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Abstract

Local training for high performance computing using remote national supercom-
puting centers is quite different from training at the centers themselves or using
local machines. The local site computing and communication resources are a frac-
tion of those available at the national centers. However, training at the local site
has the potential of training more computational science and engineering students
in high performance computing by including those who are unable to travel to the
national center for training. The experience gained from supercomputing courses
and workshops in the last seventeen years at the University of Illinois at Chicago is
described. These courses serve as the kernel in the program for training computa-
tional science and engineering students. Many training techniques, such as the key
local user’s guides and starter problems, that would be portable to other local sites
are illustrated. Training techniques are continually evolving to keep up with rapid
changes in supercomputing. An essential feature of this program is the use of real
supercomputer time on several supercomputer platforms at national centers with
emphasis in solving large scale problems.
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1 Introduction

High performance computing education is important for keeping up with the
rapid changes in computing environments. The training of computational sci-
ence and engineering students in the most advanced supercomputers makes
it less likely that their training will become quickly obsolete as with conven-
tional computer training. Rapid changes in supercomputing causes concern
for some, yet supercomputing remains with us although changed in character,
provided we accept the notion that the term supercomputing refers to the
most powerful computing environments at the current time. Preparation in
high performance computation is preparation for the future of computation.

The problem is that most universities and colleges do not have on-site super-
computer facilities and only a small fraction of the infrastructure. The com-
putational environment for remote access at these institutions to the national
or state supercomputer centers may not be up to the quality of the com-
puting environment as access at the centers themselves. In additional, while
the the remote centers may have excellent training facilities, many students
lack the mobility, both in finances and time, to travel to the remote center
for training. Thus, local supercomputing training is important for making the
educational benefits and computational power of supercomputers available to
large numbers of students with only electronic access to remote national and
state centers. This paper is designed to share with other local instructors prac-
tical supercomputer training advice gained from a long experience in hope of
reducing the burden of local training. The goal is to give the local students
local supercomputing training with low overhead comparable to the resource
rich national centers using limited resources.

The University of Illinois at Chicago has pioneered local use of remote na-
tional supercomputer centers to train its computer science, applied science
and engineering graduate students in the use of highest performing computers
available academically to solve the large problems of computational science.
The training has been at two levels, I n t r o d u c t i o n t o S u p e r c o m p u t i n g [9] and
W o r k s h o p P r o g r a m o n S c i e n t i fi c S u p e r c o m p u t i n g [12]. Starting in the spring
quarter of the 1985 academic year, the students of the introductory course
have done group projects on parallel processors with a moderate number of
processors, vectorizing supercomputers and massively parallel processors.

For the 1987 academic year, N. Sabelli with the author conceived of the U I C
W o r k s h o p P r o g r a m o n S c i e n t i fi c S u p e r c o m p u t i n g [12], the second level. Due
to program down-sizing at the University of Illinois, the workshop has been
scaled down from full-time to multi-hour workshop course and is currently
merged with the introductory course, maintaining a good part of the kernel
of the original workshop. The workshop differed from the introductory course
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in that the graduate students had to bring a thesis or other computational
science and engineering research problem along with code needing optimiza-
tion, topics include a far wider range of computer topics than the course, and
outside experts are brought in to lecture. The workshop course served as the
advanced course to follow the introduction to supercomputing course. Sig-
nificant changes have been made in both introductory and workshop courses
in course structure and contents since our earlier reports [9,12], along with
corresponding significant advances in supercomputing.

An objective is to train students in the use of supercomputers and other high
performance computers, in order to keep their computer training at the lead-
ing edge. Other objectives are to give students background for solving large
computational science research problems, and developing new parallel algo-
rithms. The long range goal is to make the students better prepared for future
advances in high performance computing. Much of the material comes from
transfer of knowledge gained in the author’s research on large scale computa-
tion for stochastic dynamic programming as in [10,11].

A particular objective of this paper is to transfer experience of teaching su-
percomputing and parallel processing to other prospective teachers. Nevison
[17] summarizes several of the difficulties in implementing parallel process-
ing courses for undergraduates due to the lack of prepared faculty to teach
such courses. Much of this author’s material, obviously not all, is technology
transfer from my own research in solving large scale application computations,
which is another way, not mentioned by Nevison, of preparing to teach parallel
processing courses.

A very early draft of this paper was presented at the February 1994 D O E H i g h
P e r f o r m a n c e C o m p u t i n g E d u c a t i o n C o n f e r e n c e in Albuquerque on the panel
L a b o r a t o rya n d C e n t e r E d u c a t i o n a l T r a i n i n g E ff o r t s . From a 2002 perspective,
the following sections describe the current i n t r o d u c t o rys u p e rc o m p u t i n g c o u r s e
in Section 2, the s u p e r c o m p u t i n g w o r k s h o p in Section 3, and related topics
for the purpose of communicating the Chicago experience to others who are
implementing a similar local supercomputing training courses. In Section 4, the
basic local user’s guide, that provided the critical and efficient link between our
local resources and the remote supercomputing center resources, is described.
In Section 5, selected other supercomputing courses and on-line information
are briefly mentioned. In Section 6, future directions into large scale cluster
computing are provided, with concluding remarks in Section 7.
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2 Introductory Supercomputing Course Description

The introductory supercomputer course covers both theoretical developments
and practical applications. For practical applications, real access to super-
computers and other advanced computers is obviously essential. Almost all
theoretical algorithms have to be modified for implementation on advanced
architecture computers to gain optimal performance. Loops or statements may
have to be reordered and data structures altered, so that data dependencies
are minimized and load balancing of processors is maximized. Also, the se-
lection of the best algorithm usually depends on the critical properties of the
application and of the hardware. The difference in supercomputing or parallel
processing courses between a computational science versions, as this course,
and computer science versions, is that in the computational science versions
some of the hardware and software issues are not pursued in as much depth
as in the computer science versions. This is because the ultimate objective
of computational science is to solve large scale application problems, but the
computational science student still has to have a sufficient grasp of the machine
and programming environment to find the best high performance approach for
that environment. Students in this course come diverse areas of science and
engineering: mathematics, mathematical and engineering computer sciences,
physical sciences, and other fields of engineering.

