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Abstract

This paper treats the risk-averse optimal portfolio problem with consumption in continuous
time with a stochastic-volatility, jump-diffusion (SVJD) model of the underlying risky asset
and the volatility. The new developments are the use of the SVJD model with double-uniform
jump-amplitude distributions and time-varying market parameters for the optimal portfolio
problem. Although unlimited borrowing and short-selling play an important role in pure diffu-
sion models, it is shown that borrowing and short-selling are constrained for jump-diffusions.
Finite range jump-amplitude models can allow constraints to be very large in contrast to in-
finite range models which severely restrict the optimal instantaneous stock-fraction to [0,1].
The reasonable constraints in the optimal stock-fraction due to jumps in the wealth argument
for stochastic dynamic programming jump integrals remove a singularity in the stock-fraction
due to vanishing volatility. Main modifications for the usual constant relative risk aversion
(CRRA) power utility model are for handling the partial integro-differential equation (PIDE)
resulting from the additional variance independent variable, instead of the ordinary integro-
differential equation (OIDE) found for the pure jump-diffusion model of the wealth process. In
addition to natural constraints due to jumps when enforcing the positivity of wealth condition,
other constraints are considered for all practical purposes under finite market conditions. Also,
a computationally practical solution of Heston’s (1993) square-root-diffusion model for the
underlying asset variance is derived. This shows that the nonnegativity of the variance is pre-
served through the proper singular limit of a simple perfect-square form. An exact, nonsingular
solution is found for a special combination of the Heston stochastic volatility parameters.

Key words: optimal-portfolio problem, stochastic-volatility, jump-diffusion, finite markets,
jump-bankruptcy condition, double-uniform jump-amplitudes,
nonnegative-variance verification.



1 Introduction
The empirical distribution of daily log-returns for real financial investments differs in many ways
from the ideal pure diffusion process with its log-normal distribution as assumed in the Black-
Scholes-Merton option pricing model [10, 47]. One of the most significant differences is that
actual log-returns exhibit occasional large jumps in value, whereas the diffusion process in Black-
Scholes [10] is continuous. Statistical evidence of jumps in various financial markets is given by
Ball and Torous [7], Jarrow and Rosenfeld [34], and Jorion [36]. Long before this statistical-jump
evidence, Merton [48] (also [49, Chap. 9]) published a pioneering jump-diffusion model using log-
normal jump-amplitudes. Other jump-diffusion models were proposed including Kou and Wang’s
log-double-exponential [39, 40] and Hanson and Westman’s log-uniform [25, 27] jump-diffusion
models or Zhu and Hanson’s log-double-uniform model [59, 60]. However, it is difficult to separate
the outlying jumps from the diffusion, although separating out the diffusion is a reasonable task as
shown by Aı̈t-Sahalia [1].

Another difference is that the empirical log-returns are usually negatively skewed, since the
negative jumps or crashes are likely to be larger or more numerous than the positive jumps for
many instruments over sufficiently long periods, whereas the normal distribution associated with
the logarithm of the diffusion process is symmetric and hence has zero skew. A third difference
is that the empirical distribution is usually leptokurtic, since the coefficient of kurtosis, i.e., the
variance-normalized fourth central moment [16], is bounded below by the normal distribution
kurtosis value of three. Qualitatively, this means that the tails are fatter than a normal with the
same mean and standard deviation, compensated by a distribution that is also more slender about
the mode (local maximum).

A fourth difference is that the market exhibits time-dependence in the distributions of log-
returns, so that the associated parameters are time-dependent. In particular, another significant
difference is the volatility, which is time-dependent and stochastic, i.e., we have stochastic volatil-
ity. Stochastic volatility in the market, mostly in options pricing, has been studied by Garman
and Klass [19], Johnson and Shanno [35], Ball and Torous [6], Hull and White [32], Wiggins [55],
Stein and Stein [54, see corrections in [5]], Ball and Roma [5], Scott [53], and Lord, KoekKoek and
Dijk [42]. The mean-reverting, square-root-diffusion, stochastic-volatility model of Heston [30]
is frequently used. Heston’s model derives from the CIR model of Cox, Ingersoll and Ross [13]
for interest rates. The CIR paper also cites the Feller [17] justification for proper (Feller) bound-
ary conditions, process nonnegativity and the distribution for the general square-root diffusions.
In a companion paper to the CIR model paper, Cox et al. [12] present the more general theory
for asset processes. In their monograph, Fouque, Papanicolaou and Sircar [18] cover many issues
involving various models with stochastic volatility. Andersen, Benzoni and Lund [2], as well as
others, have statistically confirmed the importance of both stochastic volatility and jumps in equity
returns. In their often cited paper on affine jump-diffusions, Duffie, Pan and Singleton [15] include
a section on various stochastic-volatility, jump-diffusion models. Bates [9] studied stochastic-
volatility, jump-diffusion models for exchange rates. Broadie and Kaya [11] devised an exact
simulation method for stochastic-volatility, affine-jump-diffusion models for option pricing in the
sense of an unbiased Monte Carlo estimator. Yan and Hanson [56, 57, 29] explored theoretical and
computational issues for both European and American option pricing using stochastic-volatility,
jump-diffusion models with log-uniform jump-amplitude distributions.

For the optimal portfolio with consumption problem, Merton [45, 46] (see also [49, Chap-
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ters 4-6]), in a prior pioneering paper, analyzed the optimal consumption and investment portfolio
with geometric Brownian motion and examined an example of hyperbolic absolute risk-aversion
(HARA) utility having explicit solutions. Generalizations to jump-diffusions consisting of Brow-
nian motion and compound Poisson processes with general random finite amplitudes are briefly
discussed. Earlier in [44] ([49, Chapter 4]), Merton also examined constant relative risk-aversion
problems.

In the 1971 Merton paper [45, 46] there are a number of errors, in particular in boundary con-
ditions for bankruptcy (negative wealth) and vanishing consumption. Some of these problems are
directly due to using a general form of the HARA utility model. These errors are very thoroughly
discussed in a seminal collection assembled by Sethi [51] from his papers and those with his coau-
thors. Sethi in his introduction [51, Chapter 1] thoroughly summarizes these errors and subsequent
generalizations. In particular, basic papers of concern here are the KLSS paper with Karatzas,
Lehoczhy, Sethi and Shreve [37] (reprint [51, Chapter 2]) for exact solutions in the infinite horizon
case and with Taksar [52] (reprint [51, Chapter 2]) pinpointing the errors in Merton’s [45, with [46]
erratum] work.

Hanson and Westman [22, 28] reformulated an important external events model of Rishel [50]
solely in terms of stochastic differential equations and applied it to the computation of the optimal
portfolio and consumption policies problem for a portfolio of stocks and a bond. The stock prices
depend on both scheduled and unscheduled jump external events. The complex computations were
illustrated with a simple log-bi-discrete jump-amplitude model, either negative or positive jumps,
such that both stochastic and quasi-deterministic jump magnitudes were estimated. In [23], they
constructed a jump-diffusion model with marked Poisson jumps that had a log-normally distributed
jump-amplitude and rigorously derived the density function for the diffusion and log-normal-jump
stock price log-return model. In [24], this financial model is applied to the optimal portfolio and
consumption problem for a portfolio of stocks and bonds governed by a jump-diffusion process
with log-normal jump amplitudes and emphasizing computational results. In two companion pa-
pers, Hanson and Westman [25, 26] introduce the log-uniform jump-amplitude jump-diffusion
model, estimate the parameter of the jump-diffusion density with weighted least squares using
the S&P500 data and apply it to portfolio and consumption optimization. In [27], they study the
time-dependence of the jump-diffusion parameter on the portfolio optimization problem for the
log-uniform jump-model. The appeal of the log-uniform jump model is that it is consistent with
the stock exchange introduction of circuit breakers [3] in 1988 to limit extreme changes, such
as occurred in the crash of 1987, in stages. On the contrary, the normal [48, 2, 23] and double-
exponential jump [39, 40] models have an infinite domain, which is not a problem for the diffusion
part of the jump-diffusion distribution since the contribution in the dynamic programming for-
mulation is local appearing only in partial derivatives. However, the influence of the jump part
in dynamic programming is global through integrals with integrands that have shifted arguments.
This has important consequences for the choice of jump distribution since the portfolio wealth
restrictions will depend on the range of support of the jump density.

