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Abstract 

Models of linear and nonlinear optimal control ap- 
plications are considered in which random discrete jumps 
in the system are state dependent in both rate and ampli- 
tude. These discrete jumps are treated as a Poisson pro- 
cesses in continuous time. This type of random noise allows 
for greater realism while modeling industrial and natural 
phenomena in which important changes occur with jumps. 
Modeling concerns are described and the appropriate mod- 
ifications are indicated for numerically solving the result- 
ing optimal control problems. Applications to a multistage 
manufacturing system and to the management of a natural 
resource under stochastic price fluctuations are used to il- 
lustrate this type of dynamical formulation. 

1. Introduction 

Many dynamical systems that model real phenomena 
undergo large random fluctuations in the state. These can 
be rare events or catastrophes or machine failure that are 
responsible for important changes due to discrete state de- 
pendent jumps. These rare events or catastrophes, have a 
great influence on how the biological, physical or other sys- 
tem evolves. In order to accommodate these jumps, a state 
dependent Poisson process is employed. A general martin- 
gale can be used as well. Some examples of these types of 
systems are populations subject to bonanzas or mass moral- 
ities [9,.5,7,6], manufacturing systems subject to machine 
failure and repair [ 10, 12, 141, biomedical systems [ 111, and 
many other systems. 

The use of stochastic differential equations to model 
dynamical systems has an inherent problem of insuring that 
the stochastic processes do not cause the state or the control 
of the system to become inadmissible. That is, the influence 
of the stochastic processes over time may cause the value for 
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the state or the control to no longer be contained in their do- 
main. In some applications, this can be clearly seen along 
boundaries of the domain. Also, the computational algo- 
rithm must contain checks and remedies to insure that the 
value of the state and the control remain admissible. The 
use of state dependent Poisson processes helps to facilitate 
or even force the admissibility of the state and the control. 

The paper is arranged as follows. In Section 2., the 
formulation and moments of the state dependent Poisson 
process or noise is described. Examples featuring the 
state dependent Poisson noise are presented in Section 3. 
for a multistage manufacturing system and in Section 4. 
for natural resource and price dynamics. In Section 5., 
canonical models for linear (LQGP problem) and nonlinear 
(LQGP/U problem) optimal control problems and the re- 
sulting Hamilton-Jacobi-Bellman (HJB) equations are pre- 
sented. Computational considerations for numerically solv- 
ing these HJB equations is briefly described in Section 6. 

2. Poisson Process 

In previous work [lo, 12, 13, 141, the following state 
independent vector valued marked Poisson noise is used, 
m(t) = [m(t)],.h which consists of q independent dif- 
ferentials of space-time Poisson processes that are related to 
the Poisson random measure, Pi (dzi, dt), (see Gihman and 
Skorohod [3] or Hanson [4]; see Hanson and Tuckwell [7] 
for some biological examples): 

dPi(t) = / ziPi(d&,dt), (1) 
Jzi 

where .zi is the Poisson jump amplitude random variable or 
the mark of the #i(t) Poisson process where i = 1 to q, 
with mean or expectation: 

Mean[dP(t)] = Azdt, (2) 

where A(t) is the diagonal matrix representation of the Pois- 
son rates xi(t) for i = 1 to q, z(t) is the mean of the jump 
amplitude mark vector and 4i (zi, t) is the density of the ith 
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amplitude mark component. Assuming component-wise in- 
dependence, dP(t) has covariance given by: 

Covar[dP(t), dPT(t)] = R(t)a(t)dt (3) 

with cr(t) = [ai,j&,jlqxg denoting the diagonalized covari- 
ante of the amplitude mark distribution for a(t). Note 
that the mark vector is not assumed to have a zero mean, 
i.e., z # 0, permitting additional modeling complexity. The 
marked Poisson process is such that the jump amplitudes or 
marks are random variables with an associated probability 
function that is independent of the arrival process. In other 
words, a marked Poisson process represents a sequence of 
ordered pairs 

(Tl,Ml), (T2,M2), , (Tk, Mk), (4) 

in which Ti is the time of occurrence of the ith jump with 
amplitude mark Mi. 

