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Abstract. A jump-diffusion log-return process with log-normal jump amplitudes
is presented. The probability density and other properties of the theoretical model
are rigorously derived. This theoretical density is fit to empirical log-returns of
Standard & Poor’s 500 stock index data. The model repairs some failures found
from the log-normal distribution of geometric Brownian motion to model features
of realistic financial instruments: (1) No large jumps or extreme outliers, (2) Not
negatively skewed such that the negative tail is thicker than the positive tail, and
(3) Non-leptokurtic due to the lack of thicker tails and higher mode.

This is the corrected version of the published paper.

1 Introduction

Encouraged by the long term success of the Black-Scholes [3] option pric-
ing model in spite of its deficiencies, many financial modelers have tried
to improve on this basic model. Merton [18] applied discontinuous sample
path Poisson processes, along with Brownian motion processes, i.e., jump-
diffusions, to the problem of pricing options. Merton derived several exten-
sions of the already classical diffusion theory of Black-Scholes minimizing the
portfolio variance for jump-diffusion models using techniques similar to those
used to derive the Black-Scholes formulae.

Before Black-Scholes, Merton [17] analyzed the optimal consumption and
investment portfolio with either geometric Brownian motion or jump Poisson
noise, illustrated explicit solutions for constant risk-aversion utility. In [16],
Merton also examined constant risk-aversion problems. In [12], Karatzas,
Lehoczky, Sethi and Shreve pointed out that it is necessary to enforce non-
negativity feasibility conditions on both wealth and consumption. They for-
mally derive explicit solutions from a consumption-investment dynamic pro-
gramming models with a time-to-bankruptcy horizon, qualitatively correcting
the results of Merton [17]. Sethi and Taksar [23] directly present corrections
to certain formulae Merton’s finite horizon consumption-investment model
[17]. Merton [19] revisited the problem in the sixth chapter of his continuous-
time finance book, correcting his earlier work by adding a simpler absorbing
boundary condition at zero wealth and using other techniques.
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Wilmott [25] presents a good discussion on difficulty of hedging with
jump-diffusion models in finance, in fact, that perfect risk-free hedging is

impossible when there are jumps in the underlying, using a single option.
Lipton-Lifshitz [15] presents a good discussion of predictability and unpre-
dictability, mainly for foreign exchange applications, but is applicable to other
financial applications as well.

In the computational finance paper of Hanson and Westman [9], they
solved an optimal portfolio and consumption policies model modified from
a theoretical important event model proposed by Rishel [22]. The model is
an optimal portfolio and consumption model for a portfolio of stocks and
a bond. The stock prices are dependent on both deterministic (scheduled)
and stochastic (unscheduled) jump external events in an environment of ge-
ometric jump-diffusion processes. The jumps can affect both the stock prices
directly or indirectly through parameters. The deterministic jumps are quasi-
deterministic, in that the timing of the scheduled events is deterministic, but
the magnitude of the jumps is random. The computations were illustrated
with a simple discrete jump model, such that both stochastic and quasi-
deterministic jump magnitudes were heuristically estimated discretely dis-
tributed as single negative or positive jumps. A partial motivation for this
quasi-deterministic are the more or less monthly announcements of the Fed-
eral Open Market Committee [7], but the response of the market to changes
in Federal Funds Rate or Federal Discount Rate is difficult to predict. This
quasi-deterministic process might be called the Greenspan Process. The cur-
rent paper focuses more on the stock log-return distribution and the estimat-
ing the parameters of this log-normal jump-diffusion distribution for a more
basic stock process.

