
Parallel Stochastic Dynamic

Programming: Finite Element Methods

S.L. Chung, F.B. Hanson and H.H. Xu

Laboratory for Advanced Computing

Department of Mathematics, Statistics and Computer Science

University of Illinois at Chicago

P.O. Box 4348; M/C 249

Chicago, IL 60680

Internet: hanson@math.uic.edu

Running Title: Parallel Stochastic Dynamic Programming

1

ABSTRACT- A finite element method for stochastic dynamic programming is developed. The

computational method is valid for a general class of optimal control problems that are nonlinear and

perturbed by general Markov noise in continuous time, including jump Poisson noise. Stability and

convergence of the method are verified and its storage utilization efficiency over the traditional finite

difference method is demonstrated. This advanced numerical technique, together with parallel

computation, helps to alleviate Bellman’s curse of dimensionality by permitting the solution of

larger problems.

1. INTRODUCTION

Stochastic optimal control is important in many areas such as aerospace dynamics, financial

economics, resource management, robotics, medicine and power generation. The main target of

this research is to develop a general computational treatment of stochastic control in continuous

time. Dynamic Programming introduced by Bellman is a powerful tool to attack stochastic optimal

control and problems of similar natures [1, 3]. A highly optimized computational method using

the finite difference scheme for stochastic dynamic programming in small state space of moderate

dimension is presented in many previous works [11, 12, 18, 4, 5]. However, dynamic programming

suffers from Bellman’s Curse of Dimensionality in which the computational demands grow expo-

nentially with the state space dimension. The exponential growth in both computing time and

memory requirements hinder the solution of large problems. Even with the most sophisticated

supercomputers, the maximum number of states that can be handled, with reasonable degree of

accuracy, is restricted to four [5, 6]. Larson [13] proposed a discretization of dynamic programming

called Incremental Dynamic Programming which helps to save computer memory requirement for

large problem. Although the method is effective, it can only be applied to deterministic optimal

control problems in discrete time.

The main objective of this paper is to apply the finite element method to stochastic dynamic

programming. The finite element method possesses a high degree of accuracy over the tradi-

tional finite difference scheme in effect that memory requirements are cut down significantly in this

2

memory-bound problem, trading some computational efficiency for reduced memory requirements.

Hence, Bellman’s curse of dimensionality is alleviated with regard top memory requirements. In

this paper, Section 2 gives a general review of the mathematical background for stochastic dynamic

programming. Section 3 gives the finite element formulation. Section 4 gives the discretization in

backward time, the Crank-Nicolson predictor-corrector scheme. Convergence and stability for the

method is verified in Section 5. In Section 6, the computational efficiency of the finite element

method is compared with the finite difference method.

2. FORMULATION OF BELLMAN’S FUNCTIONAL PDE

The mathematical foundations for stochastic differential equations are given by Gihman and

Skorohod [9]. There are also many other treatments restricted to the continuous Gaussian noise

case [2, 7, 16].

The Markov, multibody dynamical system is illustrated in Figure 2.1 and is governed by the

stochastic differential equation (SDE):

dX(T) = F(X, T,U)dT +G(X, T)dW(T) +H(X, T)dP(T),

X(t) = x; 0 < t < T < tf ;X ∈ Dx;U ∈ Du, (2.1)

where X(T) is them×1 state vector and the feedback control variable, U(X(T), T), is an n×1 vector

in the control space Du. W is the r-dimensional Gaussian white noise vector which represents the

continuous, background component of the perturbations, such as that due to fluctuating population

death rates in a biological resource environment, randomly varying winds and other background

environmental noise. P is the q-dimensional Poisson white noise vector which models discontinuous

rare event components, such as occasional mass mortality, large random weather changes or other

large environmental effects. It is assumed that W and P are pairwise independent by components,

i.e., their covariance is diagonal. F is an m × 1 deterministic nonlinearity vector, G is an m × r

diffusion coefficient array and H is an m×q Poisson amplitude coefficient array. (In general, H can

be random and distributed, but H is treated as nonrandom here for simplicity.) The time varible

t represents a family of initial times that helps to facilitate the dynamic programming analysis

3

CONTROLS
[Ui(X, t)]n×1

STATES
[Xi]m×1

ENVIRONMENT

[Fi(X,U, t)]m×1 Nonlinearities

[Wi(t)]r×1 Gaussian Noise

[Pi(t)]q×1 Poisson Noise

�
�

�
�

���

��������������:

-XXXXXXXXXXXXXXz

B
B
B
BBN

6

Feedback in time dt ր

Figure 2.1 Multibody Dynamical System

and becomes the fundamental backward time variable of the equation of dynamic programming.

