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Abstract—Previously, we have shown that the proper
method for estimating parameters from discrete, binned stock
log returns is the multinomial maximum likelihood estimation,
and its performance is superior to the method of least squares.
Also, useful formulas have been derived for the density
for jump-diffusion distributions. Numerically, the parameter
estimation can be a large scale nonlinear optimization, but
we have successfully implemented variants of multi-dimension
direct search methods. In this paper, three jump-diffusion
models using different jump-amplitude distributions are com-
pared. These jump-amplitude distributions are the normal,
uniform and double-exponential distribution. The parameters
of all three models are fit to the Standard and Poor’s 500 log-
return market data, given the same first moment and second
central moments. Our main results are first that uniform
jump distribution has superior qualitative performance since
it produces genuine fat tails that are typical of market data,
whereas the other two have exponentially thin tails. Secondly,
the uniform distribution is quantitatively better overall as
measured by the closeness of both the skewness and kurtosis
coefficients to the data, although the double-exponential is
best on skewness while worst on kurtosis. However, the log-
normal model has a big advantage in computational costs of
parameter estimation compared with the others, while the
double-exponential is most costly due to having one more
model parameter to fit.

I. INTRODUCTION
Despite the great success of Black-Scholes options model

[2], in option pricing, this pure log-normal diffusion model
fails to reflect the three empirical phenomena: (1) the large
random fluctuations such as crashes or rallies; (2) the non-
normal features, that is, negative skewness and leptokurtic
(peakedness) behavior in the stock log-return distribution;
(3) the implied volatility smile, that is, the implied volatility
is not a constant as in the Black-Scholes model.
Therefore, many different models are proposed to modify

the Black-Scholes model so as to represent the above
three empirical phenomena. Some models are proposed
to incorporate the volatility smile, for example, Andersen,
Benzoni and Lund [1] have made elaborate estimations to
fit jump-diffusion models with log-normal jump-amplitudes,
stochastic volatility and other features. Some models are
proposed to incorporate the asymmetric features of the stock
log-return distributions. Merton [10] introduced the jump-
diffusion model in financial modeling, using a Poisson
process for the jump timing and a log-normal process
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for the jump-amplitudes to describe the market crashes
or rallies. Recently, Kou [9] proposed a jump-diffusion
model with a log-double-exponential process for the jump-
amplitude. Since crashes or rallies are rare events, the
Poisson process is reasonable for the timing of jumps.
However, there is a problem in choosing the log-normal
or log-double-exponential process for the jump-amplitude
since the exponentially small tails of the log-normal and log-
double-exponential distributions are contrary to the flat and
thick tails of the long time financial market log-return data.
Around the near-zero peak of the log-double-exponential
and the log-normal, the jumps are small, so are not too
different from the continuous diffusion fluctuations. When
the jumps are large, then the density tails are exponentially
small, but the large jumps of the data are more persistent.
Moreover, an infinite jump domain is unrealistic, since the
jumps should be bounded in a real world financial markets
and an infinite domain leads to unrealistic restrictions in
portfolio optimization [5].
So, Hanson and Westman [4] proposed one jump-

diffusion model with log-uniform jump-amplitude. Most
recently, Hanson, Westman and Zhu [8] showed that for IID
simulations that the binned distribution is multinomial. They
estimated the market parameters for this log-uniform model
by subsequent multinomial maximum likelihood method to
fit financial market distributions such as the Standard and
Poor’s 500 stock index. The estimation of the kurtosis
differed by a very small amount, +0.78%, from the observed
value. However, the estimation of the skewness differed
significantly from the observed value, by -47%. In this
paper, the value of the skewness of the log-uniform model
is greatly improved using more accurate computations here.
The main purpose of this paper is to compare the

performance of three jump-diffusion models whose jump-
amplitudes are the log-normally, log-uniformly and log-
double-exponentially distributed. The measures of perfor-
mance are the skewness, kurtosis and computational costs.

II. SOME THEORETICAL RESULTS ABOUT THESE
JUMP-DIFFUSION MODELS

A. Stock Return Process, S(t)

The following stochastic differential equation (SDE) is
used to model the dynamics of the asset price, S(t):

dS(t) = S(t) (µddt + σddW (t) + J(Q)dP (t)) , (II.1)

where µd is the drift coefficient, σd is the diffusive volatility,
W (t) is the stochastic diffusion process, J(Q) is the Poisson



jump-amplitude,Q is its underlying Poisson amplitude mark
process, P (t) is the standard Poisson jump process with
joint mean and variance E[P (t)] = λt = Var[P (t)].

