
MATHEMATICAL SCIENCE PRELIMINARY EXAMINATION

Monday, April 19, 2004 1:00-4:00pm

The exam is based on questions from the areas: Appled Optimal Control and Computational
Finance. There are 4 questions in each area. Each question is worth 20 points. All questions will
be graded, but your score for the examination will be the sum of the scores of your best FIVE
questions.

Use a separate answer booklet for each question, and do not put your name on the answer booklets,
instead put the number that is on the envelope the exam was in. When you have completed the
examination, insert all your answer booklets in the envelope provided. Then seal and print your
name on the envelope.
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Computational Finance

1. Let S(t) be the price of a stock index that pays a continuous yield q and is modelled by the
SDE:

dS = µSdt + σSdW.

Here W (t) is Brownian motion, µ is the real world return, and σ is the volatility. Also,
assume r is the constant risk-free interest rate.

(a) Derive a Black-Scholes type equation for V (S, t), the price of a European derivative on
this index with expiration T and payoff Λ(S). Be sure to state the final pricing problem
completely.

(b) If the derivative is a European call option with strike E. State explicitly the formula for
its price c(S, t).

(c) State explicitly the replicating portfolio for the call option described in (b). You must
give the quantities of each instrument.

2. Consider a three step multiplicative binomial tree for pricing a European put option on an
asset with price S today. The time step is δt and r is the constant risk-free interest rate. The
multiplicative jump factors are u > 1 (up) and d < 1 (down), where u× d = 1.

(a) Find the risk-neutral probabilities q (up) in terms of u, d, δt, and r.

(b) Sketch the asset tree for only 3 steps and label the asset prices.

(c) Give an explicit formula (in terms of q and the other parameters) for the price of the
put option today, if the strike price is E and the asset price is at-the-money today.

(d) If the option is an American put, find the price of the option at the node with the
smallest price in the second time step. Explain the condition that determines whether
early exercise is feasible. Assume the strike price is E and the asset price is at-the-
money today.

3. The price of an asset satisfies

dS = µdt + σdW, S(0) = S0

where W is Brownian motion.

(a) Construct the strong solution to the SDE and find the density function of S.

(b) Compute E[S] and Var(S).

4. The risk-neutral dynamics of an asset with price S(t) is described by

dS = rSdt + σSdW

where W (t) is Brownian motion, σ is the volatility, and r is the constant risk-free rate.

(a) Derive a formula for the density function p(Ŝ, T ; S, t), i.e the probability that S(T ) = Ŝ
given that S(t) = S where t < T .

(b) Show that EQ[S(T )|S(t) = S] is the forward price of the asset at time t

2



Applied Optimal Control

5. Show that ∫ t

0

eaP (s)dP (s) =

{
eaP (t) − 1

ea − 1
, a 6= 0

P (t), a = 0

}
,

for real constant a.

6. Solve the following (Itô) diffusion SDE

dX(t) =
(
α0

√
X(t) + β2

0/4
)

dt + β0

√
X(t)dW (t) ,

for X(t), E[X(t)] and Var[X(t)], where α0 and β0 are constants, and X(0) = x0 > 0, with
probability one.

7. Solve the linear jump-diffusion (Itô) SDE for X(t),

dX(t) = µ(t)X(t)dt + σ0X(t)dW + ν0X(t)dP (t),

for t > 0, X(0) = x0 > 0, E[W (t)] = 0, Var[W (t)] = t, and E[P (t)] = λ0t = Var[P (t)].
The {σ0, ν0, λ0} are constants. Using this solution show that

(a) the expectation of the state is E[X(t)] = x0 exp(m(t) + λ0ν0t),
where m(t) ≡

∫ t

0
µ(t)dt;

(b) the corresponding squared coefficient of variation is
Var[X(t)]/E2[X(t)] = exp((σ2

0 + λ0ν
2
0)t)− 1.

8. For a linear quadratic Gaussian (LQG) problem, the (Itô) linear dynamics equation is

dX(t) = (µ0X(t) + β0U(t))dt + σ0X(t)dW (t),

for t > 0, X(0) = x0, µ0 6= 0, β0 6= 0, σ0 > 0, where the control process U(t) in
unconstrained, and the quadratic criterion is

V [X(t), U(t)] =
1

2

∫ tf

t

(
q0X

2(t) + r0U
2(t)

)
dt, +

1

2
SfX

2(tf )

for q0 > 0, r0 > 0, and Sf > 0,

(a) find the PDE of Stochastic Dynamic Programming for the optimal expected value:

v∗(x, t) = min
u

[E [V [X(t), U(t)] |X(t) = x, U(t) = u ]] ,

and find the optimal (unconstrained) control u∗(x, t) in terms of the shadow price
v∗x(x, t);

(b) show that this PDE of SDP formally admits a pure quadratic form solution v∗(x, t) =
1
2
S(t)x2 by deriving the resulting final value problem for a Riccati equation that deter-

mines the coefficient S(t) (do not solve) and find the linear feedback control law for
u∗(x, t) in terms of x, S(t) and other parameters.
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