Typically, the target initial time is zero, but is not appropriate for variation.

The fairly general objective of the problem is to optimize the expected value of the performance

criterion or total costs

V (X,U,P,W, t) =

∫ tf

t
dT C(X(T), T,U(X(T), T)) + Z(X(tf)), (2.2)

where C(x, t,u) is the instantaneous cost function and Z is the terminal cost function. The optimal

expected performance on the time horizon (t, tf) is given by

V ∗(x, t) = min
u

[MEAN
{P,W}

[V (X,U,P,W, t)|X(t) = x,U(X(t), t) = u], (2.3)

such as to minimize costs of production, costs of extraction, fuel consumption, or lateral/longitudinal

perturbation of motion. Instead of a difficult direct path search over all the state and control spaces,

a dynamic programming formulation is used. The minimization in (2.3) is reduced to the simpler

minimization of a switching term over the control. The reduction of the minimization is accom-

plished by Bellman’s Principle of Optimization, followed by generalized Itô Chain Rule (see [10],

4

for instance), leading to the Bellman functional PDE of dynamic programming

0 =
∂V ∗

∂t
+

1

2

(
GGT

)
(x, t) : ∇x∇x

TV ∗(x, t)

+
q∑

l=1

λl · [V
∗(x + Hl(x, t), t) − V ∗(x, t)] + S(x, t), (2.4)

where the minimized functional control switching term is

S(x, t) = min
u

[S(x, t,u)]

= min
u

[C(x, t,u) + FT (x, t,u)∇xV
∗(x, t)], (2.5)

if it is assumed that only the scalar cost function C and the m × 1 nonlinearity function F are

control dependent. In (2.4), the scalar matrix product

A : B =
∑

i

∑

j

AijBij = Trace[ABT].

In general, Eq. (2.4) will be nonlinear when the argument of the minimum in (2.5) is nonlinear in

the control vector U. Also note that the discrete Poisson noise leads to a PDE with a non-local

delay functional term through the m×1 argument x+Hl, whose components are xi +Hil. The use

of general Markov noise does not lead to simple boundary conditions for (2.4-2.5), but fortunately

the boundary conditions are embedded inthe Bellman equation, unlike the forward Kolmogorov

equation.

To simplify the solution of the Bellman functional PDE (2.4), the costs and dynamics are

assumed to be functions of the control so that formal solution of the minimization in (2.5) is

permitted, while still retaining some generality. Costs that are a quadratic function of the control

are a reasonable choice, taking the minimum energy form

C(x, t,u) = C0(x, t) + CT
1 (x, t)u +

1

2
uTC2(x, t)u, (2.6)

so that the unit cost of the controls becomes more expensive at large values, provided C2 is positive

definite. In (2.6), C0 is a scalar function as is C, C1 is an n× 1 vector, and C2 is an n× n array.

5

In addition, the dynamics in (2.1) are assumed to be linear in the controls,

F(x, t,u) = F0(x, t) + F1(x, t)u, (2.7)

while remaining nonlinear in the state vector. In (2.7), F0 is an m × 1 nonlinearity vector, and

F1 is an m × n array. The linear-quadratic control form does permit the formal solution of the

minimization problem in (2.5). The regular or unconstrained control, UR, is determined from the

critical points of the argument of the minimum in (2.5), that is

0 = ∇uS = C1 + F T
1 ∇xV

∗ +
1

2
(C2 + CT

2)u. (2.8)

Assuming that the n× n coefficient C2 in (2.8) is nonsingular and symmetric, the explicit form of

the regular control is obtained as

UR(x, t) = −C−1
2 · (C1 + F T

1 ∇xV
∗). (2.9)