Access to several advanced machine architectures greatly enhances the learn-
ing experience, by providing a comparison of architectures and performance.
One of the best way to understand one supercomputer is to learn about
another supercomputer. Recent offerings have used Cray Y-MP, C90, T3D,
T90 and T3E, as well as Connection Machines CM-2 and CM-5, HP-Convex
SPP1200, HP9000, and SGI Origin 2000. The average enrollment has been
about 16 students according the final grade count.

M C S 5 7 2 I n t r o d u c t i o n t o S u p e r c o m p u t i n g is a one semester course that is
intended to entry-level give graduate students of the University of Illinois at
Chicago a broad background in advanced computing, and to prepare them for
the diversity of computing environments that now exist.

All offerings of this course, from the 1985 academic year to the present, were
based on many journal articles, books, and the the author’s own research
experience in advanced computing. The students were mainly evaluated on
their performance on theoretical homework, individual computer assignments,
and major group project reports, as well as their presentation to the class. Over
the years, the students completed advanced group computer projects on the
Argonne National Laboratory Encore MULTIMAX, Alliant FX/8 and IBM
SP2 parallel computers; on the NCSA Cray X-MP/48, Cray Y-MP4/64, Cray
2S, Connection Machine CM-2, Connection Machine CM-5, and SGI Origin
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2000; on the UIC HP-Convex SPP1200 and HP9000/800; on the PSC Cray
C90 and Cray T3D; and on the SDSC Cray T90 and T3E.

Perhaps, the best way to describe the course contents is to list a recent course
semester syllabus:

Introduction to Supercomputing Course Syllabus (Abbreviated)

Catalog description: Introduction to supercomputing on vector, parallel and mas-
sively parallel processors; architectural comparisons, parallel algorithms, vectoriza-
tion techniques, parallelization techniques, actual implementation on real machines
(Cray super vector and massively parallel processors).
Prerequisites: MCS 471 Numerical Analysis or MCS 571 Numerical Methods for
Partial Differential Equations or consent of the instructor. Graduate standing.
Semester Credit hours: 4
List of Topics Hours.

• Introduction to advanced scientific computing. 3 hours.

• Comparison of serial, parallel and vector architectures. 3 hours.

• Performance measures and models of performance. 3 hours.

• Pure parallel algorithms and data dependencies. 3 hours.

• Optimal code design. 3 hours.

• Loop optimization by reformulation. 6 hours.

• Code implementation on vectorizing supercomputers (eg, Cray T90). 5 hours.

• Code implementation on massively parallel processor (eg, T3E). 4 hours.

• Parallel programming interfaces (eg, MPI, PVM). 6 hours.

• Code implementation on hybrid and distributed parallel processors. 3 hours.

• Block decomposition and iteration methods. 6 hours.

• Total. 45 hours.

Required Texts:

• F. B. Hanson, A Real Introduction to Supercomputing, in “Proc. Supercomputing
’90,” November 1990, pp. 376-385.

• F. B. Hanson, ”MCS572 UIC Cray User’s Local Guide to NPACI-SDSC Cray
T90 Vector Multiprocessor and T3E Massively Parallel Processor, v. 14, http:-
//www.math.uic.edu/∼hanson/crayguide.html, Fall 2000.
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• J. J. Dongarra, I. S. Duff, D. C. Sorensen and H. A. van der Vorst, Numerical
Linear Algebra for High-Performance Computers, SIAM, 1998.

The following subsections are brief descriptions of selected lectures and related
topics covered in this course. Each subsection is a capsule condensation of a
topic or set of lectures on an area to give a good idea or the course to poten-
tial supercomputing teachers. The course is a genuine computational science
and engineering course so that students come from many departments and
colleges. Although it would be nice to have a lot of computer science prerequi-
sites, the prerequisites are kept minimal, basically computational mathemat-
ics and computer skills. The course has to be self-contained, teaching essential
hardware and software topics so that students have a good understanding
of the supercomputing or parallel processing they need to solve their large
scale applications. An attempt is made to obtain the best available large scale
computers from the national supercomputing centers. At least 4-5 weeks are
needed before students are ready to work on simple supercomputing or par-
allel processing problems. Many students come to the course without much
knowledge of parallel processing, beyond the basic idea that it involves many
processors.

2 .1 T e x t s

One difficulty in teaching M C S 5 7 2 I n t r o d u c t i o n t o S u p e r c o m p u t i n g is the
choice of a text or texts, especially when real supercomputers are used. There
are a s u p e r number of books available on high performance computing, paral-
lel processing, and related issues. However, most of these references are either
over-specialized, too theoretical, or out of date. The rapid changes in super-
computing technology cause many of the supercomputing references to quickly
become out-of-date, especially if there is an overly strong emphasis on a small
set of real machines or theoretical computer computer science or hardware
architecture. Although no single text was used in this course, if we had to
choose one text for the I n t r o d u c t i o n t o S u p e r c o m p u t i n g course, some possible
choices that cover a broad range of supercomputing topics are Dongarra et al.
[5], Levesque and Williamson [16], Golub and Ortega [7], Hwang [15], Ortega
[18], Quinn [20], and Wilkinson and Allen [21]. However, many of the other
references have been used for particular topics. World Wide Web (WWW)
links to many on-line web hypertexts are given on the class home page at the
web address h t t p :/ / w w w .m a t h .u i c .e d u / ∼h a n s o n / m c s 5 7 2 / , as well as a lot of
the author’s own material, and a much more extensive list of supplementary
references is given at h t t p :/ / w w w .m a t h .u i c .e d u / ∼h a n s o n / s u p e r re f s .h t m l .
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2 .2 A rc h i t e c t u r e

Our introductory course starts out with the basic architectural elements of ser-
ial, vector, shared and distributed memory parallel, and vector multiprocessor
machines [15]. It is important that students have a good mental image of
what is happening to data and instruction flow between memory, processing
units and registers, the sufficient details of the machine model. Otherwise,
students will have difficulty in understanding parallel and vector optimization
techniques later in the course. Flynn’s simple computer classification (SISD,
SIMD and MIMD) [15] was supplemented by how real complications modify
the classification, such as hybrid vector registers, vector operations, pipelin-
ing, bus communication networks, shared memory and distributed memory.
Also, an early explanation that asymptotic pipeline speed-up is the number
of pipeline stages [15] provides motivation for less than ideal vector speed-up
found in practice.

