“
bN·∇x

”
[δY]

+δη⊤D
“

bN·∇x

”
[Y∗]

”

+

Z

Ω

dx
“
(χ∗)⊤δY+δχ⊤(Y−Y0)

”
(x, 0).

Before the critical conditions for first variation in (13) can
be applied, the higher order derivatives in time and state of
the extended state perturbations must be reduced by one or
two integrations by parts, i.e., by one,

Z tf

0

dt(ξ∗)⊤δYt = (ξ∗)⊤δY

˛̨
˛̨
tf

0

−

Z tf

0

dtδY⊤
ξ
∗
t

and by two using the Green’s formula [7],
R
Ω
dx(ξ∗)⊤D∇2

x[δY]=
R
Ω
dxδY⊤∇2

x[Dξ∗]

+
R

∂Ω
dΓ

„
( bN·∇x)[δY⊤]Dξ∗ − δY⊤( bN·∇x)[Dξ∗]

«
.

Merging these identities with (13), rearranging inner prod-
ucts and collecting terms yields the intermediate form:

δH(Z∗, δZ) =

Z tf

0

dt

Z

Ω

dx δY⊤̀ RY
∗−ξ

∗
t−∇

2
x[Dξ

∗]

−A(Y∗)ξ∗−∇Y [A](Y∗):
“
ξ
∗(Y∗)⊤

”

−B(Y∗, t)ξ∗−∇Y[B](Y∗, t)):
“
ξ
∗(Y∗)⊤

””

+

Z tf

0

dt

Z

Ω

dx δU⊤(S (U∗−U0)−ξ
∗)

+

Z tf

0

dt

Z

Ω

dx δξ⊤̀
Y

∗
t−D∇2

x[Y∗]

−A(Y∗)Y∗−B(Y∗, t)Y∗ − U
∗)

−

Z tf

0

dt

Z

∂Ω

dΓ δη⊤D
“

bN·∇x

”
[Y∗]

+

Z tf

0

dt

Z

∂Ω

dΓ δY⊤
“

bN·∇x

”
[Dξ

∗]

−

Z tf

0

dt

Z

∂Ω

dΓ
“

bN·∇x

”h
δY⊤

i
D(η∗+ξ

∗)

+

Z

Ω

dx
“
δχ⊤ (Y∗−Y0)

”
(x, 0)

+

Z

Ω

dx
“
δY⊤(χ∗−ξ

∗)
”
(x, 0)

+

Z

Ω

dx
“
δY⊤(ξ∗+QY)

”
(x, tf ),

where A : B denotes the trace of the matrixAB or the
double-dot product.

B. State Equations
The optimal state equation is recovered by setting the

coefficient of(δξ)⊤ to zero:

∂Y∗

∂t
= D∇2

x[Y∗] + A(Y∗)Y∗ + B(Y∗, t)Y∗ + U
∗ (14)

onΩ×(0, tf ], with boundary conditions on∂Ω×[0, tf ] from
the coefficient of(δη)⊤, i.e.,

−D( bN·∇x)[Y∗](x, t) = 0, (x, t)∈∂Ω×[0, tf ] (15)

and with initial conditions on the interiorΩ from the
coefficient of(δχ)⊤, i.e.,

Y
∗(x, 0) = Y0(x), x∈Ω. (16)

Due to the presence of the functionsf(Y) andB(Y, t)Y
the forward PDE (14) will be nonlinear.

C. Regular Optimal Control
Since the control has been defined in (9) as only having

one component, only the coefficient ofδU3 is set to zero
giving the corresponding regular control

U∗
3 (x, t) = u0(x, t) + ξ∗3(x, t)/s3, (x, t)∈Ω× [0, tf ], (17)

provideds3 6= 0. Note that this control law only requires
solving for the 3rd component of the first co-state vector
ξ∗(x, t), sinceδU1 ≡ 0 andδU2 ≡ 0.