For costs more general than quadratic, Eq.(2.9) would be an initial approximation. The optimal

control for the constrained problem will be a regular control only when the regular control is in

the control domain Du. In the case of a hypercube constraints, Umin,i ≤ Ui(x, t) ≤ Umax,i for

i = 1 to n, the optimal control U∗ will take the form

U∗
i (x, t) =

UR,i, Umin,i ≤ UR,i ≤ Umax,i

Umin,i, UR,i ≤ Umin,i

Umax,i, UR,i ≥ Umax,i

(2.10)

or

U∗
i (x, t) = min[Umax,i,max[Umin,i, UR,i(x, t)]], (2.11)

where U∗
i is the ith component of the optimal control vector U∗; Umax,i and Umin,i are respectively

the maximum and minimum of the ith component in the hypercube control domain Du.

When UR exceeds the constraints of Du, U∗ is called a bang control denoting banging on

the constraints. Applying the optimal control calculation to the minimized functional term and

6

eliminating some terms in favor of the regular control vector in (2.9)

S(x, t) = C0 + FT
0 ∇xV

∗ +
1

2
(U∗ − 2UR)TC2U

∗ (2.12)

is obtained. Since UR depends linearly on the solution gradient, ∇xV
∗, U∗ is the constrained

counterpart of UR in (2.9), and the minimized functional (2.12) is quadratic in the controls, the

minimized functional (2.12), in general, makes the Bellman equation (2.4) a nonlinear partial

differential equation.

3. FORMULATION OF FINITE ELEMENT (GALERKIN) METHOD

In order to solve the Bellman functional PDE (2.4) with (2.12) numerically, a Galerkin ap-

proximation in the state-space is used:

V ∗(x, t) ≈
N∑

j=1

V̂ j(t) · φj(x), (3.1)

where Φ(x) = [φi]N×1 denotes a set ofN basis functions that are linearly independent, and piecewise

smooth. No assumptions are made about essential boundary conditions here.

The Bellman functional PDE is multiplied with a test function ψ and integrated throughout

the domain Dx, which forms the variational (or weak) formulation:

0 =

∫

Dx

ψ ·

[
∂V ∗

∂t
+ FT

0 ∇xV
∗(x, t) + 1

2GG
T (x, t) : ∇x∇x

TV ∗

+
q∑

l=1

λl · [V
∗(x + Hl(x, t), t) − V ∗(x, t)] (3.2)

+ (1
2U

∗ − UR)TC2U
∗
]
dx.

The finite element discretization is obtained by substituting the Galerkin approximation (3.1) for

V ∗(x, t) and the N basis functions successively for the test function ψ.

The term 1
2

∫
φiGG

T (x, t) : ∇x∇x
TV ∗(x, t)dx involves second order derivatives in x. One

order of derivative in V ∗(x, t) is transferred to φi, so that weaker continuity requirements will be

sufficient for the approximating functions φi(x). The transformation is done through the product

rule and divergence theorem (integration by parts):

1
2

∫

Dx

φiGG
T (x, t) : ∇x∇x

TV ∗(x, t)dx

7

= 1
2

∫

Dx

φi

∑

k

∑

l

∑

m

GklGmlDkDmV
∗(x, t)dx

= 1
2

∑

k

∑

l

∑

m

∫

Dx

Dk(φiGklGmlDmV
∗(x, t))dx

−1
2

∑

k

∑

l

∑

m

∫

Dx

Dk(φiGklGml)DmV
∗(x, t)dx

= 1
2

∫

Dx

∇x · (φiGG
T∇xV

∗(x, t))dx (3.3)

−1
2

∫

Dx

(∇x
T (φiGG

T)) · ∇xV
∗(x, t)dx

= 1
2

∮

∂Dx

n̂T

φiGG
T

N∑

j=1

V̂ j(t)∇xφj

 ds

−1
2

∫

Dx

(∇x
T (φiGG

T)) ·
N∑

j=1

V̂ j(t)∇xφjdx

where

Gij = the element of G in the ith row and the jth column,

Di = the derivative with respect to the ith component of x,

and

n̂ = unit normal vector to the boundary ∂Dx.

