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Abstract

This paper treats jump-diffusion processes in continuous time, with
emphasis on the jump-amplitude distributions, developing more ap-
propriate models using parameter estimation for the market in one
phase and then applying the resulting model to a stochastic optimal
portfolio application in a second phase. The new developments are
the use of uniform jump-amplitude distributions and time-varying
market parameters, introducing more realism into the application
model, a Log-Normal-Diffusion, Log-Uniform-Jump model.

1. Introduction

The empirical distribution of daily log-returns for actual financial in-
struments differ in many ways from the ideal log-normal diffusion
process as assumed in the Black-Scholes model [1] and other finan-
cial models. The log-returns are the log-differences between two
successive trading days, representing the logarithm of the relative
size. The most significant difference is that actual log-returns ex-
hibit occasional large jumps in value, whereas the diffusion process
in Black-Scholes [1] is continuous. Another difference is that the
empirical log-returns are usually negatively skewed, since the nega-
tive jumps or crashes are likely to be larger or more numerous than
the positive jumps for many instruments, whereas the normal distri-
bution associated with the diffusion process is symmetric. Thus, the
coefficient of skew [2] is negative, �3 �M3=(M2)

1:5
< 0, where

M2 and M3 are the 2nd and 3rd central moments of the log-return
distribution here. A third difference is that the empirical distribution
is usually leptokurtic since the coefficient of kurtosis [2] satisfies
�4 �M4=(M2)

2
> 3, where the value 3 is the normal distribution

kurtosis value and M4 is the fourth central moment. Qualitatively,
this means that the tails are fatter than a normal with the same mean
and standard deviation, compensated by a distribution that is also
more slender about the mode (local maximum). A fourth difference
is that the market exhibits time-dependence in the distributions of
log-returns, so that the associated parameters are time-dependent.

In 1976, Merton [10, Chap. 9] introduced Poisson jumps with inde-
pendent identically distributed random jump-amplitudes with fixed
mean and variances into the Black-Scholes model, but the ability to
hedge the volatilities was not very satisfactory. Kou [9] uses a jump-
diffusion model with a double exponential jump-amplitude distribu-
tion with mean � and variance 2�, having leptokurtic and negative
skewness properties, although it is difficult to see the empirical jus-
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tification for this distribution.

Prior to the Black-Scholes model, Merton [10, Chap. 5-6] analyzed
the optimal consumption and investment portfolio with either geo-
metric Brownian motion or Poisson noise and examined an example
of constant risk-aversion utility having explicit solutions. In [10,
Chap. 4], Merton also examined constant risk-aversion problems.

Hanson and Westman [5] reformulated an important external events
model of Rishel [11] solely in terms of stochastic differential equa-
tions and applied it to the computation of the optimal portfolio and
consumption policies problem for a portfolio of stocks and a bond.
The stock prices depend on both scheduled and unscheduled jump
external events. The computations were illustrated with a simple log-
bi-discrete jump-amplitude model, either negative or positive jumps,
such that both stochastic and quasi-deterministic jump magnitudes
were estimated. In [6], they constructed a jump-diffusion model with
marked Poisson jumps that had a log-normally distributed jump-
amplitude and rigorously derived the density function for the log-
normal-diffusion and log-normal-jump stock price log-return model.
In [7], this financial model is applied to the optimal portfolio and
consumption problem for a portfolio of stocks and bonds including
computational results.

In this paper, the log-normal-diffusion, log-uniform-jump problem
is treated. In Section 2, the jump-diffusion density is rigorously de-
rived using a modification of our prior theorem [6]. In Section 3, the
time dependent parameters for this log-return process are estimated
using this theoretical density and the S&P500 Index daily closing
data for the prior decade. In Section 4, the optimal portfolio and
consumption policy application is presented and then solved. Con-
cluding remarks are given in Section 5.

2. Log-Return Density for Log-Normal-Diffusion,
Log-Uniform Jump

Let S(t) be the price of a single financial instrument, such as a
stock or mutual fund, that is governed by a Markov, geometric jump-
diffusion stochastic differential equation (SDE) with time-dependent
coefficients,

dS(t) = S(t) [�d(t)dt+ �d(t)dZ(t) + J(t)dP (t)] ; (1)

with S(0) = S0; S(t) > 0, where �d(t) is the appreciation return
rate at time t, �d(t) is the diffusive volatility,Z(t) is is a continuous,
one-dimensional Gaussian process, P (t) is a discontinuous, one-
dimensional standard Poisson process with jump rate �(t), and asso-
ciated jump-amplitude J(t) with log-return mean �j(t) and variance
�
2
j
(t). The stochastic processes Z(t) and P (t) are assumed to be

Markov and pairwise independent. The jump-amplitude J(t), given
that a Poisson jump in time occurs, is also independently distributed.
The stock price SDE (1) is similar in our prior work [6, 7], except
that time-dependent coefficients introduce more realism here.