2 .3 P e rf o r m a n c e M o d e l s

The theoretical analysis of performance models is also helpful, because they
give simply understood characterizations of the power of supercomputers and
the gross behavior of the machine model. Although mostly theoretical, this
topic is always accompanied by some the empirical story behind the theory,
giving sufficient reality to the model that aids in remembering it. The simplest
model is the classical Amdahl Law for a parallel processor,

Tp = [1 − α + α/p] · T1, (1)

where the execution or CPU time on p parallel processors depends on the
parallel fraction α and is proportional to the time on one processor T1, which
should be the time for the best serial algorithm. This model assumes that
the parallel work can be ideally divided over the p parallel processors and
leads to Amdahl’s law for the saturation of the speed-up Sp = T1/Tp at the
level 1/(1 − α) in the massively parallel processor limit p −→ ∞, i.e., that
parallelization was limited. An analogous law holds for vectorization. The
deficiency with this law is that it is too simplistic and is no match for either the
complexity of supercomputers or the size of applications that are implemented
on current supercomputers. Indeed, one principal flaw in Amdahl’s law is that
the parallel fraction is not constant, but should depend on the problem size,
α = α(N), and as computers become more super, computational users are apt
to solve larger problems than they had been able to solve before.

A modification [10] of Amdahl’s law for problem size, where the major parallel
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work is in loops of nest depth m with N iterations in each loop of the nest,
leads to the formula

Tp = τ · [K0 + Km · Nm/p], (2)

where τ is some time scale, K0 is a measure of scalar or non-loop work and
Km is a measure of loop nest work. Comparison of (2) and Amdahl’s model
(1) leads to the nearly ideal parallel fraction

α(N) = 1 − K0

K0 + KmNm
−→ 1, (3)

in the large problem limit N −→ ∞, a limit not represented in the original
Amdahl’s law. Efficient use of supercomputers requires large problems.

Another useful modification of Amdahl’s law is for linear parallel overhead

Tp = [1 − α + α/p] · T1 + τ · (p − 1), (4)

developed as a model of the 20-processor Encore Multimax parallel computer
performance to convince students that they needed to run larger problems to
get the benefit of parallel processing. A Unix fork command was used to gen-
erate parallel processes and a performance evaluation measurement indicated
that the cost was linear for each new process. The speedup for this model has

a maximum at p∗ =
√

αT1/τ , so that as p → +∞, the speedup decays to
zero. Hence, if the student’s work load, T1, is sufficiently small, a s l o w -d o w n
occurs for a sufficiently large number of processors, and the student sees no
benefit in parallel processing, but the model demonstrates that S u p e r c o m p u t -
e rs N e e d S u p e r P r o b l e m s . The model and the story behind it always works for
new students and prepares them to think beyond the toy problem homework
assignments of regular classes.

Hockney’s [14] asymptotic performance measures are another procedure for
avoiding Amdahlian size dependence insensitivity and are used in the Top 500
Supercomputer Sites {http://www.top500.org/}. The question of size depen-
dence is also related to s c a l e d s p e e d -u p ideas used by Gustafson and co-workers
[8] in the first Bell award paper. Scaled speed-up is based on the idea that
is the inverse of Amdahl’s, in that users do not keep their problem sizes con-
stant (i.e., keep T1(N) fixed), but increase their problem size N to keep their
turn around time, i.e., Tp, constant as computer power increases. Also, scaled
speed-up implies that speed-up may be computed by replacing T1(N) by r
times the time on a N/r fraction of the problem, since a single Massively
Parallel Processor CPU cannot compute the whole problem.

8



2 .4 S u p e rc o m p u t e r P re c i s i o n

Another feature that may have been overlooked in some supercomputing
courses is numerical precision, but is not as important as it was in the past
due to a near uniform adoption of IEEE floating point standards [19] (See
also h t t p :/ / w w w .m a t h .u i c .e d u / h a n s o n / m c s 4 7 1 / F l o a t i n g P o i n t R e p .h t m l ). At
a more basic level is the difference in numerical representation was found in
bit-oriented arithmetic such as on Cray or IEEE systems and byte-oriented
arithmetic of IBM main-frames or similar systems. This lead to bad judgment
and confusion for beginners, especially for such things as stopping criteria or
the comparison of results and timings from different machines. The IBM 32-
bit Fortran77 byte-oriented single-precision arithmetic uses 3 bytes (24 bits)
for the decimal fraction and 1 byte for the exponent and sign in hexadecimal
(base 16) representation. However, IBM 64-bit, byte-oriented, double precision
arithmetic uses 7 bytes for the fraction and the same 1 byte for the exponent
and signs. Byte-oriented double precision is more than double.

Bit-oriented arithmetic comes in several flavors. On its vector supercomputers,
Cray uses 64 bits for its single precision, with 48 bits for the fraction and 16
bits for the exponent and sign, but uses 128 bits for its double precision with
96 bits for the fraction and 32 bits for the exponent and sign, i.e., authentic
double precision. IEEE precision is also bit-oriented and is used on many
recent machines including Cray massively parallel processors, but single and
double precision are roughly half of the corresponding precision on Cray vector
machines. The IEEE precision [19] comes with several new concepts such as
N o t a N u m b e r ( N a N ) , ro u n d i n g t o e v e n , I N F I N I T Y and g r a d u a l u n d e r fl o w
t o z e r o that may confuse new users. Most vendors have pledged to adopt the
IEEE precision standard.