This formulation of of the Poisson process can be 
viewed as the sequence of events is inadequate for mod- 
eling jumps in the system based on the value of the state, 
X(t). The state dependent Poisson noise yields a sequence 
of events that is represented as: 

(Z’i(X(Ti)), M(X(Ti)) for i = 1 to k. (5) 

This representation of the Poisson process provides more 
realism and flexibility for a wider range of stochastic con- 
trol applications since the arrival times and amplitudes may 
depend of the state of the system. Additionally, this for- 
mulation allows for simpler dynamical system modeling of 
random phenomena. 

The state dependent vector valued marked Poisson 
noise is defined as 

dP(X(t),t) = [dR(X(t),t)]qxl, (6) 

which consists of q independent differentials of space- 
time Poisson processes that are functions of the state, 
X(t), which are related to the Poisson random measure, 
Pi(dZi, X(t), 4: 

dPi(X(t), t) = 
I 

ZiPz(d&, X(t), dt), (7) 
2% 

where zi is the Poisson jump amplitude random variable or 
the mark of the dPi(X(t), t) Poisson process where i = 1 
to q, with mean or expectation: 

Mean[dP(X(t), t)] = A(X(t), t)dt 
I 

zd(z, X(t), twz 
z 

E A(X(t), t)z(X(t), t)dt, (8) 

where A(X(t), t) is the diagonal matrix representation of 
the state dependent Poisson rates &(X(t), t) for i = 1 
to q, z(X(t), t) is the mean of the jump amplitude mark 
vector and r$i(zi, X(t), t) is the density of the ith ampli- 
tude mark component. Assuming component-wise indepen- 
dence, dF’(X(t), t) has covariance given by 

Covar[dP(X, t), dPT(X, t)] = A(X, t)u(X, t)dt (9) 

with u(X(t), t) = [cr&,jlgxp denoting the diagonal- 
ized covariance of the amplitude mark distribution for 
dp( X( t), t). Again, the mark vector is not assumed to have 
a zero mean, i.e., z # 0, permitting additional modeling 
complexity. Note, that for discrete distributions the above 
integrals need to be replaced by the appropriate sums. 

3. Multistage Manufacturing System Model 

In [ 10, 12, 141, linear and nonlinear models are applied 
to the control of production in a multistage manufacturing 
system. For each stage i in the manufacturing process, let 
ni(t) represents the number of operational workstations at 
time t which is a state variable, where 0 5 ni(t) 5 Ni. 
In this presentation we focus only on the evolution of the 
number of operational workstations, which is determined 
by the failure and repair processes of the workstations. The 
number of operational workstations evolves according to a 
purely stochastic differential equation (SDE) given by: 

dni(t) = dPF(t) - dPr(t), (10) 

where dPF(t) and dP[(t) are Poisson processes used to 
model the repair and failure processes, respectively. This 
formulation is lacking since repairs or failures can occur 
when they are not allowed, so a modification of the mod- 
els in [lo, 12, 141 is proposed below to force these state 
constraints via the use of state dependent Poisson noises. 

Note, that if ni (t) = 0 then workstation failure can 
not occur, similarly if q(t) = Ni then workstation repair 
can not occur. The SDE (10) for the number of operational 
workstations can be expressed as a function of ni(t) in the 
following way: 

1 

dPR(% 7%(t) = 0 
dni(t) = dPF(t) - C?!Pr(t), 0 5 Tli(t) 5 Ni 

-#f(t), T&(t) = IV; 1 

I (11) 

where the arrival rates, l/X: and l/X:, and the mark prob- 
abilities l/3: and l/a?, are for failures and repairs, re- 
spectively. This formulation is quite cumbersome to imple- 
ment in numerical methods for the solution to the resulting 
Hamilton-Jacobi-Bellman (HJB) equation. Also, this type 
of formulation may transform a linear system into nonlinear 
system that requires a greater deal of computational effort 
to obtain a solution. 