B. Stock Log-Return Process, ln(S(t))

The stock log-return ln(S(t)) can be transformed to
a simpler jump-diffusion stochastic differential equation
(SDE) upon use of the stochastic chain rule [7],

d[ln(S(t))] = µlddt + σddW (t) + QdP (t), (II.2)

where µld ≡ µd −0.5σ2
d can be called the log-diffusive (ld)

drift. For simplicity the log-transformed jump-amplitude is
taken as the mark,

Q = ln(J(Q) + 1) .

C. Log-Normal Jump Distribution

Let the density of the jump-amplitude mark Q be normal

φQ(q) = φ(n)(q;µj , σ
2
j ), (II.3)

where φ(n)(q;µj , σ
2
j ) is the normal density with mean µj

and variance σ2
j . The log-normal jump-amplitude jump-

diffusion model was used in [10], [1], [3] and others.
For the density for this jump-diffusion model with log-

normal jump-amplitude, Hanson and Westman [3] proved
the following theorem:
Theorem: The probability density for the linear jump-

diffusion log-return increment ∆[ln(S(t))] with log-normal
jump-amplitude is given by

φ(jd)(x) =
∞∑

k=0

pk(λ∆t) (II.4)

·φ(n)(x;µld∆t + kµj , σ
2
d∆t + k2σ2

j ),

for −∞ < x < +∞, where pk(Λ) = e−ΛΛk/k! is the
Poisson distribution with parameter Λ and k jumps, where
∆t is the corresponding trading time increment.
This theorem is based upon the law of total probability

[7] resulting in the sum over all k Poisson jumps, the
convolution theorem [7] yielding the density of the log-
jump-diffusion conditioned on there being k jumps, and the
fact that the convolution of two normals is also normal
[7]. Given k, the density of the jump term is simply
φkQ(q) = φQ(q/k)/k. The theorem is posed as the log-
return increment rather than for the infinitesimal, because
the time between trading data is small but not infinitesimal.
For the purpose of comparison, we use more terms of the
expansion than we have in our other papers to provide more
accurate estimations since we are dealing with small but
not very small time steps and the scale these time steps
can be magnified by a jump rate that includes many small
jumps that are indistinguishable from the fluctuations of the
diffusion process.

1) Basic Moments of Log-Return Increments∆[ln(S(t))]
for Log-Normal Jumps::

• 1st moment:

M
(jd)
1 ≡ E[∆[ln(S(t))]] = µld∆t + µjλ∆t.

• 2nd moment:

M
(jd)
2 ≡ Var[∆[ln(S(t))]]

= σ2
d∆t + (σ2

j (1 + λ∆t) + µ2
j)λ∆t.

• 3rd moment:

M
(jd)
3 ≡ E

[
(∆[ln(S(t))] −M

(jd)
1 )3

]
= (3µjσ

2
j + µ3

j)λ∆t + 6µjσ
2
j (λ∆t)2.

• 4th moment:

M
(jd)
4 ≡ E

[
(∆[ln(S(t))] −M

(jd)
1 )4

]
= (µ4

j + 3σ4
j + 6µ2

jσ
2
j )λ∆t

+(3µ4
j + 21σ4

j + 30µ2
jσ

2
j )(λ∆t)2

+6σ2
d∆t(σ2

j + µ2
j )λ∆t

+3(σd∆t)2 + (6µ2
jσ

2
j + 18σ4

j )(λ∆t)3

+6σ2
d∆tσ2

j (λ∆t)2 + 3σ4
j (λ∆t)4.

D. Log-Uniform Jump Distribution
Let the density of the jump-amplitude mark Q be uniform

φQ(q) = (H(Qb − q) −H(Qa − q))/(Qb −Qa), (II.5)

where Qa < 0 < Qb and H(x) is the Heaviside unit
step function. The mark Q has moments, µj ≡ EQ[Q] =
0.5(Qb + Qa), σ2

j ≡ VarQ[Q] = (Qb − Qa)2/12. The
original jump-amplitude J has mean E[J(Q)] = (exp(Qb)−
exp(Qa))/(Qb −Qa) − 1 and log-uniform distribution