D. Co-State Equations
Upon setting the functional coefficient of(δY)⊤ to zero

yields the primary co-state backward PDE:

0 =
∂ξ∗

∂t
+∇2

x[Dξ
∗]+A(Y∗)ξ∗+∇Y [A](Y∗):

“
ξ
∗(Y∗)⊤

”

+B(Y∗, t)ξ∗+∇Y [B](Y∗, t):
“
ξ
∗(Y∗)⊤

”
−RY

∗, (18)

for (x, t) ∈ Ω× [0, tf). This PDE (18) is unidirectionally
coupled to the state PDE (14), but only the 3rd component
ξ∗3(x, t) is needed for the regular optimal controlU∗

3 (x, t)
from (17). The boundary condition follows from setting the
coefficient ofδY(x, t) for x∈Γ=∂Ω to zero, so

( bN·∇x)[Dξ
∗](x, t) = 0, (x, t) ∈ ∂Ω × [0, tf ) (19)

and the final condition for this backward PDE follows from
forcing the coefficient ofδY(x, tf ) to be zero onΩ,

ξ
∗(x, tf ) = −QY(x, tf ), x ∈ Ω. (20)

The two other co-state vectors should not be needed,
but satisfy rather simple equations. The 2nd co-state vector
equation follows as the zero coefficient of( bN·∇x)[δY⊤] on
the state boundaryΓ=∂Ω,

η
∗(x, t) = −ξ

∗(x, t), (x, t) ∈ ∂Ω × [0, tf ].

The 3rd co-state vector equation follows as the zero coef-
ficient of state initial conditionδY(x, 0),

χ
∗(x) = ξ

∗(x, 0), x ∈ Ω.

VII. D OUBLE SHOT, FORWARD-BACKWARD

COMPUTATIONAL ITERATION METHOD

It is necessary to solve the system consisting of thestate
equations(14) using theregular optimal control(17) and
co-state equations(18), with the understanding that the
state equations are forward equations while the co-state
equations are backward equations in time. The method is
a double shot, forward-backward iteration method, since
the model has two vector-valued PDEs and the method
consists of one forward shot with (14) followed by one
backward shot with (18). Thisdouble shotmethod is similar
to the multiple shooting methodof Hackbusch [8] used
for solving parabolic equations withopposite orientations
or to what Gunzberger [6] calls theone-shotmethod. See
Gunzberger [6] also for a more rigorous justification with
Sobolev spaces in the more general abstract case, but the
model here is quite concrete.

At this point one must be cautioned that the numerical
method suffers from theCurse of Dimensionalityfor PDEs
in higher space dimensions as the number of nodes grows
exponentially, which limits the size of the problem that can
be numerically computed. However, Hanson [10] has used
parallel and other supercomputer processors with related
numerical procedures on many control problems for bio-
logical applications to reduce the effects of the curse of
dimensionality.

In reality, the problem is highly nonlinear as are many
problems in biology and we need numerical approximations
of the solution as well as modifications of standard linear
numerical methods. The main problem here is the fact that

we have a forward state equation and a backward co-state
equation along with two pairs of bilinear terms due to the in-
trinsic growth termA(Y)Y and interaction termB(Y, t)Y ,
both amenable to quasi-linear approximations. The double
shot method is a major modification of the shooting methods
[11] for initial-final-boundary value problems, where the
starting aim is replaced by an estimate of the full control
law U

(ℓ)
3 (x, t) for the forward integration of the state PDE

(14) whose final approximationY(ℓ)(x, tf ) serves as the
backward aim (20) for the backward integration of the co-
state PDE (18) producing an approximationξ(ℓ)(x, t) whose
third component is used to update (17), the control law
U

(ℓ+1)
3 (x, t).
An initial guess for the first (ℓ = 1) forward-backward

shot iteration is made for the controlU3(x, t) = U
(1)
3 (x, t)

in (17), whereU (1)
3 (x, t) is taken as a Gaussian distribution

after [15] with weight appropriate to the concentration level.
Substituting it into thestate forward PDE(14) solving
for Y(1)(x, t) , using the initial conditionY0(x) (16) and
boundary condition (15). For each successive double shot
for ℓ > 1, the starting control is given from a discrete
version of (17).

