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Abstract— A reduced European call option pricing formula
by risk-neutral valuation is given. It is shown that the European
call and put options for jump-diffusion models are worth
more than that for the Black-Scholes (diffusion) model with
the common parameters. Due to the complexity of the jump-
diffusion models, obtaining a closed option pricing formula like
that of Black-Scholes is not viable. Instead, a Monte Carlo
algorithm is used to compute European option prices. Monte
Carlo variance reduction techniques such as both antithetic and
control variates are used. The numerical results show that this
is a practical, efficient and easily implementable algorithm.

I. BACKGROUND

The model the dynamics of the asset priceS(t) is the
stochastic differential equation (SDE) :

dS(t) = S(t) (µdt + σdW (t) + J(Q)dN(t)) , (1)

where S0 = S(0) > 0, µ is the drift coefficient,σ is
the diffusive volatility, W (t) is a Wiener process,J(Q)
is the jump-amplitude,Q is an underlying amplitude mark
process such thatQ = ln(J(Q) + 1), N(t) is the standard
Poisson jump counting process with joint mean and variance
E[N(t)] = λt = Var[N(t)]. The jump term in (1) is
a symbol for S(t)J(Q)dN(t) =

∑dN(t)
k=1 S(T−

k )J(Qk) ,
where Tk is the kth jump time, Qk is the kth mark and
S(T−

k ) = limt↑Tk
S(t).

Let the jump-amplitude mark density be uniform:

φQ(q) =
1

b − a

{
1, a ≤ q ≤ b
0, else

}
, (2)

wherea < 0 < b. The markQ has meanµj ≡ EQ[Q] =
0.5(b + a) and varianceσ2

j ≡ VarQ[Q] = (b − a)2/12. The
jump-amplitudeJ has mean

J̄ ≡ E[J(Q)] = (exp(b) − exp(a))/(b − a) − 1. (3)

Note that in absence of any special explanation,X will
denote the mean of random variableX , that is,X = E[X ].
For more details, see [8] and [10].

By the Itô chain rule [9] for jump-diffusions, the log-return
processln(S(t)) satisfies the constant coefficient SDE

d ln(S(t)) = (µ − σ2/2)dt + σdW (t) + QdN(t) ,
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which can be immediately integrated and the logarithm
inverted to yield the stock price solution

S(t) = S0 exp((µ − σ2/2)t + σW (t) + QN(t)), (4)

whereQN(t)=
∑N(t)

k=1 Qk, but is zero ifN(t)=0, and the
Qk here are independent identically uniformly distributed
jump-amplitude marks See the jump-diffusion book [9,
Chapter 5].

Our objective is to derive a reduced formula and practical
algorithm for the discounted, expected European call option
price C(S0, T ), a function of the current stock priceS0, the
option expiration timeT , the strike priceK, the stock volatil-
ity σ, the risk-free interest rater, but for jump-diffusions also
depends on the jump rateλ and the mean jump amplitudēJ .
In contrast to the Black-Scholes [3] hedge for constructing
a portfolio to eliminate the diffusion in the case of a pure
diffusion process, Merton [17] argued that such hedging was
not possible in the case of the jump-diffusion model, but the
risk-neutral part of the Black-Scholes strategy could preserve
the no arbitrage strategy to ensure that the discounted,
expected return would be at the market rater. This strategy
can be formulated in terms of a change of the drift of jump-
diffusion to a risk-neutral drift at rater or more abstractly in
terms of an equivalent change of measure to a risk-neutral
measure, sayM. Consequently, the European call option
price can be formulated as the discounted expectation of the
terminal claimmax[S(T ) − K, 0],

C(S0, T ) ≡ e−rT EM[max[S(T ) − K, 0]] . (5)

It is sufficient to know that such a risk-neutral measure exists.
See the readable accounts in Baxter and Rennie [2] or Hull
[12]for the pure diffusions, else Cont and Tankov [6] for the
more general jump-diffusion cases. For statistical evidence
of jumps in various financial markets see Ball and Torous
[1], Jarrow and Rosenfeld [13] or Jorion [14].