A more convenient way to model this phenomena 
would be to use state dependent Poisson noise. This leads 
to the following SDE for (10): 

hi(t) = dPf(X(t), t) - dPF(X(t), t), (12) 

where the global state vector X(t) = [nT (t), iT (t)lT is 
partitioned into the operational workstation vector n(t), 
along with additional state component vector R(t) as used 
in [ 10, 12, 141. The arrival rates for failures and repairs are 
given by: 
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and 

0 5 ni(t) 5 iVi - 1 
n%(t) = Ni , (14) 

with the mark probabilities given by l/@‘(X(t), t) and 
l/Gf(X(t), t), respectively. The arrival rates divide the 
state space for ni(t) into 3 distinct regions that are the same 
as that of (11) However, each value that ni (t) can assume 
must be considered separately since the mark distribution is 
different for each value. The advantage of this formulation 
over that of (11) is that only the parameters for the Poisson 
noise change as opposed to changes in the actual dynamical 
system. This formalism in (12,13,14) improves on our prior 
work in [lo, 12, 141. 

4. Natural Resource and Price Dynamics Model 

In [6], the optimal control problem for a bioeconomic 
system undergoing both natural resource and price fuctua- 
tions is formulated and solved computationally, along with 
some analysis of the quasi-deterministic approximation [5] 
using infinitesimal moments. The motivating application 
comes from the Pacific halibut stock which is closely regu- 
lated by the International Pacific Halibut Commission, con- 
veniently providing a long history of Pacific halibut data, 
including prices (see [6] for more information). 

A simple, manageable model, in the notation used 
here, of halibut stock with biomass X,(t) = 21 (a ran- 
dom variable) at time t, grows according to a logistic law 
(nonlinear) in absence of disturbances with intrinsic growth 
rate r1 and carrying capacity K, but is harvested at a rate 
H(t) = QU(t)X,(t) h w ere U(t) = ‘u. is the harvesting 
effort (a control) and Q is the catchability (efficiency). Ac- 
cording to the data, the price obtained from the harvest is ap- 
proximately modeled [6] by the supply-demand relationship 
p(t) = (PO/H(t) + pr) . X:!(t), i.e., price per unit harvest 
rate, where po and pl are empirically determined constant 
coefficients, while X2(t) = 22 denotes a random inflation- 
ary price fluctuation factor, and grows (or declines if the 
rate is negative) with linear rate coefficient ~2. The factor 
X2(t) is a better natural stochastic modeling state variable 
than the price itself due to the presence of the reciprocal 
state-control harvesting rate H(t) in the deterministic part 
of the supply-demand relationship. 

Upon extending the prior model [6] to include state de- 
pendent environmental fluctuations in the resource biomass 
and price, the vector state dynamics are given by 

dX(t) = (Fo(X(t))+Fl(X(t))v(t))dt (15) 

+ Go(X(t))dW(t)+Ho(X(t))dP(X(t),t), 

where the state vector is dX(t) = [dXl(t) dXz(t)lT, the 
Gaussian noise term is W(t) = [WI(~) VV2(t)lT, and the 
Poisson noise term is 

[ 
[Pl.Im(at~l,,xl 

p(X(t),t) = [Pz,i(X(t), t)lq2x1 ’ 1 (16) 

with a multitude of Poisson noise terms given for model- 
ing a multitude of environmental effects. These multitude 
effects could include severe predation, epizootics (disease 
epidemics in the natural resource) or high variability in the 
market for the resource, i. e., fluctuation rates are magni- 
fied by crowding in biomass or large changes in the market 
price. Abiotic (nonbiological) effects, such as severe tem- 
perature changes, may be present as well, but due to their 
abiotic properties their state dependent influence is nearly 
linear in the jump amplitude rather than nonlinear in jump 
amplitude and rate. The state dependent array coefficients 
are given by 

Fe(x) = [rm(l - a/~) 7~2]~, 

Fl(X) = (-@a oy, 

Go(x) = “b”’ u2;2 
[ 1 > and 

where the ai and bi are linear jump amplitude coefficients. 
Assuming quadratic costs, c(u) = cl u+ csu2, the instanta- 
neous discounted net costs or discounted costs less harvest 
revenue in terms of the current notation are 

C(x,u, t) = Co(x, t) + Cl(X, t)u + c2u2/2 (17) 
= e -6t ((-POZ2) + (Cl - PlZ2)u. + c2u2) , 

where S is the nominal discount rate (inflationary effects 
are already included in the inflationary factor, otherwise the 
real discount rate would be used) and the minimization is 
over the time horizon [t, tr]. This is another example of a 
LQGPKJ problem, or LQGP problem in control only, al- 
lowing the dynamics to be nonlinear in the state, so that the 
dynamic model will be a reasonable model of the limited 
resource. 