The continuous, differential diffusion process dZ(t) is standard,
so has zero mean and dt variance. The symbolic notation for
the discontinuous space-time jump process, J(t)dP (t), is better
defined in terms of the Poisson random measure, P(dt; dq), by
the stochastic integral, J(t)dP (t) =

R
Q
bJ(t; q)P(dt; dq), where

Q = q is the Poisson spatial mark variable for the jump ampli-
tude process, and bJ(t; q) is the kernel of the Poisson operator
J(t), such that �1 < bJ(t; q) <1 so that a single jump does not
make the underlying non-positive. The infinitesimal moments of
the jump process are E[J(t)dP (t)] = �(t)dt

R
Q
bJ(t; q)�Q(q; t)dq

and Var[J(t)dP (t)] = �(t)dt
R
Q
bJ2(t; q)�Q(q; t)dq, neglecting

O
2(dt) here, where �Q(q; t) is the Poisson amplitude mark den-

sity. The differential Poisson process is a counting process with
the probability of the jump count given by the usual Poisson distri-
bution, p

k
(�(t)dt) = exp(��(t)dt)(�(t)dt)k=k!, k = 0; 1; 2; : : :,

with parameter �(t)dt > 0.

Since the stock price process is geometric, the common multiplica-
tive factor of S(t) can be transformed away yielding the SDE of
the stock price log-return using the stochastic chain rule for Markov
processes in continuous time,

d[ln(S(t))] = �ld(t)dt+ �d(t)dZ(t) + ln(1 + J(t))dP (t); (2)

where �ld(t) � �d(t)� �
2
d
(t)=2 is the log-diffusion drift and

ln(1 + bJ(t; q)) the stock log-return jump-amplitude is the logarithm
of the relative post-jump-amplitude. This log-return SDE (2) will be
the model that will used for comparison to the S&P500 log-returns.
Since bJ(t; q) > �1, it is convenient to select the mark process to

be the jump-amplitude random variable, Q = ln
�
1 + bJ(t;Q)

�
, on

the mark space Q = (�1;+1). Though this is a convenient mark
selection, it implies the time-independence of the jump-amplitude,
so bJ(t;Q) = bJ0(Q) or J(t) = J0. Since market jumps are rare
and the tails are relatively flat, a reasonable approximation is uni-
form jump-amplitude distribution with density �Q(q; t) on the finite,
time-dependent mark interval [Qa(t); Qb(t)],

�Q(q; t) �
H(Q

b
(t)� q)�H(Qa(t)� q)

Q
b
(t)�Qa(t)

; (3)

where H(x) is the Heaviside, unit step function. The density
�Q(q; t) yields a mean EQ[Q] = �j(t) = (Qb(t) +Qa(t))=2 and
variance VarQ[Q] = �

2
j
(t) = (Qb(t)�Qa(t))

2
=12, which define

the basic log-return jump amplitude moments. It is assumed that
Qa(t) < 0 < Qb(t), to make sure that both negative and positive
jumps are represented, which was a problem for the log-normal
jump-amplitude distribution in [7]. The uniform distribution is
treated as time-dependent in this paper, so Qa(t), Qb(t), �j(t) and
�
2
j
(t) all depend on t. The difficulty in separating out the small

jumps about the mode or maximum of real market distributions is
explained by the fact that a diffusion approximation for small marks
can be used for the jump process that will be indistinguishable from
the continuous Gaussian process anyway.

The basic moments of the stock log-return differential are

M
(jd)

1 � E[d[ln(S(t))]] = (�ld(t) + �(t)�j(t))dt; (4)

M
(jd)

2 � Var[d[ln(S(t))]]

=
�
�
2
d
(t) + �(t)

�
�
2
j
(t)(1 + �(t)dt)�2

j
(t)
��
dt;

(5)

where the O2(dt) term has been retained in the variance, rather than
being neglected as usual, since the discrete return time, dt = �t, the

daily fraction of one trading year (about 250 days), will be small, but
not negligible.