Next, a predictor-corrector adaptation of the Crank-
Nicolson implicit method in one space dimension or al-
ternating directions implicit method in higher dimensions
to this forward-backward problem is made in order to
correct for a quasi-linear approximation of the nonlinear
terms and preserve the tridiagonal properties of the implicit
step. Central finite differences for all derivatives are used
everywhere, except that appropriate second order accurate
forward or backward differences are used at nodes adjacent
to the boundary due to the no flux boundary conditions.
Here our test results will be for the one-dimensional model.

The three-dimensional space is discretized as follows,

x → xj = [xji,1 + (ji − 1) · ∆xi]3×1.

Here∆xi is the mesh size for dimensioni and j = [ji]3×1
where, ji = 1 : Mi nodes per state for statesi = 1 : 3.
For the forward state equation we have the forward time
discretization,t → tk = k∆t, for k = 0 :K time steps
where∆t is the forward time step size,t0 = 0 andtK = tf .
Next consider the vector state/co-state PDE system in the
convenient general notation:

Y
∗
t = F(x, t,Y∗(x, t),U∗(x, t)),

0 = ξ
∗
t + G(x, t, ξ∗(x, t),Y∗(x, t)),

with appropriate vector functionsF(x, t,y,u) for (8) and
G(x, t, ξ,y) for (18). In this coupled set of vector equations,
the state is discretized at the forward midpoint in time
Y(xj, tk+0.5) ≃ Yj,k+0.5 and the co-state at the backward
midpoint ξ(xj, tk−0.5) ≃ ξj,k−0.5 . The space-time partial
derivatives ofY∗(x, t) and ξ∗(x, t) are discretized by the
usual central finite differences of second order at these
respective midpoints. Consequently, the forward and back-
ward numerical schemes are given by

Y
(γ+1,ℓ)
j,k+1 = Y

(ℓ)
j,k + ∆tF

(γ,ℓ)
j,k+0.5,

ξ
(γ+1,ℓ)
j,k−1 = ξ

(ℓ)
j,k + ∆tG

(γ,ℓ)
j,k−0.5,



respectively, forγ = 0:nc corrections with each time stepk
until ˛̨

˛
˛̨
˛Y (γ+1,ℓ)

1,j,k+1 −Y
(γ,ℓ)
1,j,k+1

˛̨
˛
˛̨
˛<toly

˛̨
˛
˛̨
˛Y (γ,ℓ)

1,j,k+1

˛̨
˛
˛̨
˛

is satisfied for allj, for k = 0 :K−1, and for ℓ = 1 :L
double shots. The Crank-Nicolson temporal mid-point is
approximated by averageY(γ,ℓ)

j,k+0.5 = 0.5
“
Y

(γ,ℓ)
j,k+1 + Y

(ℓ)
j,k

”
,

whereY(ℓ)
j,k is the final correction for each time stepk given

shotℓ.
Similarly, the backward temporal mid-point is approxi-

mated byξ
(γ,ℓ)
j,k−0.5 = 0.5

“
ξ
(γ,ℓ)
j,k + ξ

(ℓ)
j,k−1

”
, whereξ

(ℓ)
j,k is the

final correction for eachk−1 time step given shotℓ. These
averages can be used to construct finite differences for the
derivatives, with a similar form forU(ℓ)

j,k+0.5 , for ℓ = 0:L
and other terms. For each double shotℓ beyond the first,
the state starts fromY(ℓ)

j,0 = Y0,j,0 = Y0(xj, 0) using the
update

U
(ℓ)
3,j,k = u0,j,k + ξ

(ℓ−1)
3,j,k /s3, for k = 0:K−1,

except whenℓ = 1 and the initial guessU (1)
3,j,k = u0,j,k , is

used. For each updated forward state shot is completed, then
the backward co-state shot starts fromξ

(ℓ)
j,K =QY

(ℓ)
j,K using

the whole state setY(ℓ)
j,k for k = 0:K.