However, there has been much less effort on the optimal portfolio with consumption problem
when stochastic volatility is included, and what is available tends to be very theoretical in na-
ture. Cox, Ingersoll and Ross [12] consider the very general optimal portfolio with consumption
problem for a very general state vector that could include stochastic volatility and a von Neumann-
Morganstern utility, and in the CIR model paper [13] considered the special case of the logarith-
mic utility. Wiggins [55] considers the optimal portfolio problem for the log-utility investor with
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stochastic volatility and using equilibrium arguments for hedging. Zariphopoulou [58] analyzes
the optimal portfolio problem with CRRA utility, a stochastic factor, i.e., stochastic volatility, and
unhedgeable risk.

In this paper, the log-double-uniform jump-amplitude, jump-diffusion asset model with a He-
ston model stochastic volatility is applied to the portfolio and consumption optimization problem.
In Section 2, the stochastic-volatility, jump-diffusion model is formulated as the underlying two-
dimension process for the optimal portfolio and consumption problem. In Section 3, the port-
folio optimization with consumption problem is formulated by stochastic dynamic programming
and jump-no-bankruptcy conditions are derived. In Section 4, the canonical solutions for CRRA
power and logarithmic utilities are derived using a implicit type of Bernoulli transformation. In
Appendix A, the preservation of positivity of the optimal wealth from positive initial wealth is
formally justified. In Appendix B, the positivity of the variance is verified using a proper singular
limit of a perfect-square form and an exact, nonsingular solution is given for special values of the
Heston model [30] stochastic-volatility parameters. In Section 6, conclusions are drawn.

2 Optimal portfolio problem and underlying SVJD model
Let S(t) be the price of a single underlying financial asset, such as a stock or mutual fund, gov-
erned by a Markov, geometric jump-diffusion stochastic differential equation with time-dependent
coefficients,

dS(t) = S(t)
(
µs(t)dt +

√
V (t)dGs(t) + νs(V (t), t, Q)dPs(t; Q)

)
, (2.1)

with S(0) = S0 > 0, where µs(t) is the mean appreciation return rate at time t, V (t) = σ2
s(t) is

the diffusive variance, dGs(t) is a continuous Gaussian process with zero mean and dt variance
(the usual symbol W is used here for wealth and B is used for the bond price), dPs(t; Q) is a
discontinuous, standard Poisson process with jump rate λs(t), with common mean-variance of
λs(t)dt, and associated jump-amplitude νs(v, t, q) with IID log-return mark Q jump-mean µj(t)
and jump-variance σ2

j (t). The stochastic processes Gs(t) and Ps(t) are assumed to be Markov and
pairwise independent. The jump-amplitude, νs(V (t), t, Q) > −1, given that a Poisson jump in
time occurs, is also independently distributed, at pre-jump time T−

k and mark Qk. In Eq. (2.1), the
following short-hand notation is used,

νs(V (t), t, Q)dPs(t; Q) ≡
(Ps+dPs)(t;Q)∑
k=Ps(t;Q)+1

νs(V (T−
k ), T−

k , Qk),

provided dPs(t; Q) ≥ 1, else the sum is defined as zero by convention, where T−
k is the kth pre-

jump time. The Qk are IID random variables with jump-amplitude mark density φQ(q; t) on the
mark-space Q.

There are many jump-amplitude distributions for the log-return that are used to define φQ(q; t).
Among them are the log-normal jump-amplitude distribution used by Merton [48] in his pioneer-
ing jump-diffusion finance paper (see also Hanson and Westman [24]), the log-double-exponential
distribution used by Kou and coauthor [39, 40], and the log-uniform and log-double-uniform dis-
tributions used by Hanson and coauthors [25, 26, 59, 60, 57]. Since it is difficult to determine what
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the market jump-amplitude distribution is, the double-uniform distribution is the simplest distri-
bution that clearly satisfies the critical fat-tail property and allows separation of crash and rally
behaviors by the double composite property. So, let the log-double-uniform density be

φQ(q; v, t) ≡


0, −∞ < q < a(v, t)
p1(v, t)/|a|(v, t), a(v, t) ≤ q < 0
p2(v, t)/b(v, t), 0 ≤ q ≤ b(v, t)
0, b(v, t) < q < +∞

 , (2.2)

where a(v, t) < 0 < b(v, t), p1(v, t) ≥ 0 is the probability of a negative jump and p2(v, t) ≥ 0 is
the probability of a non-negative jump such that p1(v, t) + p2(v, t) = 1. Otherwise, a well-defined
form of the log-double-uniform distribution is

ΦQ(q; v, t) = p1(v, t)
q − a(v, t)

|a|(v, t)
I{a(v,t)≤q<0} +

(
p1(v, t) + p2(v, t)

q

b(v, t)

)
I{0≤q<b(v,t)}

+I{b(v,t)≤q<∞},

where IS is the indicator function for set S. Since the double-uniform jump-amplitude distribution
is used here and elsewhere for the stock log-return variable.

Also, it is desirable to keep the mark variable as simple as possible, let the mark variable be the
jump in the log-return [21], i.e.,

Q ≡ Jump[ln(S)](t) = ln((1 + νs(V (t), t, Q))S(t))− ln(S(t)) = ln(1 + νs(V (t), t, Q))

or

νs(v, t, q) ≡ eq − 1, (2.3)

leaving the v and t dependence in a(v, t) and b(v, t)
The stock price SDE (2.1) is similar in prior work [23, 24], except that time-dependent coeffi-

cients introduce more realism here as used in [60].
The stochastic variance is modeled with the Cox-Ingersoll-Ross (CIR) [12, 13] and Heston [30]

mean-reverting stochastic volatility, σs(t) =
√

V (t), and square-root diffusion with parameters
(κv(t), θ(t), σv(t)):

dV (t) = κv(t) (θv(t)− V (t)) dt + σv(t)
√

V (t)dGv(t), (2.4)

with V (0) = V0 > 0, log-rate κv(t) > 0, reversion-level θv(t) > 0 and volatility of volatility
(variance) σv(t) > 0, where Gs(t) and Gv(t) are standard Brownian motions for S(t) and V (t),
respectively, with correlation Corr[dGs(t), dGv(t)] = ρ = ρ(t). It will be assumed that the vari-
ance is nonnegative, i.e., V (t) ≥ 0, but see Appendix B for important practical qualifications in
theory and computation. Equations (2.1) and (2.4) comprise the underlying stochastic-volatility,
jump-diffusion (SVJD) model. See also [9, 53, 18, 56, 57, 29] for other applications.