The log-normal-diffusion, log-uniform-jump density can be found
by basic probabilistic methods following a slight modification for
time-dependent coefficients of constant coefficient theorem found
our paper [6],

Theorem: The probability density for the log-normal-diffusion,
log-uniform-jump amplitude log-return differential d[ln(S(t))]
specified in the SDE (2) with time-dependent coefficients is given
by

�
d ln(S(t))(x) = p0(�(t)dt)�

(n)
�
x;�

ld
(t)dt; �2

d
(t)dt

�
+
P1

k=1

pk(�(t)dt)

k(Qb(t)�Qa(t))

�

h
�(n)

�
kQb(t)� x+ �ld(t)dt; 0; �

2
d
(t)dt

�
� �(n)

�
kQa(t)� x+ �

ld
(t)dt; 0; �2

d
(t)dt

�i
;

(6)

�1 < z < +1, where p
k
(�(t)dt) is the Poisson distribution and

the normal distribution with mean �
ld
dtr and variance �2

d
dt is

�(n)(x;�
ld
dt; �

2
d
dt) =

Z
x

�1

�
(n)(y;�

ld
dt; �

2
d
dt)dy

associated with d ln(S(t)), the diffusion part of the log-return pro-
cess,

�
�lddt+�ddZ(t)

(x) = �
(n)(x;�ld(t)dt; �

2
d
(t)dt) :

The proof, which is only briefly sketched here, follows from the den-
sity of a triad of independent random variables, � + � � � given the
densities of the three component processes �, �, and �. Here, (1)
� = �ld(t)dt+ �d(t)dZ(t) is the log-normal plus log-drift diffu-
sion process, (2) � = Q = ln(1 + bJ0(Q)) is the log-uniform jump-
amplitude, and (3) � = dP (t) is the differential Poisson process.
The density of a sum of independent random variables, as in the
sum operation of � + (� � �), is very well-known and is given by a
convolution of densities ��+��(z) =

R +1
�1

��(z � y)���(y)dy (see
Feller [3]). However, the distribution of the product of two random
variables � � � is not so well-known [6] and has the density,

�
��
(x) = p0(�(t)dt)�(x)

+
P1

k=1

pk(�(t)dt)[H(Qb(t)�x=k)�H(Qa(t)�x=k)]

k(Qb(t)�Qa(t))
;

(7)

for the log-uniform-jump process. The probabilistic mass at x = 0,
represented by the Dirac �(x) and corresponds to the zero jump
event case. Finally, applying the convolution formula for density of
the sum � + (��) leads to the density for the random variable triad
� + �� given in (6) of the theorem.

Using the log-normal jump-diffusion log-return density in (6), the
third and fourth central moments with finite return time dt = �t are
computed, for later use for skew and kurtosis coefficients, respec-
tively, yielding the jump-diffusion higher moments [6],

M
(jd)

3 � E

��
d[ln(S(t))]�M

(jd)

1

�3�
= 6�j(t)(�(t)dt)

2
�
2
j
(t) + (3�j(t)�

2
j
(t) + �

3
j
(t))�(t)dt ;

(8)

M
(jd)

4 � E

��
d[ln(S(t))]�M

(jd)

1

�4�
= 3(�2

j
(t))2(�(t)dt)4 + (6�2

j
(t)�2

j
(t)

+18(�2
j
(t))2)(�(t)dt)3 + (3�4

j
(t) + 30�2

j
(t)�2

j
(t)

+21(�2
j
(t))2 + 6�2

j
(t)dt�2

j
(t))(�(t)dt)2

+(�4
j
(t) + 6�2

j
(t)dt�2

j
(t) + 6�2

j
(t)�2

j
(t)

+6�2
j
(t)�2

j
(t)dt+ 3(�2

j
(t))2)�dt+ 3(�2

j
(t))2dt2 :

(9)



3. Jump-Diffusion Parameter Estimation

Given the log-normal-diffusion, log-uniform-jump density (6),
it is necessary to fit this theoretical model to realistic empirical
data to estimate the parameters of the log-return model (2) for
d[ln(S(t))]. For realistic empirical data, the daily closings of
the S&P500 Index during the decade from 1992 to 2001 are
used from data available on-line [13]. The data consists of
n
(sp) = 2522 daily closings. The S&P500 data can be viewed

as an example of one large mutual fund rather than a single
stock. The data has been transformed into the discrete analog of
the continuous log-return, i.e., into changes in the natural loga-
rithm of the index closings, �[ln(SPi)] � ln(SPi+1)� ln(SPi)
for i = 1; : : : ; n(sp) � 1 daily closing pairs. For the decade,
the mean is M

(sp)

1 ' 4:015 � 10�4 and the variance is
M

(sp)

2 ' 9:874 � 10�5 , the coefficient of skewness is
�
(sp)

3 �M
(sp)

3 =(M
(sp)

2 )1:5 ' �0:2913 < 0, demonstrating
the typical negative skewness property, and the coefficient of
kurtosis is �

(sp)

4 �M
(sp)

4 =(M
(sp)

2 )2 ' 7:804 > 3, demonstrating
the typical leptokurtic behavior of many real markets.