This process is repeated forℓ=2:L double shot iterations
until a convergence criterion for sufficiently largeL is
reached, e.g., the relative criterion for the control,

˛̨
˛
˛̨
˛U (ℓ)

3 (x, t)−U
(ℓ−1)
3 (x, t)

˛̨
˛
˛̨
˛<tolu

˛̨
˛
˛̨
˛U (ℓ−1)

3 (x, t)
˛̨
˛
˛̨
˛ ,

and ˛̨
˛
˛̨
˛Y (ℓ)

1 (x, t)−Y
(ℓ−1)
1 (x, t)

˛̨
˛
˛̨
˛<toly

˛̨
˛
˛̨
˛Y (ℓ−1)

1 (x, t)
˛̨
˛
˛̨
˛ ,

where the norm is over all(x, t), for ℓ = 2:L until satisfied,
provided||U (ℓ−1)

3 (x, t)|| 6= 0 and ||Y
(ℓ−1)
1 (x, t)|| 6= 0 , where

tolu > 0 andtoly > 0 are some prescribed tolerances.
The treatment of the nonlinear terms is to make their

approximation compatible with the linear properties of the
Crank-Nicolson implicit method, so using an exptrapolator-
predictor-corrector technique superimposed with

A
“
Y

(ℓ)
j,k+0.5

”
Y

(ℓ)
j,k+0.5 ≃ A

“
Y

(γ,ℓ)
j,k+0.5

”
Y

(γ+1,ℓ)
j,k+0.5

B
“
Y

(ℓ)
j,k+0.5

”
Y

(ℓ)
j,k+0.5 ≃ B

“
Y

(γ,ℓ)
j,k+0.5

”
Y

(γ+1,ℓ)
j,k+0.5

for γ = 0:nc corrections in the case of the state equation
whereγ = 0 is the initial value prediction whenk = 0 but is
the extrapolated value (e.g.,Y

(γ,ℓ)
j,k+0.5≃0.5(3Y

(ℓ)
j,k−Y

(ℓ)
j,k−1) )

from the two prior times (k and k−1) when k > 0. The
number of corrections for eachk is made small by selecting
∆t sufficiently small to satisfy accurate relative stopping
criterion similar to that for the control and state given in the
last section. Note that these approximations of the nonlinear
functions are explicitly linear in the new valueY(γ+1,ℓ)

j,k+0.5 , so
the very efficient Thomas tridiagonal elimination algorithm
can be used with Crank-Nicolson in the one-dimensional
case. Similar quasi-linear approximations with prediction
and correction are used for the backward co-state equations.

The no flux boundary conditions for both the state and
co-state present some extra complexity, since the central dif-
ferences of Crank-Nicolson are not suitable at the boundary

if it is necessary to avoid using artificial external points.
External points can be avoided by judicious use of forward
and backward differences of second order, matching the
accuracy of the Crank-Nicolson central differences. In the
simplest case of rectangular grids, the discretized no flux
boundary conditions (15,19) with second order accuracy are

0 ≃ −(3Y
(ℓ)
j,k − 4Y

(ℓ)
j−N,k + Y

(ℓ)
j−2N,k)/(2|N·∆x|),

0 ≃ (3ξ
(ℓ)
j,k − 4ξ

(ℓ)
j−N,k + ξ

(ℓ)
j−2N,k)/(2|N·∆x|),

respectively, whereN = bNj,k , ∆x = [∆xi]3×1 > 0 , D

is not needed, and, e.g.,Y
(ℓ)
j−N,k=Y(ℓ)(xj − |N·∆x|N, tk) .

For non-rectangular domains, interpolation would be needed
to convert evaluations to defined spatial nodes or else
domain compatible grids should be used, e.g., for circular
or spherical grid boundaries,N = er , where herer is the
radius andN · ∆x = ∆r .

During eachℓth double shot, an extrapolation or predic-
tion and corrections of the state and co-state are used to
account for the usual nonlinearities in the biological models
[10], stopping when the changes are sufficiently small. The
overall method is a sequential double shot method since one
shot is used to getY(ℓ)

j,k and a subsequent shot it used to
get ξ

(ℓ)
j,k .