These differences show up in the truncation errors. For internal arithmetic, the
default truncation, contrary to popular opinion, had usually been in the past
c h o p p i n g o r r o u n d i n g d o w n , unless a different type of rounding is requested,
such as in output. However, the IEEE precision standard uses ro u n d i n g t o
e v e n . The features of these precision types are summarized in Table 1. The
last column gives the equivalent decimal precision which corresponds to the
effective number of decimal digits (p10) if the decimal machine epsilon (101−p10)
were equal to the machine epsilon (b1−d) in the internal machine base (b). From
this table, the different precision types can be summarized as

i b m -s g l < i e e e -s g l % c r a y-s g l < i b m -d b l = i e e e -d b l % c r a y-d b l <i b m -q u a d
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Table 1
SuperComputer Precision:

Floating Point Precision Machine Equivalent

Precision base digits Epsilon Decimal

Type b p b1−p Precision

IBM Single 16 6 0.95e-06 07.02

IBM Double 16 14 0.22e-15 16.65

IBM Quad 16 28 0.31e-32 33.51

Cray Single 2 48 0.71e-14 14.45

Cray Double 2 96 0.25e-28 29.59

CM & IEEE Single 2 24 0.12e-06 07.92

CM & IEEE Double 2 53 0.22e-15 16.65

Sun Sparc 2 53 0.22e-15 16.65

VAX D Float 2 56 0.28e-16 17.56

2 .5 D a t a D e p e n d e n c i e s

The topic of data dependencies is of the utmost importance for parallel and
vector optimization of code. Wolfe’s [23] monograph describes many dependen-
cies, and a multitude of other optimization techniques. A useful observation
about reducing data dependencies and anti-dependencies, in order to optimize
code performance, is that the dependencies or anti-dependencies that inhibit
vectorization are usually the same ones that inhibit parallelization. Thus a
good instructional technique is to treat vectorization as a primitive kind of
parallelization, avoiding most of the artificial historical distinctions. Other
elementary dependencies covered are control dependence and cyclic (loop) de-
pendence. However, an advanced presentation of dependencies in this course
relies on Cray dependency analysis from our workshop’s old Cray training
notes, in which the code in a vector loop segment surrounding a target assign-
ment statement is partitioned into previous and subsequent areas, followed
by an examination of whether the loop index is decrementing or increment-
ing and whether there is a lesser or greater subscript in either the previous
or greater area. This leads to a rigorous classification of stride one loops and
there is a stronger Cray dependency test for other strides including one. When
these Cray dependency lectures are fortified by concrete examples comparing
serial and parallel stores, students no longer have a questions about parallel
over-writes or synchronization errors.
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2 .6 F o rt ra n E x t e n s i o n s a n d H i g h P e r f o r m a n c e C

Many Fortran compilers for advanced computers, such as the Crays and the
Connection Machine accept Fortran 90 array notation extensions. These ex-
tensions not only simplify the supercomputer programmer’s coding tasks but,
more importantly, facilitate the automatic optimizing compiler recognition of
optimizable array constructs. Making sure that each statement in a poten-
tially vectorizable loop is a vector or array statement in the loop’s index will
maximize the performance in a powerful vectorizing compiler such as those
on a Cray. Use of array notation and collecting like-size statements together
is an effective optimization technique. The level of automatic optimization of
the C language was slow in development, but now the optimization of C and
Fortran are comparable.

In the CM-5 Connection Machine multi-faceted, massively data parallel proces-
sor, only Fortran 90 statements (especially array statements) are computed on
the CM-5 processing nodes; otherwise statements are computed on the single
processor, control nodes.

While the principal programming language of most supercomputers was once
Fortran, the C language is now more prevalent especially for computer sci-
ence majors, although engineering majors not in computer science still prefer
Fortran. During the fall of 1995, the number of C language projects became
comparable to the number of Fortran projects. An effort has been made to
have a bilingual approach in our lectures in the past several years using both
C and Fortran in examples.

In addition, a short crash course in the Unix operating system may be neces-
sary if the class is not Unix conversant, although most engineering majors are
likely to be knowledgeable about Unix.

2 .7 M e m o ryM a n a g e m e n t

There are many other topics that depend on what other flavor the supercom-
puter course will take. Related to principle of memory reference locality [15] is
the p r i n c i p l e o f l o c a l i t yo f re f e re n c e f o r a u t o m a t i c c o d e c o m p i l e r o p t i m i z a t i o n s .
The optimizing compiler will likely optimize only a relatively small segment of
code, and the compiler will not be too aware of values initialized very far from
the target segment. The special case of cache-based effects no longer seems
very relevant since the disappearance of cache-based parallel machines like the
Alliant, but would be important with emerging clusters of workstations.

If Cray vector computers are used, the chaining of pipelines together can
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be discussed as well as the overlapping of pipelines associated with different
operations or multiple pipelines [15]. Also, the notion of division of memory
into banks or other segments will be helpful in explaining memory conflicts
[15] and extended dimension techniques. The discussion of gather and scatter
in hardware is useful for explaining how the Cray Y-MP can efficiently handle
data movement from and to array with subscripts of subscripts for arguments.

On the Connection Machines memory layout also corresponds to processor
layout, so that performance will depend heavily upon how arrays are mapped
to the processors which hold the distributed memory. On the CM-5, the local
memory is actually held by the Vector Units attached to the local processing
nodes and thus the Vector Units play a major role in memory management.

2 .8 M e s s a g e P a s s i n g C o m m u n i c a t i o n

A major change in the Fall 1995 semester was that message passing architec-
tures and programming was included in the introductory course. The current
prevalence of distributed memory processors meant that message passing no
longer could avoided in supercomputing. Access was obtain to the PSC Cray
T3D and the CTC IBM SP2 massively parallel processors. PVM (Parallel
Virtual Machine) was used for the T3D, since that was the best supported
parallel message passing language on that machine at the time. The author
had worked on the final optimization of a predecessor of PVM at Argonne
National Laboratory [13]. Nevertheless, implementation was difficult and time
consuming due to lack of adequate tutorial documentation and working, up
to date examples for classes. Current massively parallel processing projects on
the Cray T3E have used MPI (Message Passing Interface).

