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Abstract. Convergenceof correctionsis examinedfor apredictor-

correctormethodto solve Bellmanequationsof multi-statestochasticopti-

malcontrolin continuoustime. Quadraticcostsandconstrainedcontrolare

assumed.A heuristicallylinearizedcomparisonequationmakesthenonlin-

ear, discontinuousBellmanequationamenableto linearconvergenceanaly-

sis. Convergenceis studiedusingthe Fourierstability method.A uniform

meshratio type condition for the convergenceis results. The resultsare

valid for bothGaussianandPoissontypestochasticnoise.Theconvergence

criteriahasbeenextremelyusefulfor solvingthelargermulti-stateproblems

onvectorsupercomputersandmassively parallelprocessors.
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1 INTRODUCTION

For stochasticdynamicprogrammingwith both un-
correlatedGaussiananddiscretePoissonnoise,theBellman
partial differential equationin the quadraticcost casehas
the following form (Hanson,1991;GihmanandSkorohod,
1979),

(1)

Trace

where is the optimal value, is time, is an -
dimensionalstatevector, is the -dimensionalopti-
mal feedbackcontrol vector, is the the Gaus-
siannoiseamplitudecoefficient, is the th columnvec-
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tor of the Poissonnoise amplitude with rate ,
are the coefficientsof the control-linearized

nonlinearityfunction,

(2)

arethecoefficientsof thequadraticcost
term,

(3)

is theregular(unconstrained)control,

(4)

and is theoptimal(constrained)control,subjectto
thecontrolconstraints.

In thecaseof rectangularor hypercubeconstraints,

(5)

for to , theoptimalcontrolhasthecomponents,

(6)

It should be noted that the Bellman equation (1) with
quadraticcosts(3) hascorrespondingquadraticnonlinear-
ities in the shadow price vector since the regular
control(4) is linear in theshadow price,theoptimalcontrol
is at most linear in , andtherearetermsof (1) that are
quadraticin theoptimalcontrol.

the backward nature of the PDE (1) with respect to
timemeansthata final condition,suchas
in the caseof a givensalvagevalue,mustbesatisfied.The
PDE is a genuinefinal, rather than initial, value problem
and integration is in the directionof increasingtime-to-go

.

Bellman equations such as (1) arise in multistate re-
sourcemanagementproblemsin disastrousenvironments
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consideredby Hanson(1987) and Pratico et al. (1992).
However, otherpossibleapplicationsareaerospacedynam-
ics in disastrousweather, financialmarketcrashesandrepair
downtimein manufacturing.

2 NUMERICAL METHOD

Due to the mentioned nonlinear properties of
the Bellman equation (1), a predictor-corrector, Crank-
Nicholsonmethod(Douglasand Dupont, 1970) is usedto
approximate(1). The continuous,multistatevector is re-
placedby its discretization,

(7)

where is thevectorstepsizeand is themul-
tistatevectorindex while to nodesperstateand

to states.Thediscretizedtime-to-go is

(8)

for to , with . Consequently, the optimal
costs hasthediscreterepresentation:

(9)

andtheBellmanequationcorrectorstephastheform:

(10)

wherethe spatialoperator is evaluatedat the th correc-
tion for , andat theCrank-Nicolsontemporal
midpoint for accuracy, which in turn is ap-
proximatedby

(11)

theusualaverage.Thezerothcorrection is definedas
theprediction.Theresultfrom theprior timestep is the

final asymptoticcorrectedresult in thetheoreticalcase

or in therealistic,finite correctioncase.Extrapola-
tion,

(12)

i.e., , is usedto accelerateconvergenceprior to each
predictorstepexceptthefirst, onceanswersareavailablefor
two time steps. In (10), the spatialderivativesarereplaced
by centralfinite differences,while the Poissoninducedde-
lay termsare replacedby linear interpolantsof compatible
accuracy, i.e., .

3 APPROXIMATE LINEAR COMPARISON
EQUATION

Linearizationandlocalizationof the Bellmanequa-
tion using diffusion approximationarguments,along with

theuseof worst caselocalestimatesof variablecoefficients,
formally leadsto a simpler, linearized,constantcoefficient,
comparisonequation:

Trace Diag

(13)

Here,Diag is an diagonalconstantmatrix and
is a constant -vector. The linearized,constantcoefficient,
comparisonequationmakes convergenceand asymptotic
stabilityamenableto analysis.

Typical estimatesof the coefficients in (13) are appro-
priateboundson the infinitesimalmomentsof thediffusion
approximation:

(14)

mean

and

(15)

var

Naimipouretal. (1993)givelinearcoefficientboundsfor the
singlestate,quadraticcostscaseof theBellmanequation.