The S&P500 log-returns, �[ln(SPi)] for i = 1 : n(sp) decade data
points, are partitioned into 10 yearly data sets, �[ln(SP

(spy)

jy ;k
)]

for k = 1 : n
(sp)

y;jy
yearly data points for jy = 1 : 10 years, whereP10

jy=1
n
(sp)

y;jy
= n

(sp). For each of these yearly sets, the pa-
rameter estimation objective is to find the least sum of squares
of the deviation between the empirical S&P500 log-return his-
tograms for the year and the analogous theoretical log-normal-
diffusion, log-uniform-jump distribution histogram based upon the
same bin structure. Since jumps are rare, 100 centered bins within
the log-return domain [xa; xb] were used. Since the most ex-
treme log-returns are the same as the most extreme jumps, the
log-return domain is selected to coincide with the time-dependent
uniform distribution domain, i.e., [xa(t); xb(t)] = [Qa(t); Qb(t)],
both dimensionless, where Qa(t) = min

k
(�[ln(SP

(spy)

jy ;k
)]) and

Q
b
(t) = max

k
(�[ln(SP

(spy)

jy ;k
)]) with t = Tjy = Yearjy + 0:5,

say, assigning the yearly value to the mid-year with steps of
dt = �Tjy , for each jy = 1 : 10. For a given t = Tjy year,
fixed [Qa(t);Qb

(t)] implies fixed uniform distribution parameters
�j(t) = (Qb(t) +Qa(t))=2 and �

2
j
(t) = (Qb(t)�Qa(t))

2
=12.

However, the Poisson jump rate �(t) is still a free parameter for
the jump component of the log-return process. Further to keep the
number of free parameters as small as practical, we require that the
mean and variances of the yearly log-returns be the same for both
empirical and theoretical distributions, i.e.,

M
(spy)

1;jy
� Mean

n

(sp)
y;jy

k=1

h
�
h
ln
�
SP

(spy)

jy ;k

�ii
= M

(jdy)

1;jy

using (4) and

M
(spy)

2;jy
� Var

n

(sp)
y;jy

k=1

h
�
h
ln
�
SP

(spy)

jy ;k

�ii
= M

(jdy)

2;jy

using (5), for each jy = 1 : 10 years. This, in turn, implies con-
straints on the log-diffusion parameters,

�
ld;jy =

�
M

(spy)

1;jy
� (� dt�j)jy

�
=�Tjy ; (10)

�
2
d;jy

=
�
M

(spy)

2;jy
� (�dt((1 + �dt)�2

j
+ �

2
j
)jy )

�
=�Tjy ; (11)

with �
2
d;jy

> 0 for each jy = 1 : 10 years. Of the six parameters
f�ld;jy ; �

2
d;jy

; �j;jy ; �
2
j;jy

; �jy ;�Tjyg, needed for each year jy to

specify the jump-diffusion log-return distribution, only the jump rate
�jy needs to be estimated by least squares. The time step dt = �Tjy

is the reciprocal of the number of trading days per year, close to 250
days, but varies a little for jy = 1 : 10 and has values lying in the
range, [0.003936, 0.004050], used here for parameter estimation.

Thus, we have a one dimensional global minimization problem
for a highly complex discretized jump-diffusion density function
(2). The analytical complexity indicates that a general global
optimization method that does not require derivatives would be
useful. For this purpose, such a method, Golden Super Finder
(GSF) [8], was developed for [7] and implemented in MATLABTM ,
since simple techniques are desirable in financial engineering. The
GSF method is an extensive modification to the Golden Section
Search method [4], extended to multi-dimensions and allowing
search beyond the initial hyper-cube domain by including the
endpoints in the local optimization test with the two golden section
interior points per dimension, moving rather than shrinking the
hypercube when the local optimum is at an edge or corner. The
method, as a general method, is slow, but systematically moves
the search until the uni-modal optimum is found at a interior point
and then approaches the optimum if within the original search
bounds. Additional constraints can be added to the objective
function, such as (10,11). If the diffusion coefficient vanishes,
�
2
d
! 0+, then (11) implies a maximum jump count constraint,

max[� � dt] = 0:5(
p
((�2

j
+ �

2
j
)2 + 4�2

j
�M2)� (�2

j
+ �

2
j
))=�2

j
.