Currently, our own documentation examples on-line are adequate for make
message passing work for class projects.

2 .9 L o o p O p t i m i z a t i o n s

There are many benefits in reformulating programming loops (cf., [16] for ex-
amples and original citations). One loop optimization technique is reordering
nested loops for linear algebra constructs in a column-oriented Fortran en-
vironment. Another beneficial technique is the unrolling of loops in Fortran
for pipelined machines where some data can be retained in vector registers.
Block decomposition or strip-mining of loops can be helpful, but in many sit-
uations it can actually be less efficient due to greater efficiency in automatic
optimization or to interference from memory conflicts. Benefits depend on the
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character and size of both problem and hardware and need to be tested for
each environment.

For particular machines, knowledge of the compiler loop optimization model
is important, because most of the potential optimizations are found in iter-
ated DO-loops. Compilers will also write the contents of subroutines at the
place of the subroutine call to save on subroutine overhead using a proce-
dure called i n -l i n i n g . Since parallelization or multi-tasking on the Cray vector
multiprocessors tends to be costly, loop optimization on these machines is pri-
marily the vectorization of the most inner loop, where most of the loop nest
work should be concentrated. On the Cray and Connection Machine, compiler
directives can, under appropriate circumstances, force optimization where au-
tomatic optimization does not work. Loop optimization became less important
as smarter optimizing compilers did more of the optimization automatically.

One systemic problem in teaching optimization was that most students were
trained to write modular code as in C and C++, hindering optimization and a
good amount effort was needed to make them understand the extra overhead
in modular programming with automatic optimization.

2 .1 0 C o d e T u n i n g b yt h e C o m p i l e r M o d e l M e t h o d

Automatic optimizing compilers work on a principle of locality, in that the cur-
rent program step depends on neighboring steps or references. Understanding
the model under which the machine compiler optimizes code can help the user
to enhance the performance by restructuring the code so that the optimizable
code is transparent to the compiler. Tuning code to the machine optimiza-
tion model might be called the C o m p i l e r M o d e l M e t h o d and result in extra
speed-ups over untuned code.

In the introductory supercomputing class, a starter problem is used consist-
ing of about a dozen poorly optimizable (e.g., “dusty deck”) loops is assigned
on the current Cray supercomputer. The purpose of the problem is for the
students to develop optimization skills by integrating class techniques, before
they tackle larger group projects. Thus, concentrating the beginner’s learning
on a smaller, concrete problem, wasting less time on the more significant as-
signment, and reducing any interference with center research account users.
The grade on this problem is roughly inversely proportional to the CPU time
the tuned, optimized loops take, provided that the final storage of the original,
untuned, automatically optimized code remains unchanged and that no work
is removed out of the main timing loop.

The results for the best user CPU timings on a single processor of the current
Cray supercomputer over almost a decade and a half are given in Figure 1.
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Fig. 1. History of the best speed ups for the class Cray starter problem, with the
nominal Cray vector model indicated.

Results have varied considerably, but hand optimization still achieves several
thousand times speed-up on top of automatic optimization of the untuned
code, beyond the expected benefit from automatic parallelization or vector-
ization. However, there has been a significant change from about 3000-8000
times improvement on the Cray X-MP to about 2000 on the Cray Y-MP and
successors, the C90 and T90, likely due to improvement in automatic compil-
ing that came with the Y-MP. The last jump in speed-up for the T90, was
due to a computer science student who was extremely capable of unraveling
recurrences. The full starter problem code is too long to present here in its
entirety, but almost all the work load is in the loop nest (n = 200) given below:

do 60 i=1,n
do 60 j=1,n

do 60 k=1,n
d1(i,j) = d1(i,j) + d2(i,j) + d3(i,j)
do 60 L = 1, 5

60 d3(i,L) = d2(i,L)*d1(i,L)

The best times were obtained by students who were able to solve the complex
recurrence in this loop nest, and these times were essentially reduced to the
noise of the timer. Bear in mind that this is very extreme example, but means
that significant gains can be made by hand tuning code on top of automatic
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optimization, just as new parallel algorithms may lead to advances comparable
to advances in hardware.

2 .1 1 G ro u p P r o j e c t s

Group projects appeared to reduce the amount of computer resources needed
by the students and improves shared learning. Group projects were required to
be big enough to be a realistic test of the target supercomputing systems, but
small enough so as not to interfere with the professional research conducted
on the systems.

In general, these group projects have been very successful. The majority of
the projects have involved testing for optimal performance for numerical lin-
ear algebra algorithms, computational statistics, scientific visualization and
scientific applications.

A list of the group student projects follows, with short descriptions, for this
one semester and SDSC Cray T3E with MPI projects primarily.

MCS 572 Connection Machine Group Projects, Fall 2000

(1) A. Abouzeid, A N e t w o r k o f L o c a l l y - C o up l e d I nt e g r a t e - a nd F i r e Os c i l l a t o r s o n
t h e C r a y T 3 E : M i x e d R e s ul t s i nP a r a l l e l i z a t i o n(Found mixed results for three
experiments with different degrees of parallelization, but showed a good use of
MPI.)

(2) C. W. Choi and X. Xudong, U s i ng M e s s a g e P a s s i ng I nt e r f a c e f o r So l v i ng
P a r t i a l Di ff e r e nt i a l E q ua t i o no nH e a t C o nd uc t i o nP r o b l e m(Modified Jacobi
method for steady state problem to time dependent parabolic PDE, including
good graphics display of results.)

(3) P. He, So l v i ng L i ne a r E q ua t i o nU nd e r M P I (Limited MPI experiment using
two serial streams.)

(4) A. Jhalani, C o mp a r i s o no f H a r d w a r e , So f t w a r e a nd P e r f o r ma nc e o nC r a y T 3 E
M ul t i p r o c e s s o r a nd SGI Or i g i n2 0 0 0 (Excellent comparison of MPP and SMP,
while presenting the nice idea of MPI as a parallel scheduler.)