4 CORRECTORCONVERGENCE

ThevonNeumann’sFouriermethodis appliedto an-
alyze the convergencepropertiesof the predictor-corrector
method.DiscreteFourierrepresentationof thefinal optimal
feedbackvalueis assumed:

(16)

Only anarbitrary, singlevectormode needbe
examined,insteadof a infinite Fourier representation,since
thecomparisonequationis linear.

The predictor-corrector Bellman equation correspond-
ing to thelinearcomparisonequation(13),

(17)

502



where is the finite differencevector for the gradient,
is thefinite differencevectorfor thevectorof second

derivatives and is the vector of diffusion
coefficients.

The beginning extrapolation evaluation step is taken
asthefinal condition,

(18)

due to the backward natureof the problem. Upon substi-
tution of (18), with Fourierassumption(16), the prediction
becomes

(19)

wherethecorrectorconvergenceparameteris definedas

(20)

Thepredictorevaluationis

(21)

Using induction,the generalcorrectionfor thesecondtime
stepis shown to be

(22)

after somealgebra,wherethe temporal stability parameter
is definedas

(23)

whichwill beusedlater.

Consequently, in the limit of a large number of correc-
tions, , the asymptoticvalueon the secondtime
stepis

(24)

providedthecorrectorconvergenceconditionholds,

(25)

so that as . Similarly, on earliertime
steps,

(26)

as when .
Sincethe correctorconvergencecondition (25) is not in a
helpfulform, mustbesimplifiedusingtheoriginalcomplex
definition(20),which canbetransformedto its realsquared
modulus,

(27)

A simpler, usableexpressioncanbefoundusingtheinequal-
ity on thediffusiontermssince
and on thedrift termssincethesignof the
drift termcanbeanything. Finally, theconditionon can
be replacedby following simplified,but uniform in the
and , correctorconvergencecriterion:

(28)

where is thetime-stepsizeand is the th state-step
size.ThenumericalBellmanequationis parabolic-dominant
or diffusion-dominant if the diffusion coefficients
dominatein (28), while hyperbolic-dominantor convection-
dominantwhenthedrift terms dominate.

In theory, (28) is the criterion for an infinite numberof
corrections. However, a practicalcorrectorstoppingcrite-
rion would beto selectthemaximumnumberof corrections

accordingto

tol (29)

where is therelative tolerance(e.g., for
approximately relativedigitsaccuracy). Usingtheformula
(26) in (29),anestimateof maximumnumberof corrections
correspondingto -accuracy is givenby theceiling function

(30)

which is usedin actualcomputations.

5 ASYMPTOTIC STABILITY

Investigatingtheasymptoticstability for long times-
to-go, , with respectto Fourierfinal datanoise,requires
anotherformulationof theproblem.Let

(31)
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be theerror in thenumericalapproximationwith dirty final
data relativeto theexactnumericalapproximation.Both
approximationssatisfythediscretizedBellmanEq. (17), so
that

(32)

where and aretherespective vectorof finite dif-
ferencesfor the derivatives. The two approximationsonly
differ in thefinal discreteFouriererror

(33)

asin (16). Sincetheanalysisis thesameasin thecorrector
convergencecase,theasymptoticerrorin thelimit of a large
numberof correctionsis

(34)

asin (26). Hence, is neededasthetemporalindex
for asymptoticstability relative to Fourierperturba-

tions in thefinal data. Thus, is necessary. In order
to show this, let with complex conjugate

, wherefrom (20),

(35)

which is negative,and

(36)

sothat

(37)

or , because and
. Notethatcorrectorconvergence, , auto-

matically impliesasymptoticstability, since implies
that also. Thus, as , inde-
pendentof thefinal dataerror.

6 CONCLUSIONS

In this paper, a uniform mesh criterion has been
derived for correctorconvergenceof the numericalapprox-
imation to solution of the Bellman equationfor stochastic
dynamic programming. The results are good for fairly
generalMarkov noise in continuoustime. The corrector

convergenceconditionapplieswhetherthe numericalBell-
manequationis parabolic-dominantor hyperbolic-dominant.

In addition, it has been shown that the numerical solu-
tion to the linearizedcomparisonequationis asymptotic
stablefor long times-to-gowhenthe correctorconvergence
conditionis satisfied,at leastin theory.

These results have been used with much successfor
supervector and massively parallel computationsin rela-
tively largescalestochasticcontrol applicationsby Hanson
andcoworkers(1987,1991a,1991b,1992).
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