An additional compatibility constraint, �j(t) > 0, does not need
enforcement as long as Qa(t) < Qb(t) and is not violated here.

The jump-diffusion estimated parameter results in this log-normal-
diffusion, log-uniform-jump amplitude case are summarized in Ta-
ble 1. The jump rate estimates and their variability are summarized
in Table 2. A hybrid value-position stopping criterion with a toler-
ance, tol = 5:e–3 was used, and all yearly iterations converged in at
most 13 iterations each, out of a maximum limit of 20, except for the
year 1999� which exhibited little evidence of the long and flat tails
of other years, with a limiting behavior indicating a zero jump rate
value, �8 ' 2:52e � 4 ' 0:0 for Year8 = 1999� when jy = 8.

Table 1: Summary of yearly coefficients for Log-Normal-
Diffusion, Log-Uniform-Jump estimated parameters by
least squares (variance of deviation between S&P500 and
jump-diffusion histograms) with respect to the variable
�dt given dt = �Tjy and constraints mentioned in the
text.

Yearjy �d;jy �d;jy �j;jy �j;jy �jy

1992 4.1e-2 7.3e-2 -1.6e-3 9.9e-3 36.
1993 6.7e-2 7.0e-2 -2.6e-3 1.3e-2 15.
1994 -1.5e-2 7.6e-2 -9.1e-4 1.3e-2 22.
1995 3.0e-1 5.8e-2 1.5e-3 9.9e-3 25.
1996 1.7e-1 9.7e-2 -6.0e-3 1.5e-2 17.
1997 2.8e-1 1.5e-1 -1.1e-2 3.5e-2 7.1
1998 2.2e-1 1.5e-1 -1.0e-2 3.5e-2 14.
1999� 1.9e-1 1.8e-1 3.1e-3 1.8e-2 2.5e-4�

2000 -1.2e-1 1.9e-1 -6.8e-3 3.1e-2 14.
2001 -1.1e-1 1.8e-1 -7.9e-4 2.9e-2 15.

In Figure 1 a sample comparison can be made of the empirical
S&P500 histogram on the left for the relatively noisy year of 2000
with the corresponding theoretical jump-diffusion histogram on the
right using the fitted, optimized parameters and the same number of



Table 2: Summary of final optimal search yearly positions and val-
ues, including � �dt maximal constraint and final iteration
count. The Var[Deviation] are the least squares approx-
imation at stopping. For 1999� , the stopping was due to
reaching the maximum number of 20 iterations.

Yearjy (�dt)jy max[�dt]jy Var[Dev] max[Iter]

1992 1.4e-1 2.9e-1 2.6 12
1993 5.9e-2 1.6e-1 1.9 12
1994 8.8e-2 2.0e-1 2.4 12
1995 10.e-2 2.0e-1 2.9 11
1996 6.8e-2 1.9e-1 2.8 12
1997 2.8e-2 9.0e-2 2.8 13
1998 5.7e-2 1.1e-1 1.4 12
1999� 1.0e-6� 2.9e-1 2.4 20�

2000 5.5e-2 1.7e-1 3.2 13
2001 6.2e-2 1.9e-1 3.2 12

centered bins on the domain. The jump-diffusion histogram is a very
idealized version of the empirical distribution, with the asymmetry
of the tails clearly illustrated, noting that the years 1997-present are
more noisier than the quieter years from 1992-1995. The histogram
for the yearly empirical data on the left side of Fig. 1 suggests that
it may take more than a year to develop a more typical market log-
return distribution.
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Figure 1: Comparison for the relatively noisier year 2000 of the
empirical S&P500 histogram on the left with the corre-
sponding fitted theoretical jump-diffusion histogram on
the right, using 100 bins. Note that the scale on the left
is 56% larger than on the right since the left figure has a
unusually high peak with a count of 14 while the figure
on the right has a peak count of less than 9.

For reference, the summaries of the coefficients of skewness and
kurtosis are given in Table 3 for both the estimated theoretical jump-
diffusion model and the empirical S&P500 data to facilitate compar-
ison. Note that the jump-diffusion kurtosis values �(jd)4 are mostly
double the empirical values except in 1997 and the nearly normal
or non-typical case in 1999�. The S&P500 value �

(sp)

4 ' 2:85,
being platykurtosis since �4 < 3, according to [2], confirming the
non-typical results of the parameter estimation procedure for 1999� .
The 1992 year is also nearly neutral in kurtosis being close to the
normal value of three. The discrepancy between the estimated the-
oretical and observed data for kurtosis is likely due to the relative
smallness of the yearly sample as well as the bin size and fixed the
yearly uniform domain. Further, the concept that the market data
is usually leptokurtic apparently refers to long term data and not to
shorter term data.