The empirical distribution of daily log-returns for actual financial instru-
ments differ in many ways from the ideal log-normal diffusion process as
assumed in the Black-Scholes model and other financial models. The most
notable difference is that actual log-returns suffer occasional large jumps in
value. The negative large jumps are called crashes and buying frenzies lead to
positive large jumps. Another difference is that the empirical log-return will
typically be negatively skewed, since The negative jumps are usually larger
than the positive jumps. Thus, the coefficient of skew [6] is negative,

η3 ≡ M3/(M2)
1.5 < 0 , (1)

where M2 and M3 are the 2nd and 3rd central moments. Still another differ-
ence is that the empirical distribution is leptokurtic since the coefficient of
kurtosis [6] satisfies

η4 ≡ M4/M
2
2 > 3 , (2)

where the value 3 is the normal distribution kurtosis value and M4 is the
fourth central moment. Qualitatively, this means that the tails are fatter than
a normal with the same mean and standard deviation, and consequently the
distribution is also more slender about the mode (local maximum).
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In Merton’s discontinuous returns paper[18] (see also Chapter 9 along
with background in Chapter 3 of [19]) treated the case of option pricing
modeled by a jump-diffusion process where the jumps have a log-normal
distribution in one important example. Andersen and Andreasen [1] treat
the log-normal jump-diffusion option pricing problem in much more detail,
both analytically through forward partial integral-differential equations and
numerically mainly though alternating direction implicit methods.

Kou [14] has developed a Laplacian double exponential jump-diffusion
model to account for the leptokurtic, negative skew and other properties
in option pricing. In the model, jumps occur in time according to a Poisson
process and the amplitude of the jump are distributed as a double exponential
with mean κ and variance 2η, i.e., a shifted exponential depending on the
absolute value of the deviation. Many probability properties are developed
along with required special functions.

There are many other approaches, such as Poisson random measure re-
lated Lévy distributions (see [2], for example) and stochastic volatility (see
[25], for instance).

In Section 2, the explicit form of the log-return density is shown to be a
infinite sum of log-normal distributions weighted by Poisson counting discrete
distribution when both the diffusion and Poisson jump amplitudes are both
log-normal. In Section 3, the five log-normal jump-diffusion parameters are es-
timated for the empirical log-returns of the Standard & Poor’s 500 (S&P500)
stock index closing under the constraints that theoretical jump-diffusion dis-
tribution has the same mean and variance as the empirical distribution.

2 Density for Log-Normal Jump-Diffusions

Let S(t) be the price of a single stock or mutual fund that satisfies the Markov,
geometric, log-normal jump-diffusion stochastic differential equation (SDE),

dS(t) = S(t) [µddt + σddZ(t) + JdP (t)] , (3)

S(0) = S0 and S(t) > 0, where µd is the mean appreciation return rate,
σd is the diffusive volatility, Z(t) is a continuous, one-dimensional Brownian
motion process, J is a random jump amplitude with log-return mean µj

and variance σ2
j defined below, and P (t) is a discontinuous, one-dimensional,

standard Poisson process with jump rate λ. Here, we will assume that the
jump-diffusion parameters µd, σd, µj , σj and λ are constant. The stochastic
processes Z(t) and P (t) are Markov and pairwise independent. The jump
amplitude process J , given a Poisson jump in time, is also independently
distributed.

The continuous, diffusion process Z(t) is standard and is specified by the
two infinitesimal moments,

E[dZ(t)] = 0
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and

Var[dZ(t)] = dt ,

since the process is normally distributed. The discontinuous space–time
jump process JdP (t) is just a symbol that can be defined by a
stochastic integral of Poisson random measure P(dt, dq) or as a sum
of dP (t) jumps of a compound Poisson process,

JdP (t) =

∫

Q

J(q)P(dt, dq)=

dP(t)
∑

i=1

J(Qi) , (4)

with E[P(dt, dq)] = λdtφQ(q)dq and
∑0

i=1 J(Qi) ≡ 0, where q is the
mark for the jump amplitude process corresponding to the under-
lying random variable Qi. The differential Poisson process is basically a
counting process with the probability of the jump count given by the usual
Poisson distribution,

pk(λdt) = Prob[dP (t) = k] = exp(−λdt)(λdt)k/k!, k = 0, 1, . . . ,

with parameter u = λdt > 0. The jump in the stock price corresponding to
the jump of the space-time Poisson process is

[S](tj) ≡ S(t+j ) − S(t−j ) = J(Q)S(t−j )

at some jump time tj. Hence, it is assumed that −1 < J(Q) < ∞ so that
one jump does not make the underlying stock worthless. The infinitesimal
moments of the jump process are

E[J(Q)dP (t)] = λdt

∫

Q

J(q)φQ(q)dq = E[J(Q)]λdt

and

Var[J(Q)dP (t)] = λdt

∫

Q

J2(q)φQ(q)dq = E[J2(Q)]λdt ,

where φQ(q) is the Poisson mark density, providing it exists on the mark
space Q.