5. Canonical Models and Stochastic Dynamic 
Programming 

The linear dynamical system for the LQGP problem is 
governed by the stochastic differential equation (SDE) sub- 
ject to Gaussian and state dependent Poisson noise distur- 
bances is given by (for details of the state independent jump 
case see Westman and Hanson [lo]): 

dX(t) = [A(t)X(t) + B(t)U(t) + C(t)]& (18) 
+ G(t)dW(t) + [Hi(t) . X(t)]dPl(X(t), t) 
+ [Hz(t) . U(t)]dPz(X(t), t) + H3(t)dP3(X(t), t), 

for general Markov processes in continuous time, with m x 1 
state vector X(t), n x 1 control vector U(t), T x 1 Gaus- 
sian noise vector dW(t), and qe x 1 space-time Poisson 
noise vectors dPe(X(t), t), for C = 1 to 3. The dimen- 
sions of the respective coefficient matrices are: A(t) is 
m x m, B(t) is m x n, C(t) is m x 1, G(t) is m x r, 
while the He(t) are dimensioned, so that [HI(t) . x] = 
[CI, fhijk(t)~kImxql? [H2(t)‘Ul = [Ck ~2ijk(thlmxqz 
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and H3 (t) = [& (t)lm xqg. Note that the space-time Pois- 
son terms are formulated to maintain the linear nature of the 
dynamics, but the first two are actually bilinear in either X 
or U and &‘e for !J = 1 or 2, respectively. 

In contrast, the LQGP/U problem denotes the LQGP 
in control onfy problem and permits fairly arbitrary state de- 
pendence since the state dependence is usually determined 
by the application, while the control is probably determined 
to have a simpler form by the plant manager. The nonlinear 
dynamical system for the LQGPKJ problem is governed by 
the stochastic differential equation @DE) subject to Gaus- 
sian and state dependent Poisson noise disturbances is given 
by (for details of the state independent jump LQGP/U case 
see Westman and Hanson [ 12, 131): 

dX(t) = [Fo(X(t), t) + Fi(X(t), t)U(t)]dt (19) 

+ Go(X(t), t)dW(t) + &(X(t),t)dPo(X(t), t) 
+ [Hl(X(t), t) U(t)]dPl(X(t), t), 

where X(t) is the m x 1 state vector in the state space 7&, 
U(t) is the n x 1 control vector in the control space VDu, 
&V(t) is the T x 1 Gaussian noise vector, and dPe(X(t), t) 
is the qe x 1 space-time Poisson noise vector for e = 0 or 
1. The dynamic coefficients (subscript “0” denotes control- 
independence and subscript “1” denotes linear in control) 
are the following: Fo(x, t) is them x 1 control-independent 
part of the drift, Fr (x, t) is the m x n coefficient of the linear 
control term in the drift, Go(x, t) is the m x r amplitude 
of the Gaussian noise, and Ho (x, t) is the m x qo jump 
amplitude of the control independent Poisson noise. The 
linear m x q1 x n coefficient Hi(x, t) is the nonstandard 
linear algebra form, involving the array valued right-sided 
inner product, 

g Hl,i,j,k(X, t)m 1 9 (20) 
k=l mxq1 

which is the control dependent jump amplitude of the Pois- 
son noise. 

The quadratic performance index or cost functional 
that is employed is quadratic with respect to control costs 
while permitting the costs due to the state to be nonlinear, is 
given by the time-to-go or cost-to-go functional form: 

V[X,U,t] = ~(x’sw(tf) (21) 

where the time horizon is (t,tf), with S(tf) ? St is the 
final cost matrix. This final cost, known as the salvage cost, 
is given by the quadratic form, xTSfx = Sf : xxT = 
Trace[SfxxT]. 

The instantaneous quadratic cost function in control 
for the LQGPAJ problem is 

C(x, u, t) = Co(x, t) + CF(x, t)U + &lTCz(x, t)u. (22) 

In order to minimize (2 1,22) requires that the quadratic cost 
coefficient Cz (x, t) is assumed to be a positive definite n x n 

array, while Sf is assumed to be a positive semi-definite 
m x m array. The linear cost coefficient Cr (x, t) is a n x 1 
vector and Ce(x, t) is a scalar. 