ΦJ(x) = ln((x + 1)/(Ja + 1))/ ln((Jb + 1)/(Ja + 1))

on [Ja, Jb], where Ja ≡ J(Qa) and Jb ≡ J(Qb).
For the density of the jump-diffusion model with log-

uniform jump-amplitude, the following theorem is given in
[4].
Theorem: The probability density for the linear jump-

diffusion, log-return increment ∆[ln(S(t))] with log-
uniform jump-amplitude is given by

φ(jd)(x) = p0(λ∆t)φ(n)(x;µld∆t, σ2
d∆t) (II.6)

+
∞∑

k=1

pk(λ∆t)

·Φ
(n)(x− kQb, x− kQa;µld∆t, σ2

d∆t)
k(Qb −Qa)

,

for −∞ < x < +∞, where pk(Λ) = e−ΛΛk/k! is the
Poisson distribution with parameter Λ and k jumps and
Φ(n)(x1, x2;µ, σ2) is the normal distribution in interval
[x1, x2], where ∆t is the corresponding trading time in-
crement.
The justification of this theorem is similar to that as

for the log-normal, except that the k-jump conditioned



convolution leads to a combined jump-diffusion normal-
uniform density given in (II.6) that we call the secant-
normal density since the density is the secant of the normal
distribution.
1) Basic Moments of Log-Return Increments∆[ln(S(t))]

for Log-Uniform Jumps::

• 1st moment:

M
(jd)
1 ≡ E[∆[ln(S(t))]] = µld∆t + µjλ∆t.

• 2nd moment:

M
(jd)
2 ≡ Var[∆[ln(S(t))]]

= σ2
d∆t + (σ2

j (1 + λ∆t) + µ2
j)λ∆t.

• 3rd moment:

M
(jd)
3 ≡ E

[
(∆[ln(S(t))] −M

(jd)
1 )3

]
= (3µjσ

2
j + µ3

j)λ∆t + 6µjσ
2
j (λ∆t)2.

• 4th moment:

M
(jd)
4 ≡ E

[
(∆[ln(S(t))] −M

(jd)
1 )4

]
= (µ4

j + 1.8σ4
j + 6µ2

jσ
2
j )λ∆t

+(3µ4
j + 12.6σ4

j + 30µ2
jσ

2
j )(λ∆t)2

+6σ2
d∆t(σ2

j + µ2
j)λ∆t

+3(σ2
d∆t)2 + (6µ2

jσ
2
j + 10.8σ4

j )(λ∆t)3

+6σ2
d∆t(σ2

j + µ2
j)(λ∆t)2

+1.8σ4
j (λ∆t)4.

Note that the formulas for the first three moments are the
same for both log-normal and log-uniform jumps.

E. Log-Double-Exponential Jump Distribution

Let the density of the jump-amplitude mark Q be double-
exponential

φQ(q) =
p

µ1
e
q
µ1 I{q<0} +

(1 − p)
µ2

e
−q
µ2 I{q≥0}, (II.7)

where µ1 > 0 and µ2 > 0 are one-sided means, and 0 <
p < 1 represents the probability of downward jumps while
1− p is the probability of upward jumps. The set indicator
function is I{S} for set S. The mark Q has moments, µj ≡
EQ[Q] = −pµ1 +(1−p)µ2, σ2

j ≡ VarQ[Q] = p(2−p)µ2
1 +

2p(1 − p)µ1µ2 + (1 − p2)µ2
2.

Similar to the theorem in [3], we get the following
theorem:
Theorem: The probability density for the linear jump-

diffusion log-return increment ∆[ln(S(t))] with log-double-

exponential jump-amplitude is given by

φ(jd)(x) = p0(λ∆t)φ(n)(x;µld∆t, σ2
d∆t) (II.8)

+
∞∑

k=1

pk(λ∆t)
k

·
(

p

µ1
exp

(
x−µld∆t+0.5σ2

d∆t/(kµ1)
kµ1

)

·Φ(n)(−x; µ̄1, σ
2
d∆t)

+
1− p

µ2
exp

(
µld∆t−x+0.5σ2

d∆t/(kµ2)
kµ2

)

·
(
1 − Φ(n)(−x; µ̄2, σ

2
d∆t)

))
,

for −∞ < x < +∞, where µ̄1 ≡ σ2
d∆t/(kµ1) − µld∆t,

µ̄2 ≡ −σ2
d∆t/(kµ2)− µld∆t, and ∆t is the corresponding

trading time increment.
1) Basic Moments of Log-Return Increments∆[ln(S(t))]

for Log-Double-exponential Jumps::
• 1st moment:

M
(jd)
1 ≡ E[∆[ln(S(t))]]

= µld∆t + (−pµ1 + (1 − p)µ2)λ∆t.