The riskless asset with a variable interest rate yields variable deterministic exponential growth,

dB(t) = r(t)B(t)dt, (2.5)

where B(0) > 0 and r(t) is the interest rate.
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The portfolio consists of the stock S(t) and the bond B(t) with instantaneous portfolio-fractions
Us(t) and Ub(t), respectively, such that Ub(t) = 1 − Us(t). The wealth W (t) satisfies the self-
financing condition, so that

dW (t) = W (t) ·
(
r(t)dt + Us(t) ·

(
(µs(t)− r(t))dt +

√
V (t)dGs(t)

+νs(V (t), t, Q)dPs(t; Q)
))

− C(t)dt,
(2.6)

where W (0) = W0 > 0, Ub(t) has been eliminated and C(t) is the instantaneous consumption.
The portfolio dS(t) system consists of the wealth equation in (2.6) plus an additional equation for
the variance (volatility) equation in (2.4) beyond the usual portfolio problem [44, 45]. The system
is subject to constraints that there be no bankruptcy, W (t) ≥ 0, that for the stock fraction to be a
control it must satisfy,

U
(min)
0 (V (t), t) ≤ Us(t) ≤ U

(max)
0 (V (t), t), (2.7)

that consumption cannot exceed a certain fraction of wealth, i.e.,

0 ≤ C(t) ≤ C
(max)
0 (V (t), t) ·W (t) (2.8)

with 0 < C
(max)
0 (V (t), t) < 1, and that there be nonnegative variance, V (t) ≥ 0. Note that it is

assumed that the instantaneous stock fraction will not be constrained to [0, 1], but excess short-
selling will be allowed, i.e., Us(t) < 0, and similarly excess borrowing, i.e., Ub(t) < 0.

Later, we will find an additional constraint on the stock-fraction as a consequence of the ef-
fect of jumps on the bankruptcy condition [60]. Note that Merton’s [45] definition of bankruptcy
W (t) < 0 differs from the Karatzas et al. [37] definition W (t) = 0, since that just means no wealth
while W (t) < 0 means that the investor is in debt. Here we take a more practical view looking a
positivity of wealth due to linear properties of the equation and ignore the unreal and peculiar limits
of infinite wealth and vanishing probabilities as discussed in Appendix refAppendixWpositive.

The optimization criterion or performance index is the optimal, conditionally expected, dis-
counted utility of final wealth plus the cumulative, discounted utility of running consumption,

J∗(w, v, t) = max
u,c

[
E

[
e−β(t; tf )Uw(W (tf )) +

∫ tf

t

e−β(t; τ)Uc(C(τ))dτ

∣∣∣∣ C]] , (2.9)

where C = {W (t) = w, V (t) = v, C(t) = c, Us(t) = u} is the conditioning, β(t; τ) ≡
∫ τ

t
β(y)dy

is the cumulative discount, β(t) is the instantaneous discount, Uw(w) is the utility of the final
wealth w and Uc(c) is the utility of the instantaneous consumption c. The consumption c and the
stock-fraction u are obviously the two control variables of the optimal portfolio problem and are
derived as the arguments of the maximization.

There are several side conditions deducible from the criterion (2.9). As the final time is ap-
proached, t → t−f , the final condition is obtained,

J∗
(
w, v, t−f

)
= Uw(w), (2.10)

for any final wealth level w > 0. As the wealth approached zero, w → 0+, so does the consump-
tion, c → 0+, since it is constrained as a fraction of wealth and by definition zero wealth is an
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absorbing boundary with boundary condition, from the objective (2.9),

J∗
(
0+, v, t

)
= Uw

(
0+
)
e−β(t; tf ) + Uc

(
0+
) ∫ tf

t

e−β(t; τ)dτ, (2.11)

for any t in [0, tf ]. Merton [49, Chap. 6] states that for no arbitrage, zero wealth must be an
absorbing state.

3 Portfolio stochastic dynamic programming
Upon applying stochastic dynamic programming (SDP) to the stochastic optimal control problem
posed in the previous section, the PDE of stochastic dynamic programming in Hamiltonian form
can be shown to be

0 = J∗t (w, v, t) +H (w, v, t; u∗(w, v, t), c∗(w, v, t)) , (3.1)

where J∗t (w, v, t) is the time partial derivative of J∗(w, v, t) and the (pseudo) Hamiltonian is

H(w, v, t; u, c) ≡ −β(t)J∗(w, v, t) + Uc(c) + ((r(t) + (µs(t)− r(t))u) w − c) J∗w(w, v, t)

+1
2vu2w2J∗ww(w, v, t) + κv(t)(θv(t)− v)J∗v (w, v, t)

+1
2σ2

v(t)vJ∗vv(w, v, t) + ρσvvuwJ∗wv(w, v, t)

+λs(t)

(
p1(v, t)

|a|(v, t)

∫ 0

a(v,t)

+
p2(v, t)

b(v, t)

∫ b(v,t)

0

)
· (J∗(K(u, q)w, v, t)− J∗(w, v, t)) dq,

(3.2)

where

K(u, q) ≡ 1 +
(
eq − 1

)
u (3.3)

is the critical function for the natural jump bankruptcy condition [60] to guarantee no bankruptcy.
(See the applied derivations in Hanson [21, page 190, Exercises 3-4] in the case of discounting.)
The double-uniform density (2.2) has been used to obtain the explicit jump-integral formulation in
the last line of (3.2).

3.1 Wealth jump positivity constraint
Although, the no bankruptcy condition requires that wealth be positive or at lease nonnegative,
due to the fact that the wealth equation is effectively linear in wealth and as explained later in an
Appendix A if the wealth starts out positive it must remain positive w > 0, including the postjump
wealth, K(u, q)w > 0. Hence, we must have

K(u, q) > 0.
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Since the variate and parameters of the market double-uniform jump-amplitude distribution satisfy
a(v, t) ≤ q ≤ b(v, t) and a(v, t) < 0 < b(v, t), then the lower bound on the critical function
satisfies

K(u, q) ≥
{

K(u, a(v, t)), u > 0
K(u, b(v, t)), u < 0

}
> 0.

This leads to the natural jump-bankruptcy, stock-fraction control bounds to enforce the no bankruptcy
condition upon reformulating the lemma in Zhu and Hanson [60] for dependence on stochastic-
volatility, v, in addition to dependence on time, t.

Lemma 3.1 Jump stock-fraction control bounds for non-negative wealth:

û
(min)
0 (v, t)≡ −1

νs(v, t, b(v, t))
=

−1

eb(v,t) − 1
<u <

+1

1− ea(v,t)
=

+1
−νs(v, t, a(v, t))

≡ û
(max)
0 (v, t). (3.4)

Remarks 3.1:

• Here, û
(min)
0 (v, t) and û

(max)
0 (v, t) naturally define the upper and lower bounds on the ad-

missible stock-fraction control space due to the positive wealth constraint. When the mark
space, [a(t), b(t)], is finite such that −B+

a ≤ a(v, t) ≤ −B−
a < 0 < B−

b ≤ b(v, t) ≤ B+
b for

some positive constants B±
a and B±

b , then û
(min)
0 (v, t) and û

(max)
0 (v, t) are obviously finite,

since 0 < 1− e−B−a ≤ 1− ea(v,t) ≤ 1− e−B+
a < 1 with similar bounds for the denominator

eb(v,t) − 1.

• However, if the jump distribution is of infinite range like the log-normal and log-double
exponential jump-amplitude distribution, then the admissible stock-fraction controls must
be in [0, 1], and short-selling as well as borrowing would be severely restricted. For the case
of diffusion and stochastic volatility (SVD) only, this extra restriction does not apply due to
the absence of jumps.