Before describing the jump amplitude distribution in more detail, the
stock price SDE (3) is first transformed to the SDE of the instantaneous stock
log-returns using the stochastic chain rule for Markov processes in continuous
time [11,4],

d[ln(S(t))] = µlddt + σddZ(t) + ln(1 + J(Q))dP (t) , (5)

where the log-diffusion drift µld ≡ µd − σ2
d/2 includes the Itô calculus shift

of the mean appreciation rate by the diffusion coefficient and the log-return
jump amplitude is the logarithm of the relative post-jump amplitude ln(1+J).
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This log-return SDE (5) will be the model that will be compared to the
S&P500 log-returns, since the log-returns are the preferred financial invest-
ment metric measuring the relative changes in investment value, as opposed
to the absolute change of the stock price represented by the geometric jump-
diffusion SDE in (3).

Since J > −1, it is convenient to select the mark process to be the log-
return jump amplitude

Q = ln(1 + J) ,

which has the inverse

J(Q) = exp(Q) − 1 ,

on the mark space Q = (−∞, +∞). On this fully infinite domain, the ideal
choice for the mark density is the normal density,

φQ(q) = φn(q; µj , σ
2
j ) ≡

exp(−(q − µj)
2/(2σ2

j ))
√

2πσ2
j

, (6)

having a mean E[Q] = µj and variance Var[Q] = σ2
j , which define the log-

return jump amplitude moments through Q = ln(1+J(Q)). Hence, J(Q)+1
is log-normally distributed, with mean

E[J(Q)] = E
[

eQ
]

− 1 = eµj+σ2
j /2 − 1 ,

and variance

Var[J(Q)] = E2
[

eQ
]

·
(

eσ2
j − 1

)

.

The basic moments of the stock log-return differential are

M
(jd)
1 ≡ E[d[ln(S(t))]] = (µld + λµj)dt , (7)

M
(jd)
2 ≡ Var[d[ln(S(t))]] = Var[σddW (t)] (8)

+
(

Var[Q] + E2[Q]
)

Var[dP(t)]

= (σ2
d + λ(σ2

j + µ2
j ))dt .

The log-return is the primary model independent variable of interest in this
paper, as the investor is interested in the percent or relative change in a
portfolio and the log-return is the continuous limit of the relative change.

Next the log-normal density will be found by basic probabilistic methods
and the results are summarized in the following theorem:

Theorem: The probability density for the log-normal jump-diffusion
log-return differential d[ln(S(t))] specified in the SDE (5) is given by

φd ln(S(t))(z) =

∞
∑

k=0

pk(λdt)φn(z; µlddt + µjk, σ2
ddt + σ2

j k) , (9)
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−∞ < z < +∞, where the Poisson distribution pk(λdt) is specified in (5)
and the normal density φn is specified in (6).

Proof: The basic idea of the proof follows from finding the density of
a sum of independent random variables, X + Y Z given the densities of the
components X and the symbolicY Z. Here, the process X = µlddt + σddZ(t)
which is the diffusion plus log-drift term, normally distributed with den-

sity φn(z; µlddt, σ2
ddt), the compound Poisson process YZ =

∑dP(t)
i=1 Qi

which is the combined jump amplitude marks Qi of the log-return,
independent identically, normally distributed with density φn(y; µj , σ

2
j )

and Z = dP (t) which is the differential Poisson process. The discrete distri-
bution of the Poisson process given in (5).

According to Feller [8], the density of a sum of independent random vari-
ables is given by a convolution of densities,

φX+Y Z(z) = (φX ∗ φY Z) (z) ≡

∫ +∞

−∞

φX(z − y)φY Z(y)dy . (10)

but before calculating the convolution the density for the compound random
variable φY Z(x), the density of the compound Poisson-Normal process, is
needed.