• 2nd moment:

M
(jd)
2 ≡ Var[∆[ln(S(t))]]

= σ2
d∆t + 2(p(µ2

1 − µ2
2) + µ2

2)λ∆t

+
(
p(2 − p)µ2

1 + 2p(1 − p)µ1µ2

+(1 − p2)µ2
2

)
(λ∆t)2.

• 3rd moment:

M
(jd)
3 ≡ E

[
(∆[ln(S(t))] −M

(jd)
1 )3

]
= 2(λ∆t)3(3p(p− 1)µ3

1 − p3(µ3
1 + µ3

2)
+3p2µ1µ

2
2 − 3p3µ1µ2(µ2 + µ1)

+µ3
2 + 3p(2p− 1)µ2

1µ2)
+6(λ∆t)2(−pµ2

1µ2 + pµ2
2µ1 − p2µ1µ

2
2

−p2µ3
2 − pµ3

2 + 2µ3
2 + p2µ3

1 + p2 ∗ µ2
1µ2

−3pµ3
1) + 6λ∆t((1 − p)µ3

2 − pµ3
1);

• 4th moment:

M
(jd)
4 ≡ E

[
(∆[ln(S(t))] −M

(jd)
1 )4

]
∼ 24λ∆t((1 − p)µ4

2 + pµ4
1)

+24(7pµ4
1 − 5pµ4

2 + 6µ4
2

+pµ1(µ3
2 − pµ3

1) − p2µ1µ2(µ2
2 + µ2

1)
+pµ2(µ3

1 − pµ3
2))(λ∆t)2

+12(pµ2
1 + (1 − p)µ2

2)(σ
2
d∆t)(λ∆t)

+3σ4
d∆t2.

All O((λ∆t)3) and O((λ∆t)4) are omitted in M
(jd)
4 .



F. Skewness and Kurtosis
In this paper, the skewness and kurtosis are the main

benchmarks used to compare the three jump-diffusion mod-
els. Therefore, it is important to get Mjd

3 and M jd
4 in order

to get the theoretical skewness and kurtosis coefficient for
these three models to sufficient accuracy for a satisfactory
comparison.

• Skewness coefficient: β(jd)
3 ≡ M

(jd)
3 /

(
M

(jd)
2

)1.5

.

• Kurtosis coefficient: β(jd)
4 ≡ M

(jd)
4 /

(
M

(jd)
2

)2

.

Sometimes, the kurtosis is represented as the excess kurtosis
coefficient by subtracting three from the above kurtosis
coefficient definition so that the excess kurtosis coefficient
is zero for the normal distribution.

III. Parameter Estimations
The basic point of view, here, is that the financial markets

are considered to be a moderate size simulation of one of
these three jump-diffusion processes.

A. Empirical Data
We use Standard and Poor’s 500 (S&P500) stock index

in the decade 1992-2001 [13] as the sample of the financial
market since it is in general viewed as one big mutual fund
so that it is less dependent on the peculiar behavior of any
one stock.
Let n(sp) = 2522 be the number of daily closings S

(sp)
s

for s = 1 : n(sp), such that there are ns = 2521 log-returns,

∆
[
ln

(
S(sp)

s

)]
≡ ln

(
S

(sp)
s+1

)
− ln

(
S(sp)

s

)
, (III.1)

for s = 1 : ns log-returns, with
• Mean:

M
(sp)
1 =

1
ns

ns∑
s=1

∆
[
ln

(
S(sp)

s

)]
� 4.015e-4 .

• Variance:

M
(sp)
2 =

1
ns− 1

ns∑
s=1

(
∆

[
ln

(
S(sp)

s

)]
−M

(sp)
1

)2

� 9.874e-5 .

• Skewness coefficient:

β
(sp)
3 ≡ M

(sp)
3(

M
(sp)
2

)1.5 � −0.2913 < 0,

where β
(n)
3 = 0 is the normal distribution value and

M
(sp)
3 is the 3rd central log-return moment of the data.

