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Abstract

The standardproblemof groundwaterpollutantremediation
by well pumpingis modeledasa discrete-timeLQG stochas-
tic optimalcontrolproblem.Thecontrol is approximatedby
usingavariationof differentialdynamicprogramming(DDP)
that includessystematicperturbations. Kalman filtering is
usedto estimatethe partially observed statevariablesin a
tractableformat. This is a filtering applicationof the DDP
methodusedby theauthorsin anearlierperturbationpaper.

1. Intr oduction

Well pumpingis thecurrentstandardmethodfor groundwa-
terpollutantremediation[7]. Onewayit canbemodeledis as
a partially observeddiscrete-timestochasticoptimal control
system.Thesystemis approximatedin thispaperby system-
atic perturbationsdueto smallstochasticnoise.Theanalysis
of the problemis a variationon that usedby Kitanidis and
co-workers[6], for approximatesolutionsto theoptimalcon-
trol, utilizing differentialdynamicprogramming(DDP)[4] to
find an analyticsolutionfor the discrete-timeproblemwith-
out searchingthe whole statespace. However, calculations
usedherefollow thesystematicperturbationsof the optimal
controlproblem,with corrections,givenin anearlierpaperby
KernandHanson[5], andarebriefly reviewedin Section2.

The motivation for the groundwaterapplicationis also
influencedby an exampleof Culver andShoemaker [1]. A
key variationis thatthey donotconsiderany stochasticevents
in theirmodel,while themodelusedhereincludesaGaussian
randomprocess.Thereareotherdifferencesin theobjective
andstatetransitionequations,aswell. While themodelused
herehasa limited numberof variables,DDP lendsitself to
largerscaleproblemsin applicationssuchasreservoir man-
agement[6] andgroundwaterquality remediation[3, 1] that
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otherwiserisk computationalcomplexity dueto a largenum-
berof variables[2].

A three stagestochasticoptimal control problem in
discrete-timeexampleis formulatedin Section3. The reg-
ularcontrolfor eachstageis foundin Section4.

The presenceof white noisein both stateandobserva-
tionsmake anaccurateestimationof thestatemoredifficult.
An accurateapproximationfor the stateat a particularmo-
ment,giveninformationupto thattimestep,shouldminimize
the influenceof thestochasticprocesses.TheKalmanfilter-
ing equationsdoexactly thisby minimizing thespreadof the
error-estimateprobabilitydensity[8]. Thestateestimatefilter
will beexaminedin Section5.

2. GeneralControl Problemand StochasticPerturbation

Thegeneraldiscrete-timestochasticoptimalcontrolproblem
hastheexpectedtotalcostfunction,

[J] (1)

where is thespecifiedfinal costfunctionand is the th
stagecostfunctionfor . Theexpectationop-
erator, , denotestheexpectationover inde-
pendentdiscrete-timenoise , so is separablebetween
stages.Theoptimalobjective is to minimizetheexpectedto-
tal costfunction(1) subjectto thelinearstatetransitionequa-
tion [6],

(2)

where and areknown stateandcontrolcoefficientma-
trices,respectively; thestateof thesystem is a vector;
the control is a vector; is a known input
vector;and is anormallydistributed, randomvector,
suchthat

(3)

for , where is theKronecker delta. In
contrastto [5], , ratherthan , is appliedhereatstage .
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Theoptimalexpectedtotalcostis

[J] (4)

where , satisfyingthePrincipleof Op-
timality separabilitypropertyof the minimization operator
neededto apply deterministicdynamicprogramming,while
separabilityof the expectationoperatorover the stagesper-
mits stochasticdynamicprogramming.Thefinal costcondi-
tion is J J , wherethe “ ” denotesthe
optimalvalue. UsingthePrincipleof Optimality andsubsti-
tuting for from thestatetransitionequation,therecursive
decompositionfor stage( ) is

J J

J

(5)

However, theoptimalcost-to-gofunctionfor the th stageis
usedfor therecursion:

J

(6)

Therefore,the cost-to-goat stage is minimizedgiven the
cost-to-goat st stagehasbeencomputed.

Sincein (2) thecontrolaffectsthestateat the th stage,
both and areexpandedto order ,

(7)

(8)

where is thecovariancescalingfactor, Trace with
for smallnoiseand . Substitutinginto

thetransitionequation(2),

(9)

(10)

(11)

uponequatingcoefficientsof , and , respectively.