Since for each Poisson jump count k the compound Poisson Pro-
cess XY is the sum of k independent, normally distributed random
variables for k > 0, so by the law of total probability

φY Z(x) ≡ Prob





dP (t)
∑

i=1

Qi ≤ x



 =

∞
∑

k=0

pk(λdt)Prob

[

k
∑

i=1

Qi ≤ x

]

≡

∞
∑

k=0

pk(λdt)ΦP

k
i

Qi
(x) .

Thus, the deriative of the distribution of the kth jump sum above
will be a set of nested convolutions of an identically, normally dis-
tributed random variables Qi and when combined with the nor-
mally distributed diffusion density Z, we obtain

φX+Y Z(z) = φZ(z) +
∞
∑

k=1

pk(λdt)

((

k
∏

i=1

φQi
∗

)

φZ

)

(z)

= φZ(z) +

∞
∑

k=1

pk(λdt)
(

(φQ∗)
k
φZ

)

(z) ,

the last step being due to the identically distributed property. Fi-
nally, the fact that the convolution of two normal densities is a
normal density with a mean that is the sum of the means and a
variance that is the sum of the variances leads to a normal den-
sity of each k jump counts upon recursion. This result is based
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upon the identity for the product of two normal distributions and
is derived through the application of the completing the square

technique combining a product of two normal densities into one,

φn(x; µ1, σ2
1) · φn(x; µ2, σ2

2) = φn

(

x;
µ1σ2

2 + µ2σ2
1

σ2
1 + σ2

2

,
σ2
1σ2

2

σ2
1 + σ2

2

)

(11)

·
1

√

2π(σ2
1 + σ2

2)
exp

(

−
(µ1 − µ2)2

2(σ2
1 + σ2

2)

)

Letting the Xi be independent normal random variables with den-
sity φXi

(x), mean µi and variance σ2
i for i = 1 to K, then using

(11),

I2(x) = (φX1
∗ φX2

) (x) =

∫ +∞

−∞

φX1
(x − y)φX2

(y)dy (12)

=
1

√

2π(σ2
1 + σ2

2)
exp

(

−
(x − µ1 − µ2)2

2(σ2
1 + σ2

2)

)

·

∫ +∞

−∞

φn

(

y;
(x − µ1)σ2

2 + µ2σ2
1

σ2
1 + σ2

2

σ2
1σ2

2

σ2
1 + σ2

2

)

dy

= φn(x; µ1 + µ2, σ2
1 + σ2

2) .

This is the induction initial condition with K = 2, giving the tech-
niques for a proof by induction using the induction hypothesis for
general K,

IK(x) ≡

((

K−1
∏

i=1

φXi
∗

)

φXK

)

(x) = φn

(

x;

K
∑

i=1

µi,

K
∑

i=1

σ2
i

)

. (13)

Reusing the induction initial condition calculation, with µ1 replaced
by
∑K

i=1 µi and µ2 replaced by
∑K

i=1 σ2
i , and adding means and vari-

ances yields the proof by induction result,

IK+1(x) =
(

IK ∗ φXK+1

)

(x) = φn

(

x;

K+1
∑

i=1

µi,

K+1
∑

i=1

σ2
i

)

. (14)

For the final result take X1 = Z, the diffusion with µ1 = µlddt
and σ2

1 = σ2
ddt, and take Xi+1 = Qi, the indentically distributed

jump amplitudes with µi + 1 = µj and σ2
i = σ2

j for i = 1 to k for each
k count, so that

φd ln(S(t))(x) =

∞
∑

k=0

pk(λdt)φn

(

x; µlddt + µjk, σ2
ddt + σ2

j k
)

. (15)

This completes the proof of the Theorem. △
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Note that the log-return density is the Poisson mean over a normal density
since (9) can be rewritten as

φd ln(S(t))(z) = EdP (t)

[

φn(z; µlddt + µjdP (t), σ2
ddt + σ2

j dP(t))
]

where the Poisson jump counter k has been replaced by the simple differential
Poisson process dP (t) and the normal density φn is specified in (6). Thus the
density is the expectation over a normal distribution with jumping mean and
variance, the jump in the mean scaled by the mark jump mean µj and the
jump in the variance scaled by the mark jump variance σ2

j , respectively.