II. R ISK-NEUTRAL CONSTANT-COEFFICIENT SDE

By the equation (4), the expected stock price at expiration
time T is found in the following theorem:

Theorem 2.1: The Expected Stock Priceis

E[S(t)] = S0e
(µ+λJ̄)t. (6)

Proof: Using the stock price solution (4), the IID property
of Qk given a jump inN(t) and iterated expectations,
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where the Poisson distributionpk(λt) ≡ e−λt(λt)k/k! has
been used.

Assume the source of the jumps is due to extraordinary
changes in the firm’s specifics, such as the loss of a court
suit or bankruptcy, but not from external events such as
war. Thus, such jump components in the jump-diffusion
model represent only non-systematic risks. The market-stock
return correlationbeta of the portfolio for non-systematic
risk is constructed bydelta hedging as in Black-Scholes
and is zero (see [17]). Under this assumption, the jump-
diffusion model (1) is arbitrage-free. In the risk-neutral
world, E[S(t)] = S0e

rt, so S0e
(µ+λJ̄)t = S0e

rt and solving
for µ, yields the risk-neutral appreciation rate,µ = µrn =
r−λJ̄ . In the more general case with time-dependent co-
efficients, the expected instant rate is the risk-free rate and
E[dS(t)/S(t)] = (µ(t)+E[J(Q, t)]λ(t))dt = r(t)dt, leading
to the risk-neutral mean rate relationshipµ(t) = µrn(t) =
r(t)−E[J(Q, t)]λ(t).

Back to the constant coefficient case and substitutingµ=
r−λJ̄ into (1), we get the risk-neutral SDE under the risk-
neutral measureM as the following:

dS(t)/S(t) =
`
r−λJ̄

´
dt+σdW (t)+

dN(t)X

k=1

J(Qk)

= rdt+σdW (t) +

dN(t)X

k=1

`
J(Qk)−J̄

´

+J̄ (dN(t)−λdt) ,

where the jump terms are separated into the zero-mean forms
of the compound Poisson process.

III. R ISK-NEUTRAL OPTION PRICE SOLUTIONS

The risk-neutral property means that the asset grows
at the market risk-less rate, herer in a constant market
environment, so that the expected, discounted price of an
assetS(t) satisfiesE[e−rtS(t)] = S(0). In order to achieve
this, the mean growth rateE[dS(t)/S(t)] = (µ−λJ̄)dt is

changed to the risk-neutral growthrdt, or equivalently the
original probability measure needs to be changed to the
risk-neutral measureM. Using risk-neutral valuation of the
payoff for the European call option in (5) with the stock
price solution (4) and risk-neutral drift,

C(S0, T ) ≡ e−rT EM[max(S(T ) − K, 0)]

=
e−rT

√
2π

∞∑

k=0

pk(λT )

∫ kb

ka

∫ ∞

Z0(sk)

(
S0e

DJ(z,sk)−K
)

·e−z2/2φ eSk
(sk)dzdsk

=
1√
2π

∞∑

k=0

pk(λT )E eSk

[∫ ∞

Z0( eSk)

(
S0e

DJ(z, eSk)−rT

−Ke−rT
)
e−z2/2dz

]
,

whereDJ(z, sk)≡ (r−λJ̄−σ2/2)T +σ
√

Tz+sk, Z0(s)≡
(ln(K/S0)− (r−λJ̄ − σ2/2)T − s)/(σ

√
T ) is the at-the-

money value of the normal variable of integrationz and
S̃k =

∑k
i=1Qi is the sum ofk jump amplitudes, such that

Qi are uniformly distributed IID random variables over the
interval [a, b] but S̃0 =

∑0
i=1Qi≡0. Splitting up the integral

term, let

A(s) ≡ 1√
2π

∫ ∞

Z0(s)