For the minimization in (6), the partial derivative of
with respectto is set equalto zero to determine

theminimum:

(12)

usingthe expansions(7, 8). Note that condition (12) lacks
constraints,soleadsto regularoptimalcontrol reg , for

to which is emphasizedherefor brevity, ratherthanmore
generalandcomputationallycomplex optimalcontrol. Also,
sincethestatedependson thecontrolfrom (2), reg ,
but here,the state“ reg” subscriptis suppressedto keepthe
subscriptsrelatively simple.

Next, Taylor approximationsare used,assumingsuffi-
cient differentiabilityof and , about for and
about and for . Applying the expectationopera-
tor, notingthat , andcollectingtermsof thesame
order, theleadingorderequationsare

ord

reg (13)

ord

reg (14)

reg reg

Thezerothorderequationfor theregularcontrol, i.e., reg ,
is genuinelyimplicit andnonlinearsince is nonlinearin .

Theord equationis placedin operatornotation:

reg (15)

where

reg

(16)

reg

reg

(17)

reg

so that is theHessianmatrix with respectto thecontrol
vector. Thisnotationhelpsto simplify theord equation:

reg

(18)

reg reg reg
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reg reg

reg

where “ ” is the trace of the matrix product ,
and . We can solve for the regular
control reg provided is invertible.

3. ExampleControl ProblemFormulation

As statedpreviously, the motivation for this examplecomes
from [1]. Modifying thecontinuousmodelin [3], aquadratic
final costanda smallquadratictermaddedto thestagecost
functionareincludedhere,changingtheexamplefrom a sin-
gularcontrolproblemto anLQG problem(lineardynamics,
quadraticcostsandGaussiannoise). Here,a moreconcrete
examplefor the cost functionsis usedthan in [5]. For the
moment,considerthethree( ) stagecase.

Thediscrete-timestochasticoptimalcontrolproblemhas
thecostobjective

[J] (19)

where is thespecifiedquadraticfinal cost,
with and , and

is the th stagequadraticcostfor , with smallparam-
eter , where is thetreatmentcostcoefficient,
and is thepumpingcostcoefficient,for to .

The objective will be minimized subjectto the linear
statetransitionequation(2) with , and are
definedfrom the groundwaterequations. The state is a

vectordefinedas:

(20)

where is thehydraulicheadand thepollutantconcen-
trationat theobservationwells for stage . A singleobserva-
tion well is assumedto be locatedat thesamesiteasoneof
two pumpingwells. Thecontrolis assumedtobethepumping
ratein liters persecondat eachpumpingwell, sothecontrol
is a vector. The control constraintfor the th stageis

, for to . Thevalue waschosen
basedon valuesfrom Table2 in Culver andShoemaker [1],
p.828.

Theexampleoptimalexpectedtotalcostis

[J] (21)

Thefinal costconditionis denotedby J J .

4. Finding the Control

The equationsfrom Section2 will be usedto find the regu-
lar control for this problem. The resultsfollow thoseof the
generalfeedbackcontrolfor theLQG problem.

Stage2 Control. Recallthecost-to-gofrom (6) is

(22)

Making theappropriatesubstitutionsinto (13)gives

(23)

sothat , where

and is the identitymatrix,assuming is invertible.
Theord( ) equation(15)andord( ) equation(19)havethe
sameform:

reg (24)

for to , noting that third derivatives are zero here.
Notethatall threeordersfor theregularcontrolhavethesame
affine form with the samelinear coefficient . Thus, the
optimalvaluefor thisstagefrom (6) is

reg reg reg

reg reg

reg

reg (25)

reg reg reg

reg

reg reg reg

reg reg reg

where reg reg , andthecontrol is given
by theregularoptimalcontrol,

reg reg

(26)

consistentwith the linear (affine) feedbackcontrol form for
theLQG problem.
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Stage1 Control. The expectation,expansionandop-
timization of the O( ) equation,using (6), (26) and (26),
yields

(27)

where and . Assuming
invertibility of , thecoefficientof in (27), then

reg (28)

where

(29)

Similarly, reg and reg , so

reg (30)

assuming . Note that if
is specified,then reg reg .