3.2 Hamiltonian regular optimization conditions
Before attempting to solve the PDE of SDP, the Hamiltonian equations are used to get the critical
points that determine the regular controls, i.e., the optimal controls in absence of constraints. Thus,
the critical point for regular consumption control is found from(

∂H
∂c

)(reg)(
w, v, t; u(reg), c(reg)

)
= U ′c

(
c(reg)(w, v, t)

)
− J∗w(w, v, t) = 0,

so c(reg)(w, v, t) is given implicitly by

U ′c
(
c(reg)(w, v, t)

)
= J∗w(w, v, t) (3.5)

and c∗(w, v, t) = c(reg)(w, v, t) if c(reg)(w, v, t) ≤ w · C
(max)
0 (v, t). The optimal consumption

control will generally be a composite bang-regular-bang control,

c∗(w, v, t) =


0, c(reg)(w, v, t) ≤ 0

c(reg)(w, v, t), 0 ≤ c(reg)(w, v, t) ≤ w · C(max)
0 (v, t)

w · C(max)
0 (v, t), w · C(max)

0 (v, t) ≤ c(reg)(w, v, t)

 . (3.6)
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The Hamiltonian condition for the regular stock-fraction control is(
∂H
∂u

)(reg)(
w, v, t; u(reg), c(reg)

)
= (µs(t)− r(t))wJ∗w(w, v, t) + vu(reg)(w, v, t)w2J∗ww(w, v, t)

+ρσvvwJ∗wv(w, v, t)

+λs(t)

(
p1(v, t)

|a|(v, t)

∫ 0

a(v,t)

+
p2(v, t)

b(v, t)

∫ b(v,t)

0

)
·
(
eq − 1

)
wJ∗w

(
K
(
u(reg)(w, v, t), q

)
w, v, t

)
dq = 0,

with sufficient differentiability of J∗ using (3.3). So, u(reg)(w, v, t) is given implicitly by

vw2J∗ww(w, v, t)u(reg)(w, v, t) = −(µs(t)− r(t))wJ∗w(w, v, t)− ρσvvwJ∗wv(w, v, t)

−λs(t)w

(
p1(v, t)

|a|(v, t)

∫ 0

a(v,t)

+
p2(v, t)

b(v, t)

∫ b(v,t)

0

)
·
(
eq − 1

)
J∗w
(
K
(
u(reg)(w, v, t), q

)
w, v, t

)
dq

(3.7)

and u∗(w, v, t) = u(reg)(w, v, t) if u(reg)(w, v, t) is an admissible control, assuming that u(w, v, t) =
U(t) is an admissible instantaneous stock-fraction control if it satisfies the constraint (2.7), as-
suming specified bounds U

(min)
0 (v, t) and U

(max)
0 (v, t), are independent of w. Hence, the optimal

stock-fraction control will generally be a composite bang-regular-bang control,

u∗(w, v, t) =


U

(min)
0 (v, t), u(reg)(w, v, t) ≤ U

(min)
0 (v, t)

u(reg)(w, v, t), U
(min)
0 (v, t) ≤ u(reg)(w, v, t) ≤ U

(max)
0 (v, t)

U
(max)
0 (v, t), U

(max)
0 (v, t) ≤ u(reg)(w, v, t)

 . (3.8)

A good choice for the admissible bounds, U (min)
0 (v, t) and U

(max)
0 (v, t), would be the natural stock-

fraction control jump bounds, û
(min)
0 (v, t) and û

(max)
0 (v, t), given in (3.4).

4 CRRA canonical solution to optimal portfolio problem
The constant relative risk aversion (CRRA) utility when γ < 1 is a power utility [49], but is a
logarithm when the power γ is zero,

U(x) =

{
xγ/γ, γ 6= 0
ln(x), γ = 0

}
. (4.1)

The range γ < 1 represents several kinds of risk aversion, but, in general, the relative risk-aversion
(RRA) is defined by RRA(x) ≡ −U ′′(x)/(U ′(x)/x) = (1 − γ) > 0, γ < 1. The utility
corresponding to the value γ = 0, arising from the well-defined limit of (xγ − 1)/γ as γ → 0, is a
popular level of risk aversion associated with the Kelly capital growth criterion [38]. The negative
range γ < 0 represents extreme risk aversion, and the range 0 < γ < 1 represents a more moderate
level of risk aversion. The value γ = 1 signifies risk-neutral behavior and the remainder γ > 1
means risk-loving behavior.
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4.1 CRRA power case, γ < 1, but γ 6= 0

Setting both utilities to a common form, Uc(x) = U(x) = Uw(x), and noting the final condi-
tion (2.10) now is J∗(w, v, t−f ) = U(w), the following CRRA canonical form of the solution is
suggested for the SVJD vector process,

J∗(w, v, t) = U(w)J0(v, t), (4.2)

when γ 6= 0 and γ < 1, where J0(v, t) is a function of the variance and time that is to be determined
based on the consistency of (4.2). The γ = 0 case requires an additional wealth-independent term
J1(v, t) and the risk-neutral γ = 1 case leads to a singular control problem. The original final
condition (2.10) yields the greatly reduced final condition J0(v, tf ) = 1. The solution derivative
J∗w(w, v, t) = wγ−1J0(v, t) is valid even when γ = 0 and leads to(

c(reg)
)γ−1

(w, v, t) = wγ−1J0(v, t).

This can be solved explicitly for the regular consumption control,

c(reg)(w, v, t) = wJ
1/(γ−1)
0 (v, t) ≡ wc

(reg)
0 (v, t) (4.3)

where the consumption wealth fraction c
(reg)
0 (v, t) = J

1/(γ−1)
0 (v, t) ≤ C

(max)
0 (v, t) and 0 ≤

C
(max)
0 (v, t) ≤ 1, the fraction of wealth depending on investor preference. Note that the linear

form (4.3) in w is consistent with the linear bound (2.8) on the consumption C(t). In the pres-
ence of consumption control constraints, the general optimal consumption control c∗(w, v, t) =

w · c∗0(v, t) is calculated from the composite form (3.6) using c(reg)(w, v, t) = w · c(reg)
0 (v, t).

Next using J∗ww(w, v, t) = (γ − 1)wγ−2J0(v, t) similarly leads to a reduced implicit formula
for the regular stock fraction control from (3.7),

u(reg)(w, v, t) = u
(reg)
0 (v, t) ≡ 1

(1− γ)v
(µs(t)− r(t) + ρσvv(J0,v/J0)(v, t)

+λs(t)I1

(
u

(reg)
0 (v, t), v, t

))
,

(4.4)

independent of the wealth w with v > 0, where

I1(u, v, t) ≡

(
p1(v, t)

|a|(v, t)

∫ 0

a(v,t)

+
p2(v, t)

b(v, t)

∫ b(v,t)

0

)(
eq − 1

)
Kγ−1(u, q)dq (4.5)

is a jump integral, valid even when γ = 0.
Note that in the pure diffusion CRRA utility case with constant coefficients, i.e., µs(t) = µ0,

r(t) = r0, v = σ2
0 and λs(t) = 0, the regular control in (4.4) becomes Merton’s fraction [44],

u(reg)(w, σ2
0, t) =

µ0 − r0

(1− γ)σ2
0

. (4.6)

In the presence of stock-fraction control constraints, the general optimal stock-fraction control

u∗(w, v, t) = u∗0(v, t) (4.7)
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is calculated from the composite form (3.8) with bounds (2.7) using

u(reg)(w, v, t) = u
(reg)
0 (v, t).