The main purpose of this parameter estimation has been to have an
estimate of the parameter time-dependence. Hence, we used the

Table 3: Summary of yearly coefficients of skewness, �3, and kur-
tosis, �4, for both the estimated theoretical including � �dt
maximal constraint and jump–diffusion (superscript (jd))
model and empirical S&P500 (superscript (sp)) decade
data.

Yearjy �
(jd)

3;jy
�
(sp)

3;jy
�
(jd)

4;jy
�
(sp)

4;jy

1992 -3.9e-1 5.9e-2 8.9 3.2
1993 -5.1e-1 -1.8e-1 10. 5.4
1994 -1.9e-1 -3.0e-1 10. 4.3
1995 4.4e-1 -8.1e-2 11. 4.0
1996 -7.6e-1 -6.0e-1 8.7 4.7
1997 -7.9e-1 -6.9e-1 13. 9.5
1998 -1.2e+0 -6.2e-1 18. 7.7
1999� 2.1e-6 6.8e-2 3.0� 2.9
2000 -4.3e-1 -1.4e-2 8.5 4.3
2001 -5.6e-2 3.1e-2 8.3 4.5

polynomial fitting commands, polyfit and polyval of MATLABTM to
fit the jump-diffusion parameters in time using the better-posed stan-
dardized variables for middle year variables centered about the mean
year and relative to the standard deviation of the decade of years,
i.e., in terms of �s = (Yearjy �Mean[Year])=StdDev[Year].
The quadratic polynomial fitting seems to be somewhat better
judging from the standard deviation of the parameter value from the
polynomial model value.

4. Application to Optimal Portfolio and Consumption
Policies

Consider a portfolio consisting of a riskless asset, called a bond,
with price B(t) dollars at time t years, and a risky asset, called a
stock, with price S(t) at time t. Let the fractions of instantaneous
portfolio change be U0(t) for the bond and U1(t) for the stock, so
that the total satisfies U0(t) + U1(t) = 1. The bond price process is
deterministic exponential,

dB(t) = r(t)B(t)dt ; B(0) = B0 : (12)

where r(t) is the bond rate of interest at time t. The stock price S(t)
has been given in (1). The portfolio wealth process changes due to
changes in the portfolio fractions less the instantaneous consumption
of wealth C(t)dt,

dW (t) = W (t) [r(t)dt+ U1(t) f(�d(t)� r(t))dt

+�d(t)dZ(t) + J0dP (t)g]� C(t)dt ;
(13)

such that W (t) � 0 and that the consumption rate is constrained
relative to wealth 0 � C(t) � C

(0)
maxW (t), the stock fraction is

bounded by fixed constants, U(0)

min � U1(t) � U
(0)
max, so borrowing

and short-selling is permissible, and U0(t) = 1� U1(t) has been
eliminated [7].

The investor’s portfolio objective is to maximize the conditional,
expected current value of the discounted utility Uf(w) of terminal
wealth at the end of the investment terminal time T and the dis-
counted utility of instantaneous consumption U(c), i.e.,

v
�(t; w) = maxfu;cg[t;T )

h
E

h
e
��(T�t)

Uf (W (T ))

+
R
T

t

e
��(��t)

U(C(� )) d�
���Cii ;

(14)

conditioned on the state-control set C = fW (t) = w;U1(t) =
u; C(t) = cg, where 0 � t < T , and �(t) is the discount rate at



time t. Thus, the instantaneous consumption c = C(t) and stock
portfolio fraction u = U1(t) serve as control variables, while the
wealth w = W (t) is the single state variable. Eq. (14) is subject to
zero wealth absorbing natural boundary condition (avoids arbitrage
[10, Chap. 6]),

v
�(t; 0+) = Uf(0)e

��(T�t) + U(0) (1�e
��(T�t))

�(T�t)
(15)

and since the consumption must be zero when the wealth is zero.
The terminal wealth condition v�(T; w) = U

f
(w), must also be sat-

isfied. Assuming the v�(t; w) is continuously differentiable in t and
twice continuously differentiable in w, then the stochastic dynamic
programming equation (see [7]) follows from an application of the
(Itô) stochastic chain rule to the principle of optimality,

0 = v
�
t
(t; w)� �(t)v�(t; w) + U(c�(t; w))

+ [(r(t) + (�
d
(t)� r(t))u�(t; w))w

�c
�(t; w)] v�

w
(t; w) + 1

2
�
2
d
(t)(u�)2(t; w)w2

v
�
ww

(t; w)