Returning to the genuine LQGP problem, the standard 
instantaneous cost function is given by 

C(x, u, t) = ; [xT&(t)x, +uTR(t)u] (23) 

In order to minimize (21, 23) requires that the quadratic 
control cost coefficient R(t) is assumed to be a positive defi- 
nite n x n array, while the quadratic state control coefficient 
Q(t) is assumed to be a positive semi-definite m x m ar- 
ray. The coefficients R(t) and Q(t) are assumed to be sym- 
metric for simplicity. A form similar to (22) can be used, 
however a formal closed form analytical solution for the 
control problem requires that the form of the instantaneous 
cost function be quadratic in both state and control. 

The LQGP problem is defined by (18,21, 23) and the 
LQGPKJ problem is defined by (19,21,22). The quadratic 
performance index (21 with 23 or 22) is selected to be the 
most general form for the LQGP or LQGP/U problems, re- 
spectively. 

The stochastic dynamic programming approach is used 
to solve the control problems. So, let a functional, the opti- 
mal, expected cost, be defined as: 

(24) 

where the restrictions on the state and control are that they 
belong to the admissible classes for the state, DD,, and con- 
trol, D,, respectively. A final condition on the optimal, ex- 
pected value is determined from the final or salvage cost 
using (24) with V[X, U, tr] in (21): 

21(x, tf) = +x3,x, (25) 

for x in VD,. 

Upon applying the principle of optimality to the op- 
timal, expected performance index, (24, 21, 23), and the 
chain rule for Markov stochastic processes in continuous 
time for the LQGP problem yields 

0 = $ + Min [(Ax + BU + C)T V,[V] 
” 

+ ~(GG~):v,[v,T[v]]+~x~Qx++~Ru 

[+ + [ffl (t) ’ X]kzk, t) - u] h,kdtk 

[dx+ [HZ(t) ’ U]kzk,t) - W] &&kdZk 

43 

+ c h,k 
I 

[W(X + &,k(t)tk, t) - ‘J] &,kdtk , 

k=l %,k 1 
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with &,k = &,k(X,t) and $i,k = &,k(Zk,X,t) for i = 
1, 2, 3 where the column arrays used in the Poisson terms 
are defined by the notation, 

and 

&c(t) = [H3,i,k(&xlr (29) 

and the double dot product is defined by A : B = 
xi Cj Ai,j Bi,j = Trace[ABT]. The backward partial dif- 
ferential equation (PDE) (26) is known as the Hamilton- 
Jacobi-Bellman (HJB) equation and is subject to the final 
condition (25). 

Similarly, for the LQGPKJ problem the HJB equation 
can be written as 

0 = g + Co + (FoTV&l) 

+ ;u GoG,T) : Vz [v&l]) 

- ddo,kdZk +S*(x,t), 

where the control minimization terms have been collected 
in the control switching term, 

S*(x,t) = Min 
UEV, 

cTu + (F;~)~v,[v] + +TC2u(31) 

[w(X + [Hl(x, t) . & zk, t) 

with Xi,k = Xi,k(Xyt) and #‘i,k = &,k(Zlc,X, t) for i = 1 
and 2 where HO&(X, t) E [%,+(x9 t)lmxl and [Hl(x, t). 
U]k E [x7=, ffl,i,k,j(X,t)~j]mxl for k = 1 to Ql with 
1 = 0 or 1, respectively, and is subject to the final condition 
equation (25). The argument of the minimum is the opti- 
mal control, u* (x, t); if there are no control constraints the 
optimal control is known as the regular control, u&x, t), 
which can not be determined explicitly by standard calcu- 
lus optimization in this case, due to the control dependent 
Poisson noise term. 