It is easy to see from (4.4) that

u
(reg)
0 (v, t) = O(1/v) as v → 0+,

since this implies, for γ − 1 < 0, asymptotic consistency by

Kγ−1
(
u

(reg)
0 (v, t), q

)
= O

((
u

(reg)
0

)γ−1

(v, t)

)
= O

(
v1−γ

)
= o(1) as v → 0+.

Using these reduced control solution forms leads to the CRRA reduced PIDE for SDP after
some algebra,

0 = J0,t(v, t) +(1− γ)

(
g1(v, t)J0(v, t)+g2(v, t)J

γ
γ − 1
0 (v, t)

)
+g3(v, t)J0,v+1

2σ2
v(t)vJ0,vv,

(4.8)

where

g1(v, t) ≡ 1

1− γ
(−β(t) + γ (r(t) + (µs(t)− r(t))u∗0(v, t))

−1

2
(1− γ)v(u∗0)

2(v, t) + λs(t) (I2(u
∗
0(v, t), v, t)− 1)

)
,

(4.9)

g2(v, t) ≡ 1

1− γ

( c∗0(v, t)

c
(reg)
0 (v, t)

)γ

− γ

(
c∗0(v, t)

c
(reg)
0 (v, t)

) , (4.10)

g3(v, t) =+κv(t)(θv(t)−v)+γρσv(t)vu∗0(v, t), (4.11)

and where a second jump integral is

I2(u, v, t) ≡

(
p1(v, t)

|a|(v, t)

∫ 0

a(v,t)

+
p2(v, t)

b(v, t)

∫ b(v,t)

0

)
Kγ(u, q)dq. (4.12)

provided γ 6= 0. Also for the formula for g2(v, t) in (4.10), the following identity has been used to
combine the consumption terms into the coefficient of the power J

γ/(γ−1)
0 (v, t),

(c∗0)
γ (v, t)− γc∗0(v, t)J0(v, t) ≡ (1− γ)g2(v, t)J

γ/(γ − 1)
0 (v, t).
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4.2 CRRA logarithmic (Kelly criterion) case, γ = 0

In the logarithmic case, the canonical solution is no longer purely linear in the utility U(w) of
wealth as in (4.2) for the power case, but is affine in U(w) = ln(w),

J∗(w, v, t) = ln(w)J0(v, t) + J1(v, t), (4.13)

where J1(v, t) is a parallel solution form arising from partial derivatives of J(w, v, t) with respect
to ln(w). The final condition, J(w, v, tf ) = U(w) = ln(w), produces two parallel final conditions,
J0(v, tf ) = 1 and J1(v, tf ) = 0, since ln(w) and the constant 1 are independent functions of w.

Since the determination of the regular control functions involves only derivatives of J(w, v, t)
with respect to wealth w, the formulas in (4.3) and (4.4) are valid for γ = 0. So

c(reg)(w, v, t) ≡ wc
(reg)
0 (v, t) = w/J0(v, t)

and

u(reg)(w, v, t) ≡ u
(reg)
0 (v, t) =

1

v

(
µs(t)−r(t)+ρσv(t)(J0,v/J0)(v, t)+λs(t)I1

(
u

(reg)
0 (v, t), v, t

))
.

However, the reduced SDP PIDE is not the same as in (4.8) when γ 6= 0. Two parallel reduced
PIDEs are obtained. The first is found by separately equating the cumulative coefficient of ln(w)
to zero by independence, yielding a linear PIDE in J0(v, t),

0 = J0,t(v, t)− β(t)J0(v, t) + g0(v, t), (4.14)

where

g0(v, t) ≡ 1 + κv(t)(θv(t)− v)J0,v(v, t) +
1

2
σ2

v(t)vJ0,vv(v, t) (4.15)

The second for the remaining terms yields another linear PIDE, but in J1(v, t),

0 = J1,t(v, t)− β(t)J1(v, t) + g̃2(v, t) (4.16)

where

g̃2(v, t) ≡ − ln(J0(v, t))− 1

+
(
r(t)+(µs(t)−r(t))u∗0(v, t)−0.5v(u∗0)

2(v, t) +λs(t)I
(0)
2 (u∗0(v, t), v, t)

)
J0(v, t)

+κv(t)(θv(t)−v)J1,v(v, t)+
1

2
σ2

v(t)vJ1,vv(v, t),

(4.17)

and

I2(0)(u, v, t) ≡

(
p1(v, t)

|a|(v, t)

∫ 0

a(v,t)

+
p2(v, t)

b(v, t)

∫ b(v,t)

0

)
ln(K(u, q))dq, (4.18)

in this special case. Note that the parallel PIDEs are uni-directionally coupled, so that if (4.14) for
J0(v, t) is solved first, then (4.16) for J1(v, t) can be solved as a single PIDE using the solution
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J0(v, t) using methods similar to that for γ 6= 0 except that the Bernoulli transformation is not
needed nor does it help.

The static case of logarithmic utility of wealth or Kelly criterion is surveyed by MacLean and
Ziemba [43]. They note that several legendary investors have used the Kelly criterion. One is
Edward O. Thorp who was a prime promoter of the criterion in gambling and market investments.
Another is Warren Buffet, who is identified as a Kelly criterion investor from the performance of
the Berkshire-Hathaway fund.

4.3 Transformation to an implicit type of Bernoulli equation
In the pure stochastic diffusion case with constant coefficients, the PDE of SDP becomes a Bernoulli
ODE in time using the CRRA power utility [44, 45]. Using the classical Bernoulli transformation,
the nonlinear ODE can be transformed to a linear ODE suitable for very standard methods. In the
stochastic jump-diffusion case with time dependent coefficients and control constraints, the PDE
of SDP becomes a Bernoulli ODE complicated by implicit dependence through the jump integrals
and optimal controls [22, 24, 26, 27, 28, 60]. The Bernoulli transformation still has significant
benefits for the case γ < 1 and γ 6= 0, but additional iterations are needed to treat the implicit
dependencies. In the SVJD case, the stochastic volatility terms mean that the PDE of SDP remains
a PDE, but with some Bernoulli nonlinear properties that can be reduced to something simpler.
The Bernoulli-like PDE is given in Eq. (4.8). This is a nonlinear diffusion equation with implicit
coupling to the controls c∗0(v, t), c

(reg)
0 (v, t) and u∗0(v, t).

For the formal PDE in (4.8), the simplifying Bernoulli transformation is given by

y(v, t) = J
1/(1− γ)
0 (v, t) (4.19)

with inverse
J0(v, t) = y1− γ(v, t)

and the transformed PDE, which can viewed as a formal linear equation, is

0 = yt(v, t) + g1(v, t)y(v, t) + g4(v, t), (4.20)

assuming y(v, t) 6= 0 and with final condition y(v, tf ) = 1, where

g4(v, t) ≡ g2(v, t) + g3(v, t)yv(v, t) + 1
2σ2

v(t)v (yvv(v, t)− γ((yv)
2/y)(v, t)) , (4.21)

which includes the suppressed variance-derivative and consumption terms that can be treated by
iteration.

It can be seen from (3.7) that the regular stock-fraction control u
(reg)
0 (v, t) becomes unbounded

as the volatility v → 0+, which should be handled by a finite control space [U
(min)
0 (v, t), U

(max)
0 (v, t)]

as indicated by the jump-bankruptcy bounds [û
(min)
0 (v, t), û

(max)
0 (v, t)].