(5) R. Jin, M P I I mp l e me nt a t i o no f C o nc ur r e nt Sub s y s t e mU nc e r t a i nt y A na l y s i s
( C SSU A ) i nM ul t i d i s c i p l i na r y De s i g n(MPI is used to simulate multidiscipli-
nary design optimization (MDO) environment to get CSSUA evaluation of
mean and variance of complex system output.)

(6) K. C. Johnson, I ns e r t i o nSo r t o na P a r a l l e l M a c h i ne (Real parallel test, with
MPI, of a sorting algorithm with favorable comparison to serial heapsort from
a theoretical computer science concurrent algorithms course taken the same
semester.)
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(7) D. Li, T h r e a d s a nd M P I P e r f o r ma nc e (Comparison of real parallelization with
MPI on T3E and virtual parallelization with threads on a PC for a simple
vector counting operation; also with respect to the serial versions on PC and
T3E.)

(8) Z. Liu and X. Yang, P a r a l l e l F i ni t e Di ff e r e nc e So l ut i o ns t o W a v e E q ua t i o n
w i t h F i r s t - Or d e r C E M A b s o r b i ng B o und a r y C o nd i t i o n(MPI implementation
of numerical solution of hyperbolic PDE with Clayton-Engquist-Majda (CEM)
absorbing boundary condition on rectangular domain.)

(9) W. McKeown, C o mp a r i s o no f V e c t o r i z a t i o na nd P a r a l l e l T a s k i ng f o r M a t r i x
P o l y no mi a l s (Test of MPI implementation of matrix polynomial addition, mul-
tiplication and scalar multiplication using a nice application of multiple Sends
and Recvs.)

(10) K. B. Sun, B r ut e F o r c e a nd t h e B o x P r o b l e m(Very original problem exploring
the use of parallelization for estimating the bounds on the combinatorial box
packing problem.)

(11) P. Szczodruch, N ume r i c a l I nt e g r a t i o na nd Sup e r c o mp ut i ng (Test of MPI im-
plementation of Simpson’s rule with performance evaluation using Hanson’s
Nested Loop Model.)

(12) H. Xue, C o mp a r i s o no f P e r f o r ma nc e o f M P I F unc t i o ns (Very interesting com-
parison of collective and point-to-point communication calls applied to matrix-
vector multiplications.)

(13) F. Yang, C o l l a b o r a t i v e F i l t e r i ng Sy s t e mo nT 3 E (Interesting project on e-
commerce application of MPI to estimate average item preferences and joint
item weights, then calculate item preference prediction with error.)

(14) Z.-W. Zhu, M P I P r o g r a mmi ng f o r M a t r i x - M a t r i x M ul t i p l i c a t i o n(MPI code for
both arbitrary dimension and number of processors.)

The diversity of applications in these projects presented in class were a great
learning experience for everyone.

Some failed student projects are expected when teaching an experimental
supercomputing course and in the case of such failures the student must give
an good explanation why the project failed, with the grade based on the
explanation of the failure. Sometimes there are wholesale failures due to some
system changes, as when in 1998 the local UIC HP9000/800 V2250 14-node
parallel processor was used that had automatic parallel scheduling using the
Load Share Facility of Platform Computing Corporation. Consequently, the
class had almost no control over the degree of parallelism, the number of
processors depended on the system load as well as the application, and a
great deal of educational value was lost compared to that on other platforms
used in the class, although the HP9000 was suitable as a purely computational
engine.
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Sometimes the supercomputing centers will not always give access to the ma-
chines asked for in the proposal to center, so it may be necessary to ask for
more than is needed so the class will have sufficiently high performing ma-
chines for their projects. However, other times this strategy can lead to a
bonanza of supercomputers, such as in 1995, the author’s supercomputing
center proposals resulted in more machine power than anticipated: three 512
node massively parallel processors (T3D, CM-5 and SP2) from three different
centers, in addition to the 16 vector processors on the C90, more power than
that at any individual center.

3 Supercomputing Workshop Description

For more advanced and intensive instruction in supercomputing, we had a
workshop course called M S C 5 7 3 -E E C S 5 7 4 W o r k s h o p P r o g r a m o n S c i e n t i fi c
S u p e r c o m p u t i n g , which was formally a full time course, succeeding the U I C
W o r k s h o p P r o g r a m o n S c i e n t i fi c S u p e r c o m p u t i n g [12]. In the original work-
shop program graduate students spent full time for one term in the workshop
and were rewarded with a research assistantship. Now, with state universi-
ties down-sizing program support, especially for existing programs, the work-
shop was converted to a multi-hour course administered by the Department
of Mathematics, Statistics, and Computer Science and cross-listed the De-
partment of Electrical Engineering and Computer Science. Students brought
a computational research or thesis problem to the workshop course. Much of
the computational science and engineering thrust of our local training comes
from these student research problems, which have ranged from chemical reac-
tors to NASA projects.

The Fall 1993 students of the workshop course had access to the Cray Y-
MP4/464 at NCSA, the CM-2 as well as CM-5 at NCSA and the ES9000 at
CTC. There were six students with about two consistent visitors during the
this first term as a multi-hour class.

The topical semester course syllabus gives the current contents:

Supercomputing Workshop Course Syllabus

Catalog description: Intensive laboratory immersion in supercomputing; working
with existing computer programs to improve their performance by scalar, vector and
parallel optimization; techniques of compilation, profiling, debugging under CMS
and Unix. Required co-registration of 8 hours thesis research or special projects in
participant’s department.
Prerequisites: Graduate standing; MCS 572 Introduction to Supercomputing is
encouraged as a prerequisite; Consent of instructor; Appropriate research project
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approved by instructor and student’s advisor.
Semester Credit hours: 4
List of Topics Hours

• What is Scientific Supercomputing? 1 hours.

• Introduction to Supercomputer Architectures & Operating Systems 4 hours.

• Special Supercomputer Architectures: Cray, IBM, CM, experimental 4 hours.