8

Using (3.3) together with the Galerkin approximation (3.1), with ψ = φi, leads to the form

0 =

∫

Dx

φi

N∑

j=1

dV̂ j(t)

dt
φjdx

+

∫

Dx

φiF
T
0

N∑

j=1

V̂ j(t)∇xφjdx

− 1
2

∫

Dx

(∇x
T (φiGG

T))
N∑

j=1

V̂ j(t)∇xφjdx

(3.4)

+ 1
2

∮

∂Dx

n̂T

(φiGG
T)

N∑

j=1

V̂ j(t)∇xφj

 ds

+

∫

Dx

φi

N∑

j=1

q∑

l=1

λlV̂ j(t)[φj(x + Hl(x, t)) − φj(x)]dx

+

∫

Dx

φi · (
1
2U

∗ − UR)TC2U
∗dx,

for i = 1 to N .

Inner products are defined as

(ψ,ϕ) =

∫

Dx

ψ(x, ·) · ϕ(x, ·)dx, (3.5)

and

(ψ,ϕ)∂ =

∮

∂Dx

ψ(x, ·) · ϕ(x, ·)ds, (3.6)

for some bounded state domain Dx and its boundary ∂Dx. In addition, the following simplifying

matrix notations are defined:

V̂(t) = [V̂ i(t)]N×1,

φj,l = φj,l(x, t) ≡ φj(x + Hl(x, t)),

S(t) = [(φi, (
1
2U

∗ − UR)TC2U
∗)]N×1 (3.7)

9

and

Q(t) = 1
2 [(φi, n̂

TGGT∇xφj)∂]N×NV̂(t).

These nner product and matrix notations convert this intermediate form into the nonlinear algebraic

system

0 = [(φi, φj)]N×N
dV̂(t)

dt

+ [(φi,F
T
0 ∇xφj)]N×N V̂(t)

− 1
2 [(∇x

T (φiGG
T),∇xφj)]N×NV̂(t) (3.8)

+
q∑

l=1

λl · [(φi, (φj,l − φj))]N×N V̂(t)

+ S(t) + Q(t) = 0.

If the costs are taken to be quadratic in U as shown in Section 2, then the special Galerkin

approximation to the regular control and optimal control, respectively, are

UR(x, t) ≈ −C−1
2 ·

C1 +

N∑

j=1

V̂ j(t)F
T
1 ∇xφj(x)

 , (3.9)

and

U∗
i (x, t) = min[Umax,i,max[Umin,i, UR,i(x, t)]], (3.10)

where U∗
i is the ith component of the optimal control vector U∗, Umax,i and Umin,i are, respectively,

the maximum and minimum of the ith component in a hypercube control domain Du. Note

quadratic costs imply that the switch matrix S(t) will, in general, have cubic nonlinearity in the

basis functions.

The boundary conditions vary heavily with application, depending on whether the boundary

∂Dx is absorbing, reflecting or combinations of these. In many cases, there are no simple boundary

specifications, so that boundary values must be obtained by integrating the Bellman equation

along the boundary. For the simplicity of the following derivation, we avoid the specification of the

boundary conditions by assuming the coefficient G(x, t) vanishes at the boundary, so that Q(t) ≡ 0.

10

4. CRANK-NICOLSON PREDICTOR-CORRECTOR SCHEME

As noted in the previous section, the finite variational form of the Bellman functional PDE

has a cubic nonlinearity in the basis functions; consequently, the resulting nonlinear matrix ODE

(3.8) cannot be solved numerically with a single step scheme. The time approximation used

here is basically a Crank-Nicolson discretization scheme and function values for each time step are

iterated to obtain a reasonable approximation of the nonlinear switching term S. The backward

time discretization is given as

Tk = tf − (k − 1) ·DT,

for k = 1 to K.

Using Ṽk = V̂(Tk), the O(k2) central finite difference of the vector time derivative dV̂(t)/dt

at T
k+

1
2

is given as
(
Ṽ

k+
1
2+

1
2
− Ṽ

k+
1
2−

1
2

)

−DT
=

(Ṽk+1 − Ṽk)

−DT
.