S0e
−(λJ̄+σ2/2)T+σ

√
Tz+se−z2/2dz

= S0e
s−λJ̄T Φ

(
d1

(
S0e

s−λJ̄T
))

and

B(s) ≡ 1√
2π

∫ ∞

Z0(s)

Ke−rT e−z2/2dz

= Ke−rT Φ
(
d2

(
S0e

s−λJ̄T
))

,

whered1(x)≡(ln(x/K)+(r+σ2/2)T )/(σ
√

T ) andd2(x)≡
d1(x)−σ

√
T are the usual Black-Scholes normal distribution

argument functions, whileΦ(y)≡
∫ y

−∞e−z2/2dz/
√

2π is the
standardized normal distribution. Therefore,

C(S0, T ) =

∞∑

k=0

pk(λT )E eSk
[A(S̃k)−B(S̃k)]

=

∞∑

k=0

pk(λT )E eSk

[
S0e

eSk−λJ̄T Φ
(
d1

(
S0e

eSk−λJ̄T
))

−Ke−rT Φ
(
d2

(
S0e

eSk−λJ̄T
))]

.

Alternatively,

C(S0, T ) =
∞∑

k=0

pk(λT ) (7)

·E eSk

[
C(BS)

(
S0e

eSk−λJ̄T , T ; K, σ2, r
)]

,

where

C(BS)(x, T ; K, σ2, r)≡xΦ(d1(x))−Ke−rTΦ(d2(x))

or briefly C(BS)(x, T ), is the Black-Scholes formula [3],
but with the stock price argument shifted by a jump factor
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exp(S̃k −λJ̄T ). The above equation agrees with Merton’s
formula (16) in [17].

The next step is to compute

E eSk

[
C(BS)

(
S0e

eSk−λJ̄T , T, K, σ2, r
)]

.

However, producing a simple analytical solution is difficult,
since the probability density of the partial sumsS̃k for the
log-uniform model is very complicated, so this problem will
be solved by high-level simulation techniques.

A. Put-Call Parity

Put-call parity is founded on basic maximum function
properties (Merton [16], Hull [12] and Higham [11]), so is
independent of the particular process and

C(S0, T ) + Ke−rT = P(S0, T ) + S0 (8)

or solving for the European put option price,

P(S0, T ) = C(S0, T ) + Ke−rT − S0, (9)

in absence of dividends.

IV. A M ONTE CARLO ALGORITHM

From (7), the European call option price formulae can be
equivalently written as

C(S0, T ) = E bS(T )

[
C(BS)

(
S0e

bS(T )−λJ̄T , T
)]

, (10)

where Ŝ(T )=
∑N(T )

i=1 Qi, Qi are uniformly distributed IID

random variables from[a, b]. Note if ̂̂S(T ) ≡ Ŝ(T )−λT J̄ ,

then exp(
̂̂S(T )) is an exponential compound Poisson pro-

cess with the exponential martingale property on[0, T ] that

E[exp(
̂̂S(T ))]=exp(

̂̂S(0))=1. The Monte Carlo method may
be a good choice to compute it numerically. For the treatment
of Monte Carlo methods, see, e.g., [5], [7] or [11].

Let Ni be a sample point taken from the same Poisson
distribution asN(T ), so thatNi for i=1 :n sample points
form a set of IID Poisson variates. Given anNi jump, let
the Ui,j for j =1 :Ni be jump amplitude sample points, so
that they are IID uniformly generated on [0, 1], then

Ŝi =

Ni∑

j=1

(a + (b − a)Ui,j) = aNi + (b − a)

Ni∑

j=1

Ui,j

for i = 1 : n will be a set of IID random variables
on [a, b] having the same compound Poisson distribution
with uniformly distributed jump amplitudes aŝS(T ). Based
upon (10), an elementary Monte Carlo estimate forC(S0, T )
is

Ĉn =
1

n

n∑

i=1

C(BS)
(
S0e

bSi−λJ̄T , T
)
≡ 1

n

n∑

i=1

C(BS)
i ,

such that theC(BS)
i are IID random variables based on̂Si.