Since the PDE (4.20) can be solved by computational iteration at each time step, (4.20) can be
treated like an ODE in time by formally writing the transformed solution in quadratures using an
integrating factor,

y(v, t) = eg1(v, t, tf ) +

∫ tf

t

eg1(v, t, τ)g4(v, τ)dτ, (4.22)
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where

g1(v, t, τ) ≡
∫ τ

t

g1(v, s)ds. (4.23)

Thus, the implicit solution for the variance-time function can be written as

J0(v, t) =

(
eg1(v, t, tf ) +

∫ tf

t

eg1(v, t, τ)g4(v, τ)dτ

)1−γ

(4.24)

with the full wealth-dependent solution given by

J∗(w, v, t) =
wγ

γ
J0(v, t).

4.3.1 CRRA logarithmic case formal solution, γ = 0

For the γ = 0 case, the Bernoulli transformation (4.19) is the identity operator. So both solu-
tion forms J0(v, t) and J1(v, t) satisfy unidirectionally coupled linear equations that are solved
in sequence. As for the general risk-averse case, the PIDEs (4.14) and (4.16) are prepared for
better-posed time-stepping iterations using integrating factors, so that for the coefficient of ln(w),

J0(v, t) = e−β(t; tf ) +

∫ tf

t

e−β(t; τ)g0(v, τ)dτ, (4.25)

since J0(v, tf ) = 1, where g0(v, t) is given in (4.15) and includes the variance-derivative terms.
Given J0(v, t), the wealth-independent term J1(v, t) implicitly satisfies

J1(v, t) =

∫ tf

t

e−β(t; τ)g̃2(v, τ)dτ, (4.26)

since J1(v, tf ) = 0, where g̃2(v, t) is given in (4.17) which includes suppressed J0 and J1-variance-
derivative terms. In summary, for γ = 0, the full solution satisfies

J∗(w, v, t) = ln(w)J0(v, t) + J1(v, t).

5 Computational Considerations and Results

5.1 Computational Considerations
• The primary problem is having stable computations and much smaller time-steps ∆t are

needed compared to variance-steps ∆V , since the computations are drift-dominated over the
diffusion coefficient, in that the drift mesh ratio term with upwinding,

Rv(t) = 0.5 max
u,v

[|κv(t)(θv(t)− v) + γρ(t)σv(t)vu|] ∆t/∆V, (5.27)

associated with J0,v can be hundreds times larger than the diffusion mesh ratio term,

Rvv(t) = max
v

[
σ2

v(t)v
]
∆t/∆V 2, (5.28)
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associated with J0,vv for the variance-diffusion. In summary, the drift-adjusted mesh ratio
(Hanson [21], Kushner and Dupuis [41]) need satisfy

R(t) = Rv(t) + Rvv(t) < 1 (5.29)

for stability of the solution. The condition (5.29) can be satisfied by making the time-step ∆t
sufficiently small, given a reasonably sized variance-step ∆V . Refining ∆V more required
a corresponding refinement of ∆t.

• The transformed equation (4.20) is iteratively solved for y(v, t) while obtained from (4.24)
rather than J0(v, t) the formal original Bernoulli equation (4.8) for the variance-time coeffi-
cient J0(v, t).

• Drift upwinding is implemented by having the finite differences for the drift-partial deriva-
tives follow the sign of the drift-coefficient and thus providing more stability for the compu-
tations, while central differences are sufficient for the diffusion partials. For the market and
volatility parameters used, the drift-ratio Rv(t) (5.27) is many times larger than the diffusion-
ratio Rvv(t) (5.28) and in fact Rvv(t) is negligible compared to Rv(t), the diffusion is still
needed for the stock fraction control.

• Time dependent parameters were from S&P 500 for the two-year period from the beginning
of 1999 to the beginning of 2001 that were estimated by Zhu and Hanson [60] and the values
used here were interpolated for each time t, but the variance or volatility parameter were
taken from Heston’s [30] static values. The correlation used was the static value ρ = −0.7.
The average values over the period of the parameters were used to calculate the mesh ratios
in (5.29) until R(t) a good bit smaller than one in consideration of the complexity of the
problem.

• The primary numerical method was time stepping with predictor-corrector iterations with
Crank-Nicholson mid-point evaluation in time. Inside each time-step, alternate policy and
value value iterations were used until both converged within a specified tolerance starting
with the policy or control iteration. The most sensitive part of the iterations were that of
the regular controls due to their intrinsic implicitness and Newton’s method was used to
accelerate this part.

• Iteration calculations in time, controls and volatility are sensitive to small and negative devi-
ations, as well as the form of the iteration in terms of the formal implicitly-defined solutions.
It was especially important the min(v) be positive and not too small because the variance v

appears in denominator such as that of the regular control u(reg)(w, v, t) = u
(reg)
0 (v, t) (4.4),

but just skipping the first variance-step at zero was sufficient.
• Computations took only a few minutes on a Mac with OSX v. 10.5.3 and a 2.5 GHz Intel

Core 2 Duo processor.

5.2 Computational Results
The regular u(reg)(vp, t) and optimal u∗(vp, t) stock fraction policies or controls are given in Sub-
figures 1(a) and 1(b), respectively, for fixed variance such that the volatility is σp =

√
vp = 16%.

Note that the regular control exceeds the [−18, 12] control space marked by the red dashed lines,
so has to be truncated to obtain the optimal fraction control. However, this truncation is much more
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less severe than if the jump-amplitude support were infinite, in which case the truncation would be
restricted to the small space between the dashed green lines.
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(a) Regular fraction policy u(reg)(vp, t).
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(b) Optimal fraction policy, u∗(vp, t) .

Figure 1: Regular and optimal portfolio stock fraction policies, u(reg)(vp, t) and u∗(vp, t) at σp = √
vp =

0.16 = 16% on t ∈ [1999.0, 2001.0], while u∗(vp, t) ∈ [−18, 12].

The optimal value J∗(w, vp, t) and optimal consumption policy or control c∗(w, vp, t) are given
in Subfigures 2(a) and 2(b), respectively, for fixed variance such that the volatility is σp =

√
vp =

16%. The value J∗(w, vp, t) figure is molded by the wealth utility function U(w) for fixed t as a
template and similarly the consumption is molded by the linear dependence on w for fixed t. Note
the linear constraint is active on the consumption control, c∗(w, vp, t) ∈ [0, 0.75 ·w], in Subfig. 2(b)
near t = 2001.

(a) Optimal portfolio value J∗(w, vp, t). (b) Optimal consumption policy c∗(w, vp, t) .

Figure 2: Optimal portfolio value J∗(w, vp, t) and optimal consumption policy c∗(w, vp, t) at σp =√
vp = 0.16 = 16% on (w, t) ∈ [0, 110]× [1999.0, 2001.0], while c∗(w, vp, t) ∈ [0, 0.75 · w].

In an alternate view with respect to variance v and time t with wealth as the fixed parameter
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wp = 55, the optimal value J∗(wp, v, t) and optimal consumption policy or control c∗(wp, v, t) are
given in Subfigures 3(a) and 3(b). The dependence on variance v is not too interesting for both
functions. Note again the linear constraint is active on the consumption control, c∗(wp, v, t) ∈
[0, 0.75 · wp], in Subfig. 3(b) near t = 2001.

(a) Optimal portfolio value J∗(wp, v, t). (b) Optimal consumption c∗(wp, v, t) .

Figure 3: Optimal portfolio value J∗(wp, v, t) and optimal consumption c∗(wp, v, t) at wp = 55 for
(v, t) ∈ ×[vmin, 1.0]× [1999.0, 2001.0], while c∗(wp, v, t) ∈ [0, 0.75 · wp].