In the 2001 thesis of Düvelmeyer [5], the probability distribution function
for the log of the process ln(S(t)), rather than the density of the log-returns
d ln(S(t)) needed here, is given, but our results in the theorem now
agree with [5] for the case of log-normally distributed jumps. This
thesis work appears to be the basis for Kluge’s jump-diffusion version of the
Share Simulator [13]. Also, the intended optimal portfolio and consumption
application for the present paper is very different, not generalizations of the
Black-Scholes option pricing as in the thesis [5].

Using the log-normal jump-diffusion log-return density in (9), the third
and fourth central moments with finite return time dt can be computed or
the moments can be computed more simply and directly from the
Poisson sum form of the SDE (5) with the sum in (4) and verified

with MapleVTM [24] symbolic computation yielding

M
(jd)
3 = E

»“
d[ln(S(t))] − M

(jd)
1

”3
–

(16)

= E

2
4

0
@σddW(t) +

dP(t)X

i=1

Qi − λdt

1
A

33
5

= σ
3
d0 + 3σ

2
ddt 0 + 3σd0 + E

2
4

0
@

dP(t)X

i=1

(Qi − µj) + µj(dP(t) − λdt)

1
A

33
5

= EdP(t)

2
4EQ

2
4

0
@

dP(t)X

i=1

(Qi − µj)

1
A

3

+ 3µj(dP(t) − λdt)

0
@

dP(t)X

i=1

(Qi − µj)

1
A

2

+3µ
2
j (dP(t) − λdt)2

dP(t)X

i=1

(Qi − µj) + µ
3
j (dP(t) − λdt)3

˛̨
˛̨
˛̨ dP(t)

3
5

3
5

= (3σ
2
j + µ

2
j )µjλdt ;
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M
(jd)
4 = E

»“
d[ln(S(t))] − M

(jd)
1

”4
–

(17)

= E

2
4

0
@σddW(t) +

dP(t)X

i=1

Qi − λdt

1
A

43
5

= 3σ
4
d(dt)2 + 4σ

3
d0 + 6σ

2
ddtE

2
4

0
@

dP(t)X

i=1

(Qi − µj) + µj(dP(t) − λdt)

1
A

23
5

+4σd0 + E

2
4

0
@

dP(t)X

i=1

(Qi − µj) + µj(dP(t) − λdt)

1
A

43
5

= 3σ
4
d(dt)2 + 6σ

2
ddtEdP(t)

2
4EQ

2
4

0
@

dP(t)X

i=1

(Qi − µj)

1
A

2

+2µj(dP(t) − λdt)

dP(t)X

i=1

(Qi − µj) + µ
2
j (dP(t) − λdt)2

˛̨
˛̨
˛̨ dP(t)

3
5

3
5

+EdP(t)

2
4EQ

2
4

0
@

dP(t)X

i=1

(Qi − µj)

1
A

4

+4µj(dP(t) − λdt)

0
@

dP(t)X

i=1

(Qi − µj)

1
A

3

+6µ
2
j (dP(t) − λdt)2

0
@

dP(t)X

i=1

(Qi − µj)

1
A

2

+4µ
3
j (dP(t) − λdt)3

dP(t)X

i=1

(Qi − µj) + µ
4
j (dP(t) − λdt)4

˛̨
˛̨
˛̨ dP(t)

3
5

3
5

= (3σ
4
j + 6µ

2
j σ

2
j + µ

4
j )λdt

+
`
3λ

2(σ2
j + µ

2
j )2 + 6λσ

2
d(σ2

j + µ
2
j ) + 3σ

4
d

´
(dt)2 ,

where the binomial expansion, process independence, zero mean
forms, and conditional expectation with respect to dP (t) have been
used. Equations (16-17) are used to compute the theoretical coefficients
of skew (1) and kurtosis (2), respectively. Terms of O((dt)2 are retained
in the fourth moment (17) for use in fitting empirical market data
when the time increment is not infinitesimal.
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3 Log-Normal Jump-Diffusion Model Parameter
Estimation