Then, by the strong law of large numbers,

Ĉn → C(S0, T ) with probability one as n → ∞,

and by the IID property ofC(BS)
i , the standard deviation

σbCn
= σ(BS)/

√
n, where

σ(BS) =

√
Var
[
C(BS)(S0e

bS(T )−λJ̄T , T )
]
=

√
Var
[
C(BS)

i

]
,

but may be estimated by the unbiased sample variance

s(BS) =

vuut 1

n − 1

nX

i=1

“
C(BS)

i − bCn

”2

.

In order to reduce the standard deviationσbCn
by a factor

of ten, the number of simulationsn has to be increased one
hundredfold. However, there are alternative approaches to
reduce the size ofσ(BS) by variance reduction techniques.

Thus, the Monte Carlo simulations will be used with
antithetic variate and control variate variance reductiontech-
niques. Let

Xi =
1

2

(
C(BS)

(
S0e

bSi−λJ̄T, T
)
+C(BS)

(
S0e

bS(a)
i

−λJ̄T, T
))

≡ 0.5
(
C(BS)

i +C(aBS)
i

)
,

for i = 1 :n is the thetic-antithetic averaged, Black-Scholes
risk-neutral, discounted payoff and

Yi = 0.5
(
exp(Ŝi) + exp

(
Ŝ(a)

i

))

is the thetic-antithetic averaged jump factors and a variance
reducing control variate. The control adjusted payoff is

Zi(α) = Xi − α · (Yi − exp(λT J̄)) ,

where (Yi − exp(λT J̄)) is the control deviation andα is
an adjustable control parameter. The sample mean ofZi(α)
produces the Monte Carlo estimator forC(S0, T ): Zn(α)=∑n

i=1Zi(α)/n=
∑n

i=1Xi/n−α
∑n

i=1(Yi−exp(λT J̄))/n=
Xn− α(Y n− exp(λT J̄)), an unbiased estimation since
E[Zn(α)] = C(S0, T ) using IID mean propertiesE[Xn] =
E[Xi] = C(S0, T ) by (10) andE[Y n] = E[Yi] = exp(λT J̄)
from the proof of Thm. 2.1.

The variance of the sample meanZn(α) is

σ2
Zn(α)

≡Var
[
Zn(α)

]
=Var[Zi(α)]/n ,

following from IID property of theZi(α). However,

Var[Zi(α)]=Var[Xi]−2αCov[Xi, Yi]+α2Var[Yi].

So, the optimal parameterα∗ to minimizeVar[Zi(α)] is

α∗=Cov[Xi, Yi]/Var[Yi]. (11)

Using this optimal parameterα∗,

Var[Z∗
i ] ≡ Var[Zi(α

∗)]=Var[Xi] −
Cov2[Xi, Yi]

Var[Yi]

≡
(
1 − ρ2

Xi,Yi

)
Var[Xi],

3



whereρXi,Yi
is the correlation coefficient betweenXi and

Yi. We also know that

Var[Xi] =
1

4

(
Var

[
C(BS)

i

]
+2Cov

[
C(BS)

i , C(aBS)
i

]

+Var
[
C(aBS)

i

])

=
1

2

(
1+ρC(BS)

i
,C(aBS)

i

)
Var

[
C(BS)

i

]

becauseVar
[
C(aBS)

i

]
=Var

[
C(BS)

i

]
. Therefore,

Var[Z∗
i ] =

1

2

(
1 − ρ2

Xi,Yi

)(
1 + ρC(BS)

i
,C(aBS)

i

)