The optimal portfolio stock fraction policy u∗(wp, v, t) versus v and t with the wealth fixed at
wp = 55 is presented in Fig. 4. Quite different from behavior of the optimal value and consumption
displayed in subfigures of the prior Fig. 3, the stock fraction u∗(wp, v, t) is strongly dependent on
the variance v and shows more influence on the time-dependence of the market parameters. Note
the fraction control constraint is active on the portfolio fraction, u∗(v, t) ∈ [−18, 12], in Fig. 4 near
small variance v = vmin > 0.

Figure 4: Optimal portfolio fraction policy u∗(v, t) for (v, t) ∈ ×[vmin, 1.0] × [1999.0, 2001.0],
while u∗(v, t) ∈ [−18, 12].
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6 Conclusions
The optimal portfolio and consumption problem has been extended to stochastic-volatility, jump-
diffusion environments with the log-double-uniform jump-amplitude distribution.

The practical jump-wealth, positivity condition has been reconfirmed with extra benefits due
to the natural stock-fraction jump constraints. The constraints help avoid stochastic-volatility and
CRRA power exponent singularities in the wealth solution. For all practical purposes the wealth
is not just non-negative but also remains positive due to the geometric nature of the wealth process
and the constraint singularity protection if the initial wealth is positive.

We also revalidated that jump-amplitude distributions with compact support are much less
restricted on short-selling and borrowing compared to the infinite support case in the SVJD optimal
portfolio and consumption problem.

Our prior jump-diffusion optimal portfolio problem computations have been converted to pro-
duce SVJD computations. The computational result show that the CRRA reduced canonical op-
timal portfolio problem is strongly drift-dominated for sample market parameter values over the
diffusion terms, so at least first order drift-upwinding is essential for stable Bernoulli PDE com-
putations. The theory and results also confirm that there are significant effects on variation of
instantaneous stock fraction policies due to time-dependence of interest and discount rates, along
with small variance sensitivities for SVJD optimal portfolio and consumption models.

In an appendix, there are some new, practical results for the positivity of the variance for the
Heston [30] model, an implicit perfect square solution in the general parameter case and an explicit
form for the case where the speed of reversion times the level of reversion is one quarter of the
square of the volatility of the volatility coefficient.
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A Optimal wealth trajectory without bankruptcy
To check whether the no bankruptcy condition W (t) ≥ 0 holds, the optimal controls for the
stock-fraction (4.4) and consumption (4.3) are substituted into the wealth SDE (2.6) obtaining a
geometric jump-diffusion,

dW ∗(t) = W ∗(t)
(
µ∗W (V (t), t)dt +

√
V (t)dGs(t) +

(
eQ − 1

)
dPs(t; Q)

)
, (A.1)

coupled with the stochastic volatility SDE (2.4), where

µ∗W (v, t) ≡ r(t) + (µs(t)− r(t))u∗0(v, t)− c∗0(v, t).

An exponential form of the solution for (A.1) can be found by (1) using the standard logarithmic
transform L(t) = ln(W ∗(t)) for the geometric jump-diffusion (A.1), (2) using the correspond-
ing SVJD extension of Itô’s stochastic chain rule to remove W ∗(t) from the right-hand-side (see
Hanson [21]), and (3) integrating the simplified SDE, yielding

W ∗(t) = W0 exp

(∫ t

o

(
µ∗L(V (τ), τ)dτ +

√
V (τ)dGs(τ) + QdPs(τ ; Q)

))
, (A.2)

where
µ∗L(v, t) ≡ µ∗W (v, t)− v/2.

Assumptions A.0: All relevant coefficients, i.e.,

S0, µs(t), λs(t), νs(v, t, q), a(v, t), b(v, t), p1(v, t), p2(v, t), V0, κv(t), θv(t), σv(t),
B0(t), r(t), W0, Us(t), C(t), C

(max)
0 (v, t), β(t), U

(max)
0 (v, t), U

(min)
0 (v, t) and γ,

are assumed to be bounded.

In particular, the practical bounds on the Gaussian noise are

|Gs(t)| ≤ BGt & |Gv(t)| ≤ BGt, (A.3)

for a large finite, positive constant BG and finite horizon t ≤ T .

The bounds on a(v, t), b(v, t), p1(v, t), p2(v, t) and C
(max)
0 (v, t) have already been stated. Both

U
(max)
0 (v, t) and U

(min)
0 (v, t) have been superseded by the jump forced stock-fraction control bounds

in (3.4), û
(min)
0 (v, t) and û

(max)
0 (v, t), respectively.

Since W0 > 0 has been assumed for the initial condition, we have, using (A.2) when γ < 1
and γ 6= 0, the following lemma.

Lemma A.0 Positivity of optimal wealth trajectory: Under the bounded coefficients assump-
tions and the practical bounds (A.3), then

W (t) > 0. (A.4)

Practical Remarks A.0: In particular, we assume that the Gaussian processes are for all
practical purposes bounded, i.e., |Gs(t)| ≤ BGt and |Gv(t)| ≤ BGt, since in real markets the
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noise is bounded and the usual assumption of unbounded noise is only an artifact of the ideal
mathematical models of Wiener or Brownian motion. The bounds (A.3) mean that the Gaussian
extremes of very small probability are not realistic. It does not make sense for practical purposes
to spend time examining the importance, if any, of the most extreme deviations with the most small
probabilities. There are also the circuit breakers [3] of the NYSE that prevent, in installments, the
most extreme market changes like those in 1987. Again, note that the reasons for and consequently
the results in (A.4) are quite different from those in [37] and [52] for pure diffusions. Real markets
have extremes, but they are bounded extremes.

Thus, Lemma A.0 shows there is no possibility of bankruptcy or zero wealth starting from
positive initial wealth for the CRRA power utility with γ < 1, including γ = 0.

B Verification of nonnegativity of stochastic variance
Note that there could be a potential serious problem with the optimal stock-fraction control u∗0(v, t)
due to its dependence on the regular stock-fraction control (4.4),

u(reg)(w, v, t) ==
1

(1− γ)v

(
µs(t)− r(t) + ρσvv(J0,v/J0)(v, t) + λs(t)I1

(
u

(reg)
0 (v, t), v, t

))
,

which is singular when either v → 0+ or γ → 1−, but the finite bounds on u∗0(v, t) provide a cutoff
for these singularities. In addition, the practical Gaussian bounds (A.3) imply that 0 ≤ V (t) ≤ BV ,
for some positive constant BV and for all practical purposes.

On the other hand, the nonnegativity of the stochastic variance, V (t) ≥ 0, was settled long ago
for the square-root diffusion model by Feller [17] using very elaborate Laplace transform tech-
niques on the corresponding Kolmogorov forward equation to obtain the noncentral chi-squared
distribution for the process. He has given the boundary condition classification for the process in
terms of the parameters, which helps to determine which values would guarantee positivity preser-
vation in the range of nonnegativity preserving values. So, in the time-independent form notation
here, positivity is assured if 1 < 2κvθv/σ

2
v with zero boundary conditions in value and flux, while

if 0 < 2κvθv/σ
2
v < 1 then only nonnegativity can be assured. See Cox et al. [13], Glassman [20],

Jäckel [33], Broadie and Kaya [11], and Lord et al. [42] for other qualifications and information,
including various distribution simulation techniques.