• Operating Environments: VM/CMS, Unix/UNICOS/AIX 3 hours.

• Software Design (including timing and debugging) 9 hours.

• Code Optimization (Scalar, Vector, Parallel, Input/Output) 18 hours.

• Numerical Considerations and Libraries 7 hours.

• Graphics 7 hours.

• Communications and Networks 2 hours.

• Distributed Computing 2 hours.

• Basic Procedures 13 hours.

• Controllers, Batch, and Background 4 hours.

• Introduction to NSFnet 1 hours.

• Introduction to Assembler 2 hours.

• Symbolic Computation 1 hours.

• T o t a l . 7 8 h o ur s .

Required Texts: There are no required texts. Many readings in the literature are
recommended during the term. Vendor’s manuals, local user guides and training
material are provided.

Visiting lectures during Fall 1993 talked about computer memory manage-
ment, Unix operating systems, Cray Supercomputers, Connection Machine
CM-5 and automatic differentiation tools. Also very well received, master su-
percomputer designers like Seymour Cray, Danny Hillis and Guy Steele were
brought to the workshop in video (U n i v e r s i t yV i d e o C o m m u n i c a t i o n s ).

Much of the material of the course M C S 5 7 2 I n t r o d u c t i o n o f S u p e r c o m p u t -
i n g was quickly reviewed using overhead transparencies, such as the material
mentioned in the previous section. However, in the workshop, more time was
spend on production oriented Unix tools like makefiles, on optimization ex-
amples in both Cray and C, and on performance analysis tools like F l o w t r a c e ,
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P e r f v i e w and the X-Window oriented A T e x p e r t (Autotasking Expert System)
for the Cray. One exceptional student even published a paper expanded from
a workshop research project in I E E E C o m p u t e r M a g a z i n e .

4 Local User’s Guides to Overcome Limited Center Documenta-
tion and Communications Problems

Local user’s guides were produced that greatly expedited student access to
the Crays, Connection Machines and several earlier parallel processors. Na-
tional center and vendor guides or manuals are generally much too large, very
operating system oriented, and too segmented for use in a single term of a
supercomputing class. Most critically, they do not tell a beginning student
the practical, basic things he or she needs to know to merely run a simple test
program, while including much material that the ordinary user does not need
to know. The concise local guide is essential for the efficient training of entry-
level students. The need for a local guide illustrates the c r i t i c a l d i ff e r e n c e
in local training versus national center training. The local guides expedite
the process of getting students knowledgeable enough to begin running ap-
plications early. However, center documents serve as valuable, authoritative
background resources.

Effective instruction in supercomputing requires that supercomputing oper-
ating systems and the communications system interfaces must be made as
transparent as possible. The time spent on supercomputing optimization must
be maximized, while that on system details must be minimized. A brief, self-
contained and hands-on local user’s guide is needed that goes from the local
session to the remote supercomputer, illustrated by real examples and mini-
mal command dictionaries. Our guides allow students to concentrate on code
optimization with minimal systems problems, and prepares them for finding
more advanced information if needed. For example, the current local guides
along with their web addresses are

M C S 5 7 2 U I C C r a yU s e r’s L o c a l G u i d e t o N P A C I C r a yT 9 0 V e c t o r
M u l t i p r o c e s s o r a n d T 3 E M a s s i v e l yP a ra l l e l P r o c e s s o r,V e rs i o n
1 4 .0 0 { h t t p :/ / w w w .m a t h .u i c .e d u / ∼h a n s o n / c r a yg u i d e .h t m l }

give basic details for the UIC user to directly access to the Cray machines at
SDSC, using sample sessions via high-speed network links. This includes file
transfer between NPACI/SDSC and UIC via FTP. Also, included are sample
program execution steps. A contents list for the 2000 version of the Cray user’s
local guide is given below:

Abbreviated User-Guide Table of Contents
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(1) Introduction.

(2) T90 Overview.

(3) T3E Overview.

(4) Supercomputer Centers Overview.

(5) Background References.

(6) Annotated NPACI Cray T90 Sample Session.

(7) Annotated NPACI Cray T3E Sample Session.

(8) ftp File Transfers between NPACI/Crays/UNICOS and UIC.

(9) Execution of T90 Cray FORTRAN90 (f90) or Cray C.

(10) Modifications for C: Compile and Execution with C.

(11) Unix and UNICOS Command Dictionaries.

(12) UNICOS Network Queueing System (NQS).

(13) The ex Editor.

(14) The vi Editor.

(15) Interrupts Dictionaries for Telnet and Unix.

(16) T90 Fortran90 and other Extensions.

(17) MPI Message Passing Programming on Crays.

(18) PVM Message Passing Programming on Crays.

(19) Cray T90 f90 and cc Timing Utility Functions.

The Cray local guide and their contents will not be given here, but are available
at the above web address. These guides have to be significantly revised for each
offering, because of operating system, hardware and compiler changes have
occurred in the previous year, e.g., the inclusion of message passing machines
in 1995 or the non-Cray supercomputers that will be used in the next offering.

Communication difficulties make the use of local guides essential. Usually there
are relatively few problems when communicating between similar computing
systems, such as Unix to Unix. However, when there are communication in-
compatibilities, remote center documentation is usually of little help. Now
many students are conversant with Unix, but in the earlier days introduc-
tory Unix tutorials were needed. Also communications problems were major
problems due to early Unix and IBM incompatibilities, another significant
difference between local and national center training. The local guide is thus

20



essential for describing the empirical characteristics of the communication sys-
tems truncations that do not behave as expected. Since communications and
other problems continually arise, the author found that keeping in close e-mail
contact with students is essential to keep the amount of time students spend
on system problems reasonable.

5 Other Supercomputing Courses and On-Line Web Documents

In recent years much documentation has become available on the World Wide
Web accessible through a web browser. A large amount of our own doc-
umentation and a large number of links to useful external documentation
were placed on the class home page {http://www.math.uic.edu/∼hanson-
/mcs572/}. These web links include related on-line web courses, hardware and
software information, supplementary texts, additional supercomputing liter-
ature. Of course these links lead to even more supercomputing information.
An example of software information linked are tutorials, guides and texts on
MPI message passing package. Hardware information includes documentation
on Crays, Connection Machines and other machines.