·Var
[
C(BS)

i

]
≤ 1

2
Var

[
C(BS)

i

]
(12)

becauseρ2
Xi,Yi

≥0 and providedρC(BS)
i

,C(aBS)
i

≤0. From (12),

σ2
Zn

≤Var[C(BS)
i ]/(2n) = (σbCn

)2/2. This says the variance
of the Monte Carlo estimate with antithetic and control
variates techniques is at most the half as the variance of
the elementary Monte Carlo estimate ifρC(BS)

i
,C(aBS)

i

≤0.
Remark: In a real market, the ratioa/b will be close

to −1, that is b+a will be very small since the skewness
of the daily return distribution is not far away from0 and
the skewness is generated by the jump part of the jump-
diffusion model. For example, the skewness is−0.1952 for
1988-2003 S&P 500 daily return market data anda/b =
−1.08 and a + b = −0.002 [18]. In fact, in our Monte-
carlo algorithm, theρC(BS)

i
,C(aBS)

i

is about−0.83. So, we
can get a lot of benefit from the antithetic variate variance
reduction method by equation (12). In fact, our simulations
using uniformly distributed jump amplitudes confirms that
Cov[C(BS)

i , C(aBS)
i ] < 0 in the range of the ratio−3.75 <

a/b<−0.25 with a=−0.028 which is well within the range
of market data. However, ifb/a is far away from−1, the
correlation coefficientCov[C(BS)

i , C(aBS)
i ] can be positive

which will worsen the variance, though this range is not
realistic.

In general, we do not know the parameterα∗ exactly, so
some estimation is needed for it and we need the following
Lemma.

Lemma 4.1:

Var
[
e

bSi +e
bS(a)

i

]
=2
(
eλT Ĵ −2e2λT J̄ +eλT (ea+b−1)

)
,

where Ĵ = (exp(2b) − exp(2a))/(2(b − a))−1 and J̄ =
(exp(b) − exp(a))/(b − a)−1 from (3).

Proof: Using the properties of the antithetic pair( bSi, bS(a)
i

),

Cov

»
e
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bS(a)
i

–
= E

»
e

bSie
bS(a)
i

–
−E

h
e

bSi

i
E

»
e

bS(a)
i

–

= E
h
e(a+b)N(T )

i
−E2

h
e

bSi

i

= eλT (ea+b−1)−e2λTJ̄

andVar[e
bSi ] = E[e2 bSi ]−E2[e

bSi ] = eλTĴ −e2λTJ̄ = Var[e
bS(a)
i ].

Thus, Var[e
bSi+e

bS(a)
i ]=Var[e

bSi ]+2Cov[e
bSi , e

bS(a)
i ]+Var[e

bS(a)
i ]=

2Var[e
bSi ]+2Cov[e

bSi , e
bS(a)
i ]=2(eλTĴ−2e2λTJ̄+eλT (ea+b−1)).

From Lemma 4.1,σ2
Y ≡ Var[Yi] = Var[0.5(exp( bSi) +

exp( bS(a)
i

))]=0.5(exp(λT Ĵ)−2 exp(2λT J̄)+exp(λT (exp(a+
b) − 1))).

Proposition 4.1: An unbiased estimator forα∗ is

α̂ =



 1

n − 1

n∑

i=1
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1
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, (13)

whereXn =
∑n

i=1 Xi/n is the sample mean,XY n andY n

have the similar meaning.
Proof: It is necessary to show the condition for an unbiased
estimateE[α̂] = α∗ is true. Splitting the common part out of
the double sum and the IID property of the random variables
at different compound Poisson sample points fori = 1:n,

E[bα] = E
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nX

i=1

 
XiYi−

1

n

nX

j=1

XiYj

!
1

σ2
Y

#

=
1

n − 1

nX

i=1

E

2
4
„

1−1

n

«
XiYi−

1

n

nX

j=1,j 6=i

XiYj

3
5 1

σ2
Y

=
1

n(n − 1)

nX

i=1

0
@(n−1)E[XiYi]−

nX
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1
A 1

σ2
Y

= (E[XY ]−E[X]E[Y ]) /σ2
Y =Cov[X, Y ]/σ2

Y =α∗.