6. Computational Considerations 

Although the primary purpose of this paper is to dis- 
cuss modeling considerations, the computational considera- 
tions are also important and will be briefly discussed. From 

the state dependent multistage manufacturing system and 
the natural resource with price dynamics applications, it is 
clear that a partition of the state space for the usual LQGP 
problem is necessary in order to represent the influence of 
the state dependent Poisson noise. In the case of continuous 
or discrete functions to represent the mark distribution, a 
partition of the state space needs to be formed in which not 
only the arrival rates but also the mark distributions are the 
same. It will be this partition that is essential in determin- 
ing the numerical solution for the optimal control problems. 
The computational methods need to be extended to accom- 
modate for this local partitioning of the state space for the 
genuine LQGP problem [lo], solving the temporal Riccati- 
like system by marching in time. 

However, the LQGPKJ problem [ 12, 13, 141 is as- 
sumed to be genuinely nonlinear in the state, so partitioning 
is unnecessary, since the state dependence of the Poisson 
rates only introduces additional coefficients variable, pos- 
sibly nonlinear, in the state. The discrete computational 
PDE-type methods of [12, 13, 141 carry over to this case 
with modifications for state dependent jump rates, as well 
as amplitude mean and covariance integrals. 

6.1. LQGP Problem with Local State Independence 
To solve (26) subject to the final condition (25), for the 

LQGP problem (for further details see Westman and Han- 
son [lo]) a modification of the formal state decomposition 
of the solution for the usual LQG problem (for the usual 
LQG, see Bryson and Ho [1], Dorato et al. [2], or Lewis 
[S]) is assumed: 

w(x,t) = ;xTS(t)x+ DT(t)x+ E(t) (32) 

1 
+ 5, s 

t’ (GG~) tT) : qT)dT. 

The final condition (25) is satisfied, provided that 

S(t,) = Sf, D(tf) = 0, and E(tf) = 0. (33) 

The ansatz (32) would not, in general, be true for the 
state dependent case, but would be applicable if the Pois- 
son noise is locally state independent, while globally state 
dependent. That is, the state domain is decomposed into 
subdomains, VD, = Ui ‘Dxi, where the arrival rates and mo- 
ments for all the Poisson processes are constant in the region 
2),, and can be expressed as: 

{ 

h(X(t),t) = Ai(t) 
z(X(t), t) = &t(t) 
o(X(t),t) = oi(t) 1 

, for X(t) E 7&;, (34) 

for all subdomains i. This was the case in the multistage 
manufacturing system, where the value of X(t) is used to 
decompose the state domain. If (34) has any explicit depen- 
dence on X(t) then the resulting system would then form a 
LQGPAJ problem and the analysis and the extended com- 
putational algorithm of [ 101 would no longer apply. 
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6.2. LQGPIU Problem 
TO solve (30, 31) subject to the final condition (25), in 

the case of the LQGPAJ problem, the methods of Westman 
and Hanson [12, 13, 141 can be applied with modifications 
for the state dependent jump rates, mean jump amplitudes 
and their covariance, 

Nx(t), t) 

{ 1 
ww, t) ! (3.5) 
4x(t), t) 

as given in the integrals in (8, 9). The algorithm presented 
in Westman and Hanson [ 131 is used to solve the LQGP/U 
problem. and would require additional modifications in 
quadrature procedures to account for the added state depen- 
dence in those jump integrals. We omit further details here 
since related numerical considerations in computing state 
independent Poisson jump integrals are found in Westman 
and Hanson [ 131. 

The applications to the multistage manufacturing sys- 
tem and to resource management with price dynamics are 
examples of the state dependent Poisson noise in LQGP/U 
problems, in absence of state domain decomposition. 

7. Conclusions 

These state dependent models are of great interest be- 
cause they allow for modeling of industrial and natural phe- 
nomena, where important changes can occur due to state 
dependent jumps in the system in terms of both rates and 
amplitudes. This allows for greater realism to be incor- 
porated into the dynamical system since accurate ways of 
representing jumps in the value of the state are included in 
the dynamical model. The models of the multistage manu- 
facturing system and the management of a natural resource 
with stochastic price dynamics are used to illustrate the use- 
fulness of the state dependent Poisson noise in modeling 
stochastic dynamical systems. To solve the resulting opti- 
mal control problems for this dynamical system formula- 
tion requires only modifications to existing computational 
methods. This formulation can be used in many applica- 
tions which have not previously considered the use of jumps 
in the value of the system, for example, biomedical control, 
manufacturing systems with workstation maintenance, pop- 
ulation control, flexible space structures, as well as many 
others. 
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