However, one of the most important kinds of information contained via web
links is on-line material for supercomputing and parallel processing courses
elsewhere. Our discussion of related course will be limited to these on-line
materials since they are usually updated annually and freely available to su-
percomputing students, whereas supercomputing texts quickly become stale
and may be too expensive for many state university students. A selection
of texts are given in the R e f e r e n c e s , and many on-line text and tutorial
links are given on the class pages {http://www.math.uic.edu/∼hanson/Web-
Texts.html}. The on-line course material allow instructors and students to find
a wealth of information and to permit a free choice of material closer the inter-
est of the class and individual student. This shared information certainly has
the benefit of a global education project. In addition to our own introductory
and workshop course notes available on the class home-page previously cited,
there are several other courses with on-line material that merit mentioning
here. Demmel of Berkeley has made material available for c s 2 6 7 A p p l i c a t i o n s
o f P a r a l l e l C o m p u t e r s { h t t p :/ / H T T P .C S .B e rk e l e y.E D U / ∼d e m m e l / c s 2 6 7 / },
covering similar topics in parallel processing, but with a strong integration
of the numerical linear algebra packages of LAPACK and ScaLAPACK into
the course. During Spring 1996, Demmel’s course is being co-taught in part
with Edelman of MIT via a coast to coast, high speed video link. The MIT
course is 1 8 .3 3 7 P a ra l l e l S c i e n t i fi c C o m p u t i n g { h t t p :/ / w e b .m i t .e d u / 1 8 .3 3 7 / }
covers parallel processing, multipole methods, linear algebra including sparsity
and PDE related applications, with extra emphasis on graph and geometric
algorithms.
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Although M C S 5 7 2 is a graduate course, there are undergraduate web courses
of interest, such as CSCI 4576/4586 High Performance Scientific Computing
{http://www-ugrad.cs.colorado.edu/∼csci4576/}, which is by Jessup and co-
teachers at Colorado in Boulder. This course is aimed at undergraduates, but
the material is usable at higher levels, containing many tutorials and lab man-
uals on parallel computing and associated computer tools such as scientific
visualization and Unix, as well as computational science applications. One of
the most extensive endeavor is the C o m p u t a t i o n a l S c i e n c e E d u c a t i o n P r o j e c t
( C S E P ) {http://csep1.phy.ornl.gov/csep.html} sponsored by the U. S. DOE
and written by a multitude of authors. Some pertinent topics in supercomput-
ing are Numerical Linear Algebra, Fortran 90, Monte Carlo Methods, Scientific
Visualization, Tutorials for Parallel Platforms, and Computer Architecture.

The computational science and engineering applications vary widely depend-
ing on the local instructional environment. There is a large amount of mate-
rial in many flavors available on the World Wide Web and supercomputing
time available at the cost of a short proposal to the national or state centers
that an instructor can use to help create a local supercomputing class. An
on-line list of computational science and engineering courses is list at {http:-
//www.math.uic.edu/∼hanson/CSE-Programs/}.

6 Future Directions

While cluster computing systems available for past classes have not been stable
enough or large enough or held sufficient educational value for my supercom-
puting class, next time I will likely apply for access to a cluster computer
large enough to be considered a supercomputer, along with another vendor
parallel processor to maintain comparison. The NOW (Networks of Worksta-
tions) team led by Anderson, Culler and Patterson [1] in 1995 gave very strong
arguments for cluster computing provided that they are properly configured
to achieve a low cost-to-performance ratio compared to vendor massively par-
allel processors. Wilkinson and Allen [21] and Apon, Buyya, Jin and Mache
[2] describe mainly computer science oriented parallel programming classes
based upon clusters aimed primarily or entirely at undergraduates. The au-
thors in [21] also have a nice web site for clusters and on-line lecture notes
{http://www.cs.uncc.edu/∼abw/ITCS5145/} corresponding to their book on
clusters and parallel computers [22]. The four authors in [2] discuss courses at
each of their respective universities and also cite a good source of web links on
clusters. In particular, Buyya has posted slides for a long cluster tutorial at
http://www.buyya.com/csc433/ and also lecture slides for selected chapters
corresponding to a cluster computing book [4]. A recent special issue of this
journal is on clustering computing and of particular note in this compilation of
papers is one on cluster load balancing [3] which would be critical in any class
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using large scale clusters. The challenge for a computational science and en-
gineering course using cluster computing is to select among the large amount
of computer science material a sufficient amount such that graduate students
will have a good enough grasp of the cluster properties to produce a fast and
efficient computational solution to their research application.

7 Conclusions

The experience gained as graduate students and faculty from these offerings of
the course and workshop have been invaluable. The courses have been essential
in keeping the computational science and engineering students abreast of new
advances in computer architecture. The courses helped to greatly extend the
time the students’ training remains viable, because the courses are at the
leading edge of technology. They also have helped students to further their
thesis research. The local training also extends the outreach of the national
supercomputer centers at much less cost than when visiting the center for
training.

The principal disadvantage in teaching I n t r o d u c t i o n t o S u p e r c o m p u t i n g and
W o r k s h o p P r o g r a m o n S c i e n t i fi c S u p e r c o m p u t i n g is that it takes a super
amount of effort on the instructor’s part. A major problem is that super-
computing material has to be significantly updated each year for major sys-
tem changes. Another major problem in not supercomputing itself, but the
communications difficulties in accessing remote supercomputing sites from a
large sample of student computing environments. The communications prob-
lem would be lessened greatly if a generous number of Unix workstations with
good communications properties were available at the local site.

Our purpose for this paper is to pass on sufficient practical advice on super-
computing as an aide to others who wish to run similar local training courses.
The great value is training future generations of students on future gener-
ations of computer systems, keeping both students and instructors on the
leading edge.
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