Sinceα̂ depends onYi for i = 1:n, the estimatêα of α∗

introduces a bias into the estimate

Ẑn=
1

n

n∑

i=1

Xi − α̂

(
1

n

n∑

i=1

Yi − eλT J̄

)
. (14)

Fortunately, we can compute the bias which asymptoticly
goes to zero at the rateO(1/n) as shown in the following
theorem.

Theorem 4.1: The estimateẐn of C(S0, T ) has bias

B≡E[Ẑn]−C(S0, T )=Cov[X, (2µY −Y ])Y ]]/(nσ2
Y ),

whereµY = E[Yi] = E[Y ] = exp(λT J̄), σ2
Y = Var[Yi] =

Var[Y ], Y has the same distribution asYi, for i = 1:n.
Proof: Setηk = σ2

Y α̂(Yk − µY ). Then,

ηk =

 Pn
i=1 XiYi

n − 1
−
Pn

i=1

Pn
j=1 XiYj

n(n−1)

!
(Yk−µY )

=
1

n

nX

i=1

XiYiYk−
Pn

i=1

P
j 6=i XiYjYk

n(n − 1)

−
µY

Pn
i=1 XiYi

n
+

µY

Pn
i=1

P
j 6=i XiYj

n(n − 1)

=
XkY 2

k +
P

i6=k XiYiYk

n
−

P
j 6=k XkYjYk +

P
i6=k XiY

2
k +
P

i6=k

P
j 6=i,k XiYjYk

n(n − 1)

−
µY

Pn
i=1 XiYi

n
+

µY

Pn
i=1

P
j 6=i XiYj

n(n − 1)
.

By the independence of{Xi, Yi} and{Xj, Yj} for j 6= i but
with identical distributions,E[ηk]=(XY 2+(n−1)XY µY )/n−

4



((n−1)XY µY +(n−1)µXY 2 +(n−1)(n−2)µXµY
2)/(n(n−

1))−µY XY +µ2
Y µX =(XY 2 − 2XY µY −µXY 2+2µXµ2

Y )/n=

Cov[X, Y 2]−2µY Cov[X, Y ]/n=Cov[X, Y (Y−2µY )]/n, where
µX = E[Xi], µY = E[Yi], XY = E[XiYi], Y 2 = E[Y 2

i ]

and XY 2 = E[XiY
2
i ]. Therefore, the biasB ≡ E[ bZn]−

C(S0, T )=E[−bα(Yk−µY )]=−E[σ2
Y bα(Yk−µY )]/σ2

Y =−E[ηk]/σ2
Y =

Cov[X, Y (2µY −Y )]/(nσ2
Y ).

Remark: From Theorem 4.1, the corrected estimate toẐn

is Ẑ ≡ Ẑn − B̂, whereB̂ is an estimate ofB similar to α̂ in
(13) ,

bB=

 
1

n(n − 1)

nX

i=1

XiY
′

i − 1

n2(n − 1)

nX

i=1

nX

j=1

XiY
′

j

!
1

σ2
Y

=
1

n − 1

XY ′

n − XnY ′

n

σ2
Y

, (15)

whereY
′

i =Yi(2µY−Yi), for i = 1:n, XY ′

n, Xn andY ′

n are
sample means. Then, the estimateẐ is an unbiased estimate
of C(S0, T ).

Finally, our Monte Carlo algorithm with antithetic and
control variates variance reduction techniques is:

The Monte Carlo Algorithm:
for i = 1:n

Randomly generate Ni;

Randomly generate IID Ui,j, j = 1:Ni;

Set bSi = aNi + (b − a)
PNi

j=1 Ui,j;

Set bS(a)
i = (a + b)Ni − bSi;

Set C(BS)
i = C(BS)

“
S0 exp

“
bSi − λT J̄

”
, T
”
;

Set C(aBS)
i = C(BS)

“
S0 exp

“
bS(a)
i − λT J̄

”
, T
”
;

Set Xi = 0.5
“
C(BS)

i + C(aBS)
i

”
;

Set Yi = 0.5
“
exp( bSi) + exp

“
bS(a)
i

””
;

end for i

Compute bα according to (13);

Set bZn = 1
n

Pn
i=1 Xi − bα( 1

n

Pn
i=1 Yi − eλTJ̄);

Estimate bias bb according to (15);

Get European call bθ = bZn −bb;
Get European put bP by (9).