5. Filtering: Finding the StateVariables

Thehydraulicheadandpollutantconcentration,i.e., thestate
variables,at a given stagearefound during the final part of
dynamic programming,the forward sweep. However, the
stochasticprocessespresentin thestatetransitionequation(2)
meanthat substitutionduring the forward sweepcould lead
to inadequateresults. This problemlendsitself to filtering,
which minimizesthespreadof theerror-estimateprobability
density, thuslimiting theeffect of therandomprocesson the
stateestimate(Stengel[8], p. 342).

Thestatetransitionandobservationequationsare

(31)

(32)

where is theobservationvector, is theinformationma-
trix, and is a discrete-timeGaussiannoise,assumedinde-
pendent,suchthat

for and

Stengel[8], p.343points out that the Kalmanfiltering
equationsonly work for acontrolvectorknownwithouterror.
Hence,we will usetheearlierdynamicprogrammingresults
thatgaveanaffinefeedbackoptimalcontrol
neglectingthe perturbations.

TheKalmanfilter equations[8] are

(33)

(34)

(35)

(36)

(37)

where is the estimatedstatevariable. The plus or mi-
nus indicatespre-updateor post-updatefor that time stage,
respectively, such that the stateestimateerror is given by

. The stateerror-estimatecovariance, , is
definedas .

Stage2 State Estimate. This stageis crucial in any
multi-stageKalman filter becauseit involves calculations
with the initial state. It is reasonableto assumethat there
is a stochasticpart to the initial condition. In orderthat the
problembeworkablenumerically, an initial guessis needed:

. Note that thereareno higher
order terms. The error on this estimateis precisely

. The error estimatecovariancefor the ini-
tial stageis by assumption

(38)

given , assumingconsistency with thesmallnoisetransi-
tion andobservationequationmodels.

Usingtheasymptoticallyexpandedstate(8), eachorder
will be foundseparately. Puttingthe initial estimateinto the
stateestimateextrapolation(33)gives

(39)

Thepre-updatestateestimates(noting that above)
are

(40)

Sincethe initial covariancematricesfor the stateerror
andstatenoisearebothO( ), thestateerrorcovarianceex-
trapolation(34) becomes , andall
other higher order coefficients are zero. Another result of
equation(38) is that the Kalmangain matrix also hasonly
onetermthatis non-zero,

(41)
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Also, thecovarianceupdatetermis

(42)

andall otherhigherordercoefficientsarezero.

Theinnovationprocessin thestateupdateequation(36)
canalsobereducedby appropriatesubstitutionsyielding

(43)

The stateerror for stagetwo, unlike the previous stage,has
additionalhigherorder terms: ,
therebeingno termof O( ), sinceby equation(39),

(44)

Therefore,the innovationprocessdoesnot effect the largest
orderequationandthedeterministictermof thestateestimate

is unchangedby filtering. Thestateupdatefor
thenext two orderterms,using(40),are

(45)

for and , dependingonly on thesecondstageobserva-
tionsamplifiedby thesecondstagegain.

Stage3 StateEstimate. Thestateerrorcovariancefor
thethird stage, , is onceagainasingle
term of order , since and .
Therefore,the Kalmangain matrix onceagainconsistsof a
singleterm:

(46)

Thepre-updatestateestimateis , where
, so

for and . The error on this estimateis at mostO( )
sinceby equation(44),

(47)

Therefore,theinnovationprocessis zerofor thisorderis

andhencethelargestordertermof theestimatefor stagethree
is uneffectedby filtering, . The
remainingtermsof thestagethreestateestimateare

(48)

for and , dependenton both the second and
third stageobservations,givengainsandmodelcoefficients,
with the only updated covariance term being

.

6. Conclusions

Theadditionof aGaussianstochasticprocesswith systematic
noiseperturbationsto a varianton anexampleof Culver and
Shoemaker[1] suggeststheuseof filtering to obtainareason-
ablestateestimate.TheKalmanfilter usedheregivesa more
tractableestimatefor the statethan simply using the state
transitionequation.Whencombinedwith the DDP approx-
imationfor theregularcontrol,a goodapproximationfor the
optimalcontrolpolicy andtheminimumcostscanbefound.
The regular control hasthe form of that for a generalLQG
feedbackcontrolpolicy. As expected,filtering doesnoteffect
thelargestordertermof thestateestimate,whichis determin-
istic. Futuredirectionsinvolve the developmentof efficient
computationalprocedures.
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