B.1 Transformation to perfect-square form
Using the general transformation techniques in Hanson [21] with Y (t) = F (V (t), t), it is possible
to find a general perfect square solution to (2.4). Using Itô’s lemma, the following transformed
SDE is obtained,

dY (t) = F,t(V (t), t)dt + F,v(V (t), t)dV (t) +
1

2
F,vv(V (t), t)σ2

v(t)V (t)dt, (B.1)

to dt-precision. Then a simpler form is sought with volatility-independent noise term, i.e.,

dY (t) =
(

µ(0)
y (t) + µ(1)

y (t)
/√

V (t)
)

dt + σy(t)dGv(t) (B.2)
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with Y (0) = F (V0, 0), where µ
(0)
y (t), µ

(1)
y (t) and σy(t) are time-dependent coefficients to be de-

termined. Equating the coefficients of dGv(t) terms between (B.1) and (B.2), given V (t) = v ≥ 0,
leads to

F,v(v, t) =

(
σy

σv

)
(t)

1√
v
, (B.3)

and then partially integrating (B.3) yields

F (v, t) =

(
σy

σv

)
(t)
√

v + c1(t), (B.4)

which is the desired transformation with a function of integration c1(t). Additional differentiations
of (B.3) produce

F,t(v, t) =

(
σy

σv

)′
(t)
√

v + c′1(t) & F,vv(v, t) = −1

2

(
σy

σv

)
(t)v−3/2.

Terms of order v0dt imply that c′1(t) = µ
(0)
y (t), but this equates two unknown coefficients, so we

set µ
(0)
y (t) = 0 for simplicity. Equating terms of order

√
vdt and integrating imply(

2

(
σy

σv

)′
− κv

(
σy

σv

))
(t) = 0 =⇒

(
σy

σv

)
(t) =

(
σy

σv

)
(0)eκv(0, t)/2,

where

κv(τ, t) ≡
∫ t

τ

κv(y)dy.

For convenience, we set σy(0) = σv(0). For order v−1/2dt, we obtain

µ(1)
y (t) = eκv(0, t)/2

(
κvθv −

1

4
σ2

v

)
(t),

completing the coefficient determination.
Assembling these results we form the solution as follows,

Y (t) = 2eκv(0, t)/2
√

V (t),

and inverting this yields the desired nonnegativity result:

V (t) = e−κv(0, t)
(

Y (t)

2

)2

≥ 0, (B.5)

due to the perfect square form, where

Y (t) = 2
√

V0 +

∫ t

0

eκv(0, s)/2


κvθv −

1

4
σ2

v
√

V

(s)ds + (σvdGv)(s)

 . (B.6)

This is an implicit form that is singular unless the solution V (t) is bounded away from zero,
V (t) > 0. More generally it is desired that the solution is such that 1

/√
V (t) is integrable in t as

V (t) → 0+, so the singularity will be ignorable in theory.
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B.2 Proper singular limit formulation suitable for theory and computation
However, as V (t) → 0+, the validity of neglecting higher order terms in the Taylor expansion
underlying Itô’s lemma is questionable, unless the integral is treated as a singular integral and the
method of integration steps is properly specified.

First (B.5)-(B.6) are simply reformulated as

V (t) = e−κv(0, t)
(√

V0 +
1

2
Ig(t)

)2

, (B.7)

where

Ig(t) =

∫ t

0

eκv(0, s)/2


κvθv −

1

4
σ2

v
√

V

(s)ds + (σvdGv)(s)

 . (B.8)

Modifying the method of ignoring the singularity [14] to this implicit singular formulation, let

V (εv)(t) = max(V (t), εv)

where εv > 0 such that ∆t
/√

εv � 1 as some reference numerical increment ∆t → 0+ to ensure
that the time-step goes to zero faster than the cutoff singular square root denominator. Next (B.7)-
(B.8) is reformulated as a recursion using some algebra for the next time increment ∆t and the
method of integration is specified for each subsequent time step, i.e.,

V (t + ∆t) = e−∆κv(0, t) lim
εv→0+

(√
V (t) +

1

2
e−κv(0, t)/2∆I(εv)

g (t)

)2

, (B.9)

where

∆κv(0, t) ≡
∫ t+∆t

t

κv(s)ds → κv(t)∆t

as ∆t → 0+. Similarly, a scaled increment of an integral is defined by

e−κv(0, t)/2∆I(εv)(t) ≡
∫ t+∆t

t

e−κv(s, t)/2


κvθv −

1

4
σ2

v
√

V (εv)

(s)ds + (σvdGv)(s)


→


κvθv −

1

4
σ2

v√
V

(t)dt + (σvdGv)(t)

 ,

(B.10)

such that

∆t/
√

εv → 0+ as ∆t → 0+. (B.11)

An Itô-Taylor expansion to precision dt or small ∆t confirms that (B.9)-(B.10) yields the Hes-
ton [30] model, proving solution consistency. Thus, the square in (B.9) formally justifies the non-
negativity of the variance and the volatility of the Heston [30] model, for a proper computational
nonnegativity-preserving procedure.
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However, for the general validity of applications of the chain rule and simulations, the ∆t-
variance limit (B.11) required for (B.7)-(B.8) implies that the non-negative variance condition is
questionable in both theory and simulation.

Note that the zero volatility limit is not a serious concern since the control constraints also
provide a cutoff for the volatility. Further, the logarithmic transformation used for the geomet-
ric Brownian motion leads to singular derivatives of all orders, but the singularities are exactly
cancelled out by the linear property of the underlying SDE.

B.3 Nonsingular, explicit, exact solution
In any event, the singular term in (B.7)-(B.8) vanishes in the special parameter case, such that

κv(t)θv(t) =
1

4
σ2

v(t), ∀ t.

Hence, we obtain a nonnegative, nonsingular exact solution

V (t) = e−κv(0, t)
(√

V0 + 0.5

∫ t

0

eκv(0, s)/2(σvdGv)(s)

)2

, (B.12)

with the numerical form corresponding to (B.9)-(B.10),

V (t + ∆t) = e−∆κv(0, t)
(√

V (t) +
1

2

∫ t+∆t

t

e−κv(s, t)/2(σvdGv)(s)

)2

. (B.13)

Similarly, the chain rule for the integrating factor form exp(κv(0, t))V (t) for the stochastic
volatility (2.4) leads to a somewhat simpler integrated form,

V (t) = max

(
V (det)(t) +

∫ t

0

e−κv(s, t)
(
σv

√
V dGv

)
(s), 0

)
, (B.14)

using the maximum with respect to zero to remove spurious numerical simulations in absence of a
perfect square form. In (B.14),

V (det)(t) = V0e
−κv(0, t) + θv(t)

(
1− e−κv(0, t)

)
is the deterministic part of V (t). Note that there is only a linear change of dependent variable
according to the stochastic chain rule [21] using the transformation Y (t) = exp(κv(0, t))V (t).
So the deterministic part is easily separated out from the square-root dependence and replaces the
mean-reverting drift term. The V (det)(t) will be positive for positive parameters.

However, as Lord et al. [42] point out, a sufficiently accurate simulation scheme and a large
number of simulation nodes are required so that the right-hand side of (2.4) generates nonnegative
values. Nonnegative values using the stochastic Euler simulation have been verified for Hes-
ton’s [30] constant risk-neutralized parameter values (κv = 2.00, θv = 0.01, σv = 0.10) as long as
the scaled number of nodes per unit time N/(κvtf ) > 100.

Hence, since the variance by definition for real processes cannot be negative, practical con-
siderations suggest replacing occurrences of V (t) by max(V (t), ε), where ε is some numerically
small, positive quantity for numerical purposes to account for the appearances of negative variance
values.
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