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, some numerical results and discussions are
given to illustrate the Monte Carlo algorithm. First of all,
the elementary Monte Carlo method and the Monte Carlo
method with antithetic and control variates techniques (ab-
breviated as AOCV) are compared. The compound Poisson
process is simulated by first using the inverse transform
method given by Glasserman ([7]) for the jump counting
component processNi and then theNi jump amplitude
antithetic pairs( bSi, bS(a)

i
) are simulated by a standard uni-

form random number generator to get theUi,j . These are
implemented using MATLAB 6.5 and run them on the PC
with a Pentium4@1.6GHz CPU. The numerical test results
for elementary Monte Carlo method are listed in Table I and
the Monte carlo with AOCV’s are listed in Table II.

The results in Table I and Table II show that the anti-
thetic variates combined with control variates can reduce
the standard error by a factor ranging from 2 to about 14,

TABLE I

NUMERICAL RESULTS OF ELEMENTARYMONTE CARLO METHOD

σ K/S0 C P ǫ t (sec.) ǫ
√

t

0.9 13.76 0.67 0.055 2.640 0.090
0.2 1.0 5.26 3.28 0.035 2.578 0.056

1.1 1.38 8.49 0.014 2.562 0.022
0.9 15.99 2.90 0.048 2.562 0.077

0.4 1.0 8.45 6.47 0.033 2.578 0.053
1.1 4.07 11.18 0.020 2.531 0.032
0.9 19.15 6.03 0.044 2.454 0.069

0.6 1.0 11.79 9.81 0.033 2.500 0.052
1.1 7.09 14.21 0.023 2.500 0.036

Option parameters:K = 100, r = 0.1, T = 0.2, λ = 64, a =
−0.028, b = 0.026. Simulation numbern = 10, 000. Here, ǫ =
σ bCn

= σ(BS)/
√

n.

TABLE II

NUMERICAL RESULTS OFIMPROVEDMONTE CARLO WITH AOCV

σ K/S0 C P ǫ t (sec.) ǫ
√

t

0.9 13.73 0.64 0.004 6.875 0.011
0.2 1.0 5.23 3.25 0.008 6.828 0.021

1.1 1.38 8.49 0.006 6.781 0.016
0.9 16.03 2.94 0.004 7.031 0.011

0.4 1.0 8.42 6.44 0.004 6.922 0.011
1.1 4.06 11.17 0.004 7.218 0.011
0.9 19.11 6.02 0.003 6.797 0.008

0.6 1.0 11.81 9.83 0.003 6.859 0.008
1.1 7.12 14.23 0.003 6.812 0.008

Option parameters:K = 100, r = 0.1, T = 0.2, λ = 64, a =
−0.028, b = 0.026. Simulation numbern = 10, 000. Here, ǫ =
σ bZn

= σZ/
√

n.

but also increases the computing time by 2 to 3 times.
Therefore, we use standard error multiplying square root of
computng timeǫ

√
t as a benchmark for the trade-off between

the estimated variance and computing time, for a detailed
explanation, see Boyle, Broadie and Glasserman [5]. Seen
from these results, the Monte Carlo method with AOCV is
an overall the better estimate than the elementary Monte
Carlo method. Also, these results show that the European
call option price is an increasing function ofS0 and the
European put option is a decreasing function of it. Both
the call and put option prices increase as the volatilityσ of
stock price increase. The estimated model parameters used
areµ=0.1626, σ=0.1074, λ=64.16, a=−0.028, b=0.026
from our double-unform distribution paper [18] to compute
the Standard & Poor 500 index option prices. Also, we com-
pute Black-Scholes call priceC(BS)(S0, T ; K, σ2, r) and the
put priceP(BS)(S0, T ; K, σ2, r) = C(BS)(S0, T ; K, σ2, r)+
K exp(−rT )−S0 as a rough estimation of the true values.
The numerical results are listed in Table III.