Alternately, a parallel two shot method could be used to
get an approximate solution by integrating for bothY

(ℓ)
j,k and

Rξ
(ℓ)
j,k in the forward direction using a guess initial condition

for ξ
(ℓ)
j,0 at t0 = 0, with several genuine shooting method

shots until someℓ∗ shot where||ξ(ℓ∗)
j,K +QY

(ℓ∗)
j,K || < tolξ ,

i.e., the final co-state value is small enough using some
sufficiently small tolerancetolξ to approximate the final
condition (20).

VIII. T EST RESULTS

The double shot forward and backward algorithm out-
lined in the previous two sections has been tested on one
space dimension,x, example with three state dimensions
{Y ∗

1 =N∗
1 , Y ∗

2 =N∗
2 , Y ∗

3 =C∗}, plus the drug input control
U∗

3 . The numerical parameter data come from the BCNU
drug simulations for the brain of Wang et al. [18] and the
brain tumor modeling of Swanson [16] and Murray [15],
with some difficult to find parameters from Mansuri [13] or
from reasonable estimates from other areas. For example,
diffusion diagonal vector isD =[4.2e-3,1.e-15,0.22] cm2

per day (normal tissue diffusion is assumed to be insignif-
icant), the quadratic cost coefficients arer1 =0.1= q1 = q3

and s3 = 0.2, the net growth coefficients area =[1.2e-
2,8.6e-7,11.3] per day, the carrying capacities for tumor
k1 and normalk2 tissues are scaled to one for the normal
value and the interaction coefficients{α1,2, α2,1, κ2,3} are
all given the arbitrary value 1.0e-4, butκ1,3 = 0.5. The
initial states are given to be uniformly one for the normal
tissue, while the tumor density was assumed to be a spatial
Gaussian with spread 0.02 about a mean of 0.0 with a
weight of 1.0e-3. The initial drug concentration has a
Gaussian spread of 0.02 about a mean 0.0 with weight



0.15, while the threshold drug controlu0(x, t) is similarly
distributed, but with weight 1.0.

The results (obtained using MATLABTM) are plotted only
for the tumor densityN∗

1 = N∗
1 (x, t) in Figure 1 on the

symmetric intervalx ∈ [−1.0, +1.0] in centimeters over a
tf = 5 day treatment. For this simple one space dimension
test example, we see that the optimal distribution of the
tumor using an optimal distribution of the drug delivery
results in the 29.4% reduction of the total tumor density
integral over this simulated five day drug treatment trial.
The running time on a 2GHz processor was 168 seconds.
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Fig. 1. Tumor densityN∗
1 (x, t) versus the one-dimensional spatial coor-

dinatex with time t at the rounded quartile values{0, tq1=0.25tf , tmid =
0.5tf , tq3 =0.75tf , tf}, wheretf = 5 days. The targeted tumor density
rapidly decays in this simulated 5 day trial.

IX. CONCLUSION

The main interest of this paper was to provide the nec-
essary foundation to study the mechanism of drug delivery
to the brain. We have set up a fairly realistic distributed
parameters model which takes into account the spatial
dependence of the state variables. The main focus of the
paper was to develop an algorithm to determine the optimal
drug delivery to brain tumors using an optimal distribution
of the drug about the original tumor site. Here, a one-
dimensional test case is used. This paper leaves room for
many new directions for this extremely complex problem.

A. Future Directions

One such direction would be running a simulation for
more than one space dimension to implement the algorithm,
perhaps using supercomputing tools. Of course this would
require more realistic medical data. Also, the effects of
using symmetric initial data needs to be examined by
considering non-symmetric initial distributions. The effects
of brain geometry and the diversity of the brain structure
such as fluid cavities, vascular systems and brain matter
needs to be explored. Another important aspect that can
be examined is the effect of stochasticity, most notably the
Gaussian and Poisson type of noise. The physical basis for
such stochasticity would be the phenomenon of metastasis,

which gives rise to additional tumor sites and also the side
effects produced by the drug. A study of the increase of
memory requirements and execution time if the dimension
of state-control space increases is very important when
using this model with actual real life data. We hope to
examine all these aspects of the problem in future works.
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