• Kurtosis coefficient:

β
(sp)
4 ≡ M

(sp)
4(

M
(sp)
2

)2 � 7.804 > 3,

where β
(n)
4 = 3 is the normal distribution value and

M
(sp)
4 is the 4th central log-return moment of the data.

B. Multinomial Maximum Likelihood Estimation
In a previous paper [8], the multinomial maximum likeli-

hood estimation of model parameters is justified for binned
financial data, but applied to very general binned data. The
main idea for this method is the following:

• Step 1: Sample Data is sorted into nb bins and get the
sample frequency f

(sp)
b , for b = 1 : nb.

• Step 2: Get the theoretical jump-diffusion frequency
with parameter vector x:

f
(jd)
b (x) ≡ ns

∫
Bb

φ(jd)(η; x)dη ,

where Bb is the bth bin.
• Step 3: Minimize the objective function:

y(x) ≡ −
nb∑

b=1

[
f

(sp)
b ln

(
f

(jd)
b (x)

)]
, (III.2)

which is the negative of the likelihood. Getting the
negative of the maximum likelihood corresponds to the
minimizing fminsearch function implementation
of the Nelder-Mead down-hill simplex direct search
method in MATLAB. The Nelder-Mead method [12]
is used to get the optimal parameters x∗ for the three
compared models, respectively. The Nelder-Mead is
usually faster than other optimization methods when it
works. Some comparisons with our multidimensional
golden section search method for the financial parame-
ter estimation problem are given in [8].

C. Jump-Diffusion Moment Estimation Constraints
For the jump-diffusion model with log-normal and log-

uniform jump-amplitude, there are five (5) free jump-
diffusion parameters:

{µld, σ
2
d, µj , σ

2
j , λ} .

For the stock return jump-diffusion model with log-double-
exponential jump-amplitude, there are six (6) free jump-
diffusion parameters:

{µld, σ
2
d, µ1, µ2, p, λ} .

So, to reduce this set to a reasonable number, the multino-
mial maximum likelihood estimation is subjected to the
mean and variance constraints:

M
(sp)
1 = M

(jd)
1 (III.3)

and

M
(sp)
2 = M

(jd)
2 . (III.4)

So, for the log-normal and log-uniform jump-diffusion
model, the two diffusion parameters, µld and σd, are elim-
inated by

µld =
(
M

(sp)
1 − µjλ∆t

)
/∆t (III.5)

and

σ2
d =

(
M

(sp)
2 − (

σ2
j (1 + λ∆t) + µ2

j

)
λ∆t

)
/∆t , (III.6)



the latter is subject to positivity constraints, for fixed and
small ∆t � 1. Hence, only three free parameters are left:

x = {µj, σ
2
j , λ} .

For the log-double-exponential jump-diffusion model, two
parameters µld and σd are eliminated by

µld =
(
M

(sp)
1 − (−pµ1 + (1 − p)µ2)λ∆t

)
/∆t (III.7)

and

σ2
d =

(
M

(sp)
2 − 2(p(µ2

1 − µ2
2) + µ2

2)λ∆t (III.8)

+(p(2 − p)µ2
1 + 2p(1 − p)µ1µ2

+(1 − p2)µ2
2)(λ∆t)2

)
/∆t .

Then, four (4) free parameters are left:

x = {µ1, µ2, p, λ} ,
with significantly more computational cost.

IV. Numerical Results, Figures and Discussion
The multinomial maximum likelihood estimation given

here is used to estimate the jump-diffusion parameters. The
numerical optimization was performed using the MATLAB
6.5 [11] computing system’s fminsearch function, an im-
plementation of the down-hill simplex direct search method
of Nelder and Mead [12].
For the log-normal and log-uniform model, the same

starting point x0 is used. For the log-double-exponential
model, the different starting point x0 is used: µ1 and
µ2 are from the estimation of the µj of the log-uniform
model, p � 0.6 > 0.5 means more likely downward jump-
amplitudes and the λ∆t value are the same as the log-normal
and log-uniform.
The empirical data used in the estimation are the S&P500

daily closing log-returns from the decade 1992-2001. In
Figure 1 is the histogram of bin frequencies using 100
centered bins. Note the long, relatively thick tails signifying
crashes in the negative tails and rallies in the positive tails,
where the normal distribution or the double-exponential
would have insignificant tail values. The ragged appearance
of the histogram resembles the random simulation of a
density using a moderate, but inadequate, sample size. The
rare, larger jump events are difficult to see in the scale of
the figure.
However, if the histogram frequencies are multiplied by