+ �(t)

Qb(t)�Qa(t)

R
Qb(t)

Qa(t)

�

h
v
�(t; (1 + bJ0(q)u�(t; w))w)� v

�(t; w)
i
dq ;

(16)

where u
� = u

�(t; w) 2 [U
(0)

min; U
(0)
max] and c

� = c
�(t; w) 2

[0; C
(0)
maxw] are the optimal controls if they exist, while v�

w
(t; w) and

v
�
ww

(t; w) are the partial derivatives with respect to wealth w when
0 � t < T . Non-negativity of wealth implies an additional consis-
tency condition for the control since the jump in wealth argument
(1 + bJ0(q)u�)w requires 1 + bJ0(q)u � 0 on Qa(t) � q � Qb(t)

with bJ0(q) = e
q

� 1, then �mint[1=(e
Qb(t) � 1)] � u �

mint[1=(1 � e
Qa(t))] is required, taking the worst case scenario

to avoid the jump that wipes out the investor’s wealth. For nega-
tive jumps, Qa(t) 2 [�0:7113;�0:01874] for the S&P500 decade
data, so mint[Qa(t)] = �0:07113, suggesting that we take U(0)

max '

10 < 1=(1� exp(mint[Qa(t)])) ' 14:57, say. For positive jumps,
Qb(t) 2 [0:01543; 0:04990], so maxt[Qb(t)] = 0:04990, sug-
gesting that we take U

(0)

min ' �12 > 1=(exp(maxt[Qb(t)])) '
�19:54, say. In absence of control constraints, then the maximum
controls are the regular controls ureg(t; w) and creg(t; w), which are
given implicitly, provided they are attainable and there is sufficient
differentiability in c and u, by the dual critical conditions,

U
0(creg(t; w)) = v

�
w
(t; w) ; (17)

�
2
d
(t)w2

v
�
ww

(t; w)ureg(t; w) =

�(�d(t)� r(t))wv�
w
(t; w)

�
�(t)w

Qb(t)�Qa(t)

R
Qb(t)

Qa(t)
bJ0(q)v�w(t; (1

+ bJ0(q)ureg(t; w))w) dq ;

(18)

for the optimal consumption and portfolio policies with respect to
the terminal wealth and instantaneous consumption utilities (14).
Note that (17-18) define the set of regular controls implicitly.

Assuming the investor is risk adverse, the utilities will be the Con-
stant Relative Risk-Aversion (CRRA) power utilities [10, 5], with
the same power for both wealth and consumption,

U(x) = Uf (x) = x


= ; x � 0 ; 0 <  < 1 : (19)

The CRRA power utilities for the optimal consumption and portfo-
lio problem lead to a canonical reduction of the stochastic dynamic
programming PDE problem to a simpler ODE problem in time, by
the separation of wealth and time dependence,

v
�(t; w) = U(w)v0(t); (20)

where only the time function v0(t) is to be determined. The regular
consumption control is a linear function of the wealth,

creg(t; w) � w � c
(0)
reg(t) = w=v

1=(1�)
0 (t); (21)

using (17) and U0(x) = x
�1 using (19). The regular stock fraction

u is a wealth independent control, but is given in implicit form:

ureg(t; w) = u
(0)
reg (t)

= 1

(1�)�2
d
(t)

h
�
d
(t)� r(t) + �(t)I1

�
u
(0)
reg (t)

�i
;

(22)

I1(u) =
1

Qb(t)�Qa(t)

R
Qb(t)

Qa(t)
bJ0(q)�1 + bJ0(q)u��1

dq;

The wealth independent property of the regular stock fraction is
essential for the separability of the optimal value function (20).
Since (22) only defines u

(0)
reg (t) implicitly in fixed point form,

u
(0)
reg (t) must be found by an iteration such as Newton’s method,

while the our Gauss-Statistics quadrature [12] can be used for jump
integrals (see [7]). The optimal controls, when there are con-
straints, are given in piecewise form as c

�(t; w)=w = c
�
0(t) =

max[min[c
(0)
reg (t); C

(0)
max]; 0], provided w > 0, and u

�(t; w) =

u
�
0(t) = max[min[u

(0)
reg (t); U

(0)
max]; U

(0)

min], is independent of w along

with u
(0)
reg (t). Substitution of the separable power solution (20) and

the regular controls (21-22) into the stochastic dynamic program-
ming equation (16), leads to an apparent Bernoulli type ODE,

0 = v
0
0(t) + (1� )

�
g1(t; u

�
0(t))v0(t) + g2(t)v


�1

0 (t)

�
; (23)

g1(t; u) �
1

1�
[��(t) +  (r(t) + u(�

d
(t)� r(t)))

�
(1�)

2
�
2
d
(t)u2 + �(t)(I2(t; u)� 1)

i
;

g2(t) �
1

1� 

" 
c
�
0(t)

c
(0)
reg (t)

!