Now the log-normal jump-diffusion density (9) is available for fitting to real-
istic data to obtain some of the parameters of the log-normal diffusion model
(5) for d[ln(S(t))]. For realistic data, the daily closings of the Standard and
Poor’s 500 (S&P500) stock index from 1995 to July 2001 will be used from
data available on-line [26]. The data consists of nsp = 1657 points. The
S&P500 data is an example of one large mutual fund rather than a single
stock but has the advantage of not being biased severely to any one stock.
The data has been transformed into the discrete analog of the continuous
log-return, i.e., into changes in the natural logarithm of the index closings,
∆[ln(SPi)] ≡ ln(SPi+1) − ln(SPi) for i = 1, . . . , nsp − 1 points. The scat-
ter for the nsp − 1 = 1656 points of ∆[ln(SPi)] is shown in Figure 1 versus
time in years, along with confidence intervals for one, two and three stan-
dard deviations. A slight, but noticeable, time dependence of the local mean
and volatility is seen, but the time-dependent behavior is the topic of an-
other paper and the constant coefficient case needs to be treated here. In
different view, the histogram of the data using 50 equally spaced data bins

is given in Figure 2. The mean is M
(sp)
1 ≃ 5.754 × 10−4 and the variance is

M
(sp)
2 ≃ 1.241× 10−4, the coefficient of skew is

η
(sp)
3 ≡ M

(sp)
3 /(M

(sp)
2 )1.5 ≃ −0.2867

which is negative and the coefficient of kurtosis or normalized fourth central
moment is

η
(sp)
4 ≡ M

(sp)
4 /(M

(sp)
2 )2 ≃ 6.862 .

Compared to the normal distribution, the empirical distribution has negative
skew while the normal distribution has zero skew. Also, the empirical kurtosis
is 2.3 times the normal distribution kurtosis of 3. The S&P500 log-return skew
and kurtosis are characteristic of log-returns of many market instruments as
noted in the Introduction.

Using MATLABTM [20], the theoretical log-normal jump-diffusion den-
sity φd ln(S(t)) in (9) is compared to the 50 bin histogram shown in Figure 2
by discretizing the theoretical density using the same 50 bin data structure
as for the histogram. However, the five parameter set {µd, σ

2
d, µj , σ

2
j , λdt}

had to be reduced to a more manageable set to avoid large fitting errors and
to preserve the Principle of Modeling Parsimony (striving for economies or
simplicity of the model). The empirical return time is taken as the reciprocal
average number of trading days per year or 1/252.3 ≃ 0.003964 = dt for
the data used (250 trading days seems to be a standard value [14]), so the
empirical dt is small, but not infinitesimal. Two parameters, µd and σ2

d, were
eliminated by forcing the theoretical means and variances to be the same as
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Fig. 2. Histogram of daily changes in the logarithm of the S&P500 stock index

the mean and variance of the empirical data, respectively.

σ2
d = (M2 − λdt(σ2

j + µ2
j ))/dt , (18)

µd = (M1 − λdtµj)/dt , (19)
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using the log-return moment formulas (7,8). The objective is to select the
reduced set {µj, σ

2
j , λdt} then to minimize the variance (i.e., histogram least

squares) of the difference between the empirical and theoretical model dis-
tribution. The search stopping criteria was that the final maximum relative
change in successive values of the parameters µj , σ2

j and λdt plus the relative
change in the variance of the histogram difference was less than a 0.5e-3 tol-
erance. Due to the complexity of the jump-diffusion density and the need to
keep finance methods simple, a multi-dimensional modification of Golden Sec-

tion Search that needs no derivatives and searches beyond the current range
when a local minimum is not found in the current search hypercube [10].
In addition, hypercube constraints were implemented so that the free model
parameters {−µj, σ