the centered value of the bin log-return, then the larger
jumps are clearly visible. This moment-histogram is called
a hysteriagram since it magnifies the larger jumps and
corresponds to the extreme behavioral reaction of some
investors. The hysteriagram for the S&P500 is given in
Figure 2 and clearly indicates the inadequacy of using a
log-normal and the log-double-exponential to characterize
significant large events.
Figure 3 shows that the log-normal jump-amplitude model

hysteriagram exhibits too thin tails that decay too fast with
the jump magnitude. From (II.4) it can be seen that the bin
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Fig. 1. Histogram of S&P500 log-return frequencies for the decade 1992-
2001, using 100 bins.
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Fig. 2. Hysteriagram of S&P500 log-return frequencies multiplied by the
average bin log-return value for the decade 1992-2001, using 100 bins.

distribution for sufficiently narrow bins will be a Poisson
sum of normal distributions, so will have thin exponential
Gaussian tails. The corresponding histogram for the log-
normal, not shown here, does not show enough visual detail
to sufficiently distinguish it from the other jump-amplitude
models.
Figure 4 shows that the log-uniform jump-amplitude

model hysteriagram exhibits much thicker tails that decay
more slowly with the jump magnitude, but do not capture
the largest negative jump in Figure 2. The secant-normal
densities in (II.6) help counter the normal distribution ten-
dency to having exponential thin tails, but not for beyond
the largest jump values of the log-returns.
Figure 5 shows that the log-double-exponential jump-

amplitude model hysteriagram exhibits too thin tails that
decay too fast with the jump magnitude that is very similar
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LogNormal Hysteriagram:  X*Frequency

Fig. 3. Hysteriagram of the predicted log-returns frequencies multiplied
by the average bin log-return value for the log-normal jump-amplitude
jump-diffusion model, using 100 bins.
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Fig. 4. Hysteriagram of the predicted log-returns frequencies multiplied
by the average bin log-return value for the log-uniform jump-amplitude
jump-diffusion model, using 100 bins.

to the log-normal jump-amplitude model. The convolution
of normal and exponential distributions in (II.8), like the
normal jump-amplitude model, can only lead to exponential
thin tails.
Hence, the log-uniform model is a qualitatively better

model for the S&P500 data, since the tails are thick enough
to generate more of the larger jumps seen in the S&P500
data in Fig. 2 than the other two distributions.
From Table I, we can have a quantitative estimate of the

derived distribution parameters µd, σd, µj , σj , λ. Since the
trading days per year are about 250 days, it is not likely
that the jumps rate is more than 100 per year because the
finance market should be kept stable. So, λ � 59 for the
log-uniform is more reasonable, considering that the uniform
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Fig. 5. Hysteriagram of the predicted log-returns frequencies multiplied
by the average bin log-return value for the log-double-exponential jump-
amplitude jump-diffusion model, using 100 bins.

jump distribution spans the crash to the rally data. The
near-zero peaks of the normal and double-exponential lead
to more than double the uniform jump rate. Note that the
jump rate includes all size jumps, including those hidden
by the log-normal part of the log-return distribution. In the
table the overall jump mean µj is given for the purpose
of comparison, but for the double-exponential, the negative
jump mean is µj,1 = −µ1 = -3.63e-3 and the positive jump
mean is µj,2 = µ2 = +3.24e-3. For the double-exponential,
the probability of negative jumps is p = 0.481 and that for
positive jumps is (1−p) = 0.519. For the other parameters,
we can use the most-common value among these three
models. Then, we get the other parameter estimations for the
log-uniform as the following: µd � 0.20, σd � 0.085, µj �
-1.6e-3 and σj � 0.015. Hence, overall the log-uniform has
a better estimation for these derived parameters.

TABLE I
Comparison summary of derived distribution parameters for the
log-normal, log-uniform and log-double-exponential jump-diffusion

models, respectively.

Model µd σd µj σj λ

Normal 0.199 0.0907 -7.28e-4 9.25e-3 128.
Uniform 0.198 0.0865 -1.63e-3 1.53e-2 59.4
Dbl-Exp 0.125 0.0791 -6.15e-5 4.86e-3 338.