The numerical results in Table III show that the estimated
call C and putP values by the Monte Carlo method with
AOCV are within the95% confidence interval of the true call
C∗ and putP∗ values, i.e.,C ∈ [C∗−1.96ǫ, C∗+1.96ǫ] orP ∈
[P∗ − 1.96ǫ,P∗ + 1.96ǫ] by the central limit theorem. Also,
we observe that the estimated European call and put option
prices are bigger than the Black-Scholes call and put option
prices, respectively. This is a fact stated in the following
theorem.

Theorem 5.1: The European call and put option prices
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TABLE III

NUMERICAL RESULTS FORS&P 500 OPTION PRICES

K
S0

C P ǫ C(BS) P(BS) C∗ P∗

0.8 269.81 0.01 2.e-3 269.80 2.e-6 269.82 0.02
0.9 132.36 1.45 0.03 130.98 0.07 132.39 1.47
1.0 40.07 20.27 0.11 30.49 10.69 40.05 20.25
1.1 5.49 76.60 0.06 1.13 72.24 5.50 76.61
1.2 0.31 147.17 0.01 4.e-3 146.87 0.32 147.19

Option parameters:K = 1000, r = 0.1, T = 0.2, σ = 0.1074, λ =

64, a = −0.028, b = 0.026. Simulation numbern = 10, 000. Here,
ǫ = σ bZn

= σZ/
√

n. The call and put values are estimated by the Monte
Carlo method with AOCV. TheC∗ and P∗ values are obtained by more
simulations, sayn = 400, 000 sample points.

based on the jump-diffusion model in (1) are bigger
than the Black-Scholes call and put option prices, respec-
tively, i.e.,C(S0, T ; K, σ2, r) ≥ C(BS)(S0, T ; K, σ2, r), and
P(S0, T ; K, σ2, r) ≥ P(BS)(S0, T ; K, σ2, r).
Proof: Since the Black-Scholes call option pricing formula
C(BS)(S, T ; K, σ2, r) is a convex function aboutS. By
Jensen’s inequality (see [9] for instance), we have

C(S0, T ; K, σ2, r)
(10)
= E bS(T )

h
C(BS)

“
S0e

bS(T )−λJ̄T , T
”i

≥ C(BS)
“
E bS(T )[S0e

bS(T )−λJ̄T ], T
”

= C(BS) (S0, T ) .

By put-call parity and the above proven inequality,

P(S0, T ; K, σ2, r) = C(S0, T ; K, σ2, r)+Ke−rT−S0

≥ C(BS)(S0, T ; K, σ2, r)+Ke−rT−S0

= P(BS)(S0, T ;K, σ2, r).

Remark: In the proof of the Theorem 5.1, no special
distribution of Q in the Jump-Diffusion model (1) is used.
Hence, this is a general result also suitable for log-normal
[17], log-double-exponential [15] and log-double-uniform
[18] jump amplitude models for jump-diffusions.

VI. CONCLUSION

The original SDE has been transformed to a risk-neutral
SDE by setting the stock price increases at the risk-neutral
interest rate. Based on this risk-neutral SDE, a reduced
European call option pricing formula is derived. Then, a
Monte Carlo algorithm with both antithetic and control vari-
ate variance reduction techniques are applied. This algorithm
is easy to implement and the numerical results show that it
is also efficient, taking less than 8 seconds per case to get
the practical accuracy. Finally, we show that the European
call and put option prices based on the jump-diffusion model
in (1) are bigger than the Black-Scholes call and put option
prices, respectively.
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