2
j , λdt} would remain non-negative and be bounded. The

final parameter results are

µd ≃ 0.2712 , σ2
d ≃ 0.01048 ,

µj ≃ −0.0007474 , σ2
j ≃ 0.00007812 , λ ≃ 161.7 , (20)

with a final variance of the deviation of 11.45 and an mean deviation of
2.68 × 10−2, with a total frequency count of 1656 over all bins. Also, note
that the diffusion mean and variance have dimension per year, while the
jump mean and variance are dimensionless so the jump values should be
weighted by the jump intensity λ for a jump to diffusion comparison (i.e., the
jump values are not as relatively small as they seem). For a better empirical
to theoretical comparison, the moments of the deviation of the empirical
S&P500 histograms from the normal density histogram, where the normal
density matches only the empirical mean and variance since there are only
two parameters to match given dt, with a mean deviation of −6.015× 10−5,
but a deviation variance of 56.32, almost five times deviation variance of
the fit jump-diffusion. The corresponding jump-diffusion normalized higher
moments are the coefficients

η
(jd)
3 ≡ M

(jd)
3 /

(

M
(jd)
2

)1.5

≃ −0.2114

for skew and

η
(jd)
4 ≡ M

(jd)
4 /

(

M
(jd)
2

)2

≃ 8.082

for kurtosis, whose values are qualitatively similar to the empirical values
with somewhat larger (18%) leptokurtosis and thinner (-26%) negative tails,
but much more realistic than the normal density model with zero skew and
kurtosis of three.

Note that the single log-normal jump amplitude distribution and the min-
imum variance comparison yields only a very slender distribution (very small
σ2

j ) around a negative mean (µj), so only the dominant negative tail is rep-
resented and not the subdominant positive tail. The quality of the fit may be
due to the simple minimum variance technique used, the single log-normal
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jump amplitude distribution and the fully infinite theoretical domain. A bet-
ter model would use a log-bi-normal distribution similar to the log-bi-discrete
distribution used in [9] with a positive as well as a negative discrete jump,
but enhanced with a slight spread. Such a log-bi-normal distribution would
add three more unknown parameters to search for, i.e., additional mean, vari-
ance and the probability of positive jump relative to a negative jump. The
multidimensional Golden Section Search could be used, although it has the
slowness of a general method, one that needs no derivatives. If more speed
and accuracy were required, a nonlinear least squares method such as that
of Levenberg-Marquardt [21] hybrid method can be used, but the parameter
gradient of the log-normal jump-diffusion density would be needed, which
could be facilitated by symbolic computation like MapleVTM [24]. The his-
togram of the final discretized theoretical density is displayed in Figure 3 and
the deviation of the empirical S&P500 from the theoretical jump-diffusion
histogram data is displayed in Figure 4. The discrepancy between the em-
pirical and theoretical is best seen in the difference histogram in Figure 4,
considering that the frequency scale being ten times finer for the positive de-
viations than in full histogram Figure 3, with significant frequency deviations
of (−15, +10) around the mode and adjacent shoulders fairly well-distributed
within the deviation range of (−0.03, +0.02).
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Fig. 3. Histogram of log-normal jump-diffusion as in Figure 2 with same bin struc-
ture
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Fig. 4. Difference of histograms with daily changes in the logarithm of the S&P500
stock index minus the log-normal jump-diffusion bin values (Note: scale in this
figure is one tenth the scale of the previous figure)

Conclusions

The probability density for a jump-diffusion whose jump amplitudes are dis-
tributed log-normally has been found and rigorously justified using basic
probabilistic theory. This density is a discrete weighted sum of normal den-
sities whose parameters depend on the {µd, σ

2
d} mean-variance parameters

of the continuous drift-diffusion subsystem, the {µj , σ
2
j } mean-variance pa-

rameters of the log-normal jump mark distribution and the Poisson jump
rate λ, with the weights being the Poisson discrete distribution of the jump
counts. The log-normal jump-diffusion should be useful for fitting data for
real investment markets with a distribution of random jumps, negative skew
and leptokurtic properties that are not present in the standard log-normal or
geometric diffusion model alone.
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