From Table II, the difference of skewness and kurtosis
between the estimate value and the observed are 16%
and −2.2% for the log-uniform model. These results are
better when considering both coefficients than the other
two models’ results, except the difference skew for the
double-exponential is the lowest, though the difference in the
kurtosis is highest for the double-exponential. Also, given is
the terminating multinomial maximum likelihood using the
negative of minimum of the objective in (III.2), essentially



the same for all models with the same stopping criterion
being used.

TABLE II
The skewness and kurtosis coefficients for the three models are compared
to S&P500 values, respectively, and Multinomial Maximum Likelihood

(MML � −min[y(x)]).

Model β3 % β4 % MML
Normal -0.196 -32.7 8.90 14.0 1.118e4
Uniform -0.387 +16.3 7.63 -2.21 1.117e4
Dbl-Exp -0.279 -4.28 12.2 57.0 1.119e4
S&P500 -0.291 0.0 7.80 0.0 —

From the Table III, we can see that the log-normal and
log-uniform models take the same order of magnitude of
iterations and function evaluation, the log-normal model
parameter estimate takes 1/7 of the time to execute. One
reason is that the log-normal requires only one normal
distribution calculation for each jump k in (II.4), while the
others required the calculation of either an integral of the
secant-normal or of several normal distributions. However,
the extra parameter needed for the double-exponential means
the iteration count, the function evaluation count and the
timings will be much greater for the double-exponential.
The computational efforts for the uniform and double-
exponential models were reduced by using integration by
parts to reduce the original double bin distribution integrals
to single integrals. An added advantage of such a reduc-
tion also can improve accuracy and speed of computation.
The reduced formulas are too lengthy to report here. The
reduction of the original double-exponential bin integrals to
single integrals led to exponential catastrophic cancellation
problems, in that exponential factors of that model interfered
with the absolute error threshold of the MATLAB inte-
gration function quadl for the most negative bin locations
causing small violations of positive probability properties.
Absorption of these exponential factors into the integrands
accurately corrected the error threshold problem.

TABLE III
Comparison summary of computational performance measures:

Model Number Number Function Timings
Used Parms. Iters. Evals. (sec)
Normal 3 69 129 28.7
Uniform 3 54 101 211
Dbl-Exp 4 200∗ 342 2638

Combined Legend for Table I, Table II and Table III:
• Normal: Log-normal jump-amplitude.
• Uniform: Log-uniform jump-amplitude.
• Dbl-Exp: Log-double-exponential jump-amplitude.
• Maximum Number of Iterations: 200∗ .
• Using same tolerances: tolx = 5e-6 and toly = 5e-6.
• Using P4@1.6GHz CPU computer processor with MATLAB.

V. SUMMARY AND CONCLUSION
From the above theoretical and data analysis, we can get

the following conclusions:
• The log-uniform model is the best overall among
the three models, qualitatively in terms of genuinely
representing the fat tail property of real-world market
distributions and quantitatively in terms of reasonable
overall higher moments, i.e., both skewness and kurto-
sis.

• The log-normal model runs faster than the other two
models. The reason is that the optimization algorithm
needs only single bin integrals over a normal density
for the log-normal model. On the other hand, the
integration by parts technique can be used to reduce
the computational effort for the log-uniform and log-
double-exponential models. However, the deficiencies
of the log-normal model demonstrates that the distribu-
tion that is better analytically is not necessarily a better
model for financial markets, i.e., finding a better model
may be counter to the desire to obtained closed form
solutions.

• The results for the log-normal and log-double-
exponential jump amplitude models are qualitatively
similar. Both of them have exponentially small tails and
peaks in the center making small jumps more likely. If
there are small jumps, they are not much different from
diffusion fluctuations since the diffusion part of the
jump-diffusion model dominates the stock log-Return
process (II.2) in this case. If there are large jumps,
then the exponentially small tails of their distributions
can not contribute too much to the flat and thick tails
of the real world financial markets. Therefore, these
two models has some intrinsic defects and are not
not recommended for monitoring the dynamics of the
finance markets.

• For the future research and considerations.
1) To develop better way to the fit rare, jump events.
2) To improve the log-uniform model, the stochastic
volatility should be considered since in the real
world the implied volatility curve is not a con-
stant, but ‘smile’ curve.

3) To consider the option price problems based on
the log-uniform model and try to get the exact or
approximate solutions to these problems if it is
possible. Now the option market grows very fast,
we must face these problems and put the model
under the real-world finance markets’ test.
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