� 

 
c
�
0(t)

c
(0)
reg(t)

!#
;

I2(t; u) �
1

Qb(t)�Qa(t)

Z
Qb(t)

Qa(t)

�
1 + bJ0(q)u� dq ;

for 0 � t < T . The coupling of v0(t) to the time dependent part of
the consumption term c

(0)
reg (t) in g2(t) and the relationship of c(0)reg(t)

to v0(t) in (21) means that the differential equation (23) is implicitly
highly nonlinear and thus (23) is only of Bernoulli type formally.
The apparent Bernoulli equation (23) can be transformed to a ap-
parent linear differential equation by using �(t) = v

1=(1�)
0 (t), to

obtain, 0 = �
0(t) + g1(t; u

�
0)�(t) + g2(t), whose general solution

can be inverse transformed to the general solution for the separated
time function,

v0(t) = �
1�(t) =

h
e
�g1(t;u

�

0(t))(T�t) (1

+
R
T

t

g2(� )e
g1(t;u

�

0(t))(T��) d�

�i1�
;

(24)

given implicitly.

In order to illustrate this stochastic application, a computational ap-
proximation of the solution is presented. The main computational
changes from the procedure used in [7] are that the jump-amplitude
distribution is now uniform and the portfolio parameters as well as
the jump-amplitude distribution are time-dependent. The parameter
time-dependence is approximated by quadratic interpolation over the
decade from 1992-2001. The terminal time is taken to be T = 11,
one year beyond this decade. For this numerical study, the economic
rates are taken to constant, so the bond interest rate is r = 5:75%



and the time-discount rate is � = 5:25%. The portfolio stock frac-
tion constraints are [U(0)

min; U
(0)
max] = [�12; 10] and the C(0)

max = 0:75

for consumption relative to wealth. In Figure 2, the optimal portfolio
stock fraction u

�(t) is displayed. The portfolio policy is not mono-
tonic in time and the minimum control constraint at U(0)

min = �12

is active during the first half year in t 2 [0; T ], while the maximum
constraint is not activated since u

�(t) remains significantly below
that constraint. The u

�(t) non-monotonic behavior is very inter-
esting compared to the constant behavior in the constant parameter
model in [7]. Likely the stock fraction grew initially due to the early
relatively quiet period, then peaked at the beginning of the fourth
year (1996 in the S&P500 data) as the market became noisier and
continued to decline due to the final relatively noisier period. In
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Figure 2: Optimal portfolio stock fraction policy u
�(t) on

t 2 [0; 11] subject to the control constraint set
[U

(0)

min; U
(0)
max] = [�12; 10].

Figure 3 on the left, the optimal, expected, discounted utility of ter-
minal wealth and cumulative consumption, v�(t; w), is displayed
in three dimensions. The behavior of v�(t; w) for fixed time t re-
flects the CRRA utility of function U(w) template of the separable
canonical solution form in (20), while the decay in time toward the
final time T = 11 and final value v�(T;w) = 0 for fixed wealth w

derives from the separable time function v0(t). The optimal value
function v

�(t; w) results, and the following optimal consumption
policy c

�(t; w) results in Fig. 3 on the right, in this computational
example are qualitatively similar to that of the time-independent pa-
rameter case in the [7] computational results.
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Figure 3: Optimal portfolio value v�(t; w) on the left and optimal
consumption policy c

�(t; w) on the right for (t; w) 2
[0; 11] � [0; 100].

5. Conclusions
The main contributions of this paper are the introduction of the
uniformly distributed jump-amplitude into the jump-diffusion
stock price model model and the development of time-dependent
in the jump-diffusion parameters. The uniformly distributed
jump-amplitude feature of the model is a reasonable assumption
for rare, large jumps, crashes or buying-frenzies, when there is
only a sparse population of isolated jumps in the tails of the market
distribution. Additional realism in the jump-diffusion model is
given by the introduction of time dependence in the distribution
and in the associated parameters. Further improvements, but with
greater computational complexity, would be to estimate the uniform
distribution limits [Qa; Qb] by fitting the theoretical distribution to
real market distributions, using longer and overlapping partitioning
of the market data to reduce the effects of small sample sizes.
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