Under this time discretization scheme, the functions F0 and G are evaluated at T
k+

1
2
, and are

denoted by F
0,k+

1
2

and G
k+

1
2
, respectively. The linear approximation Ṽ

k+
1
2

= 1
2 (Ṽk+1 + Ṽk), is

accurate to O(k2). The nonlinear term S
k+

1
2

must be successively approximated by a predictor-

corrector method to obtain a reasonable degree of accuracy that is comparable to that of the linear

algebraic term to avoid numerical pollution. After the time discretization, the nonlinear algebraic

system equation (3.8) is converted to a Crank-Nicolson algebraic system

A
k+

1
2
(Ṽk+1 − Ṽk) = DT · (B

k+
1
2
Ṽk + S

k+
1
2
) (4.1)

where

A
k+

1
2

= [(φi, φj)]N×N − 1
2DT · B

k+
1
2
,

B
k+

1
2

= −1
2 [(∇x

T (φiGk+
1
2
GT

k+
1
2

),∇xφj)]N×N

11

+ [(φi,F
T

0,k+
1
2

∇xφj)]N×N (4.2)

+
q∑

l=1

λl · [(φi, (φj,l,k+
1
2
− φj))]N×N ,

and S
k+

1
2

is the corresponding nonlinear switch term. The difference (Ṽk+1 − Ṽk) is calculated

instead of Ṽk+1 to reduce catastrophic cancellation in finite precision arithmetic in computers.

Exact formulation of this O(DT) difference in the solution loses far less precision than calculating

the solution at the new time step alone when it will likely be the same order as the solution at the

old time step.

The predictor-corrector method begins with a convergence accelerating extrapolator (x) start

which helps to cut down the number of corrections for each time step. For the new (k + 1)st time

step, before the new value of Ṽk+1 is evaluated, the old values of Ṽk and Ṽk−1 are assumed to be

known, with the starting condition Ṽ0 = Ṽ1. The extrapolated value

Ṽ
(x)

k+
1
2

= 1
2(3 · Ṽk − Ṽk−1), (4.3)

is used to calculate the values of

U
(x)

R,k+
1
2

(x) ≈ −C−1
2 ·

C1 +

N∑

j=1

V̂
(x)

j,k+
1
2
F T

1 ∇xφj(x)

 , (4.4)

and

U
(x)

i,k+
1
2

(x) = min[Umax,i,max[Umin,i, U
(x)

R,i,k+
1
2

(x)]] (4.5)

where U
(x)

i,k+
1
2

is the ith component of the extrapolated value of the optimal control vector U
(x)

k+
1
2

and U
(x)

R,i,k+
1
2

is the ith component of the extrapolated value of the regular control vector U
(x)

R,k+
1
2

,

all evaluated at mid-point time T
k+

1
2
. The extrapolated values of the controls are in turn used to

update the value of the switch term

S
(x)

k+
1
2

= [(φi, (
1
2U

(x)

k+
1
2

− U
(x)

R,k+
1
2

)TC2U
(x)

k+
1
2

)]N×1 (4.6)

The extrapolated values are put into (4.1) to obtain the extrapolated predictor (xp) linear algebraic

system:

A
k+

1
2
(Ṽ

(xp)
k+1 − Ṽk) = DT · (B

k+
1
2
Ṽk + S

(x)

k+
1
2

). (4.7)

12

The (k + 1
2)st time step values are then obtained using the extrapolated predictor values Ṽ

(xp)
k+1 in

the predictor evaluation (xpe) step:

Ṽ
(xpe)

k+
1
2

= 1
2(Ṽ

(xp)
k+1 + Ṽk), (4.8)

which is then used to update the optimal control U
(xpe)

k+
1
2

and the switch term S
(xpe)

k+
1
2

. The updated

values are then used in the corrector (xpec) steps which the (γ + 1)st correction is obtained from

the system

A
k+

1
2
(Ṽ

(xpec,γ+1)
k+1 − Ṽk) = DT · (B

k+
1
2
· Ṽk + S

(xpec,γ)

k+
1
2

), (4.9)

with successive corrector evaluation (xpece) steps:

Ṽ
(xpece,γ+1)

k+
1
2

= 1
2(Ṽ

(xpec,γ+1)
k+1 + Ṽk), (4.10)

to be used in successive evaluation of the optimal control and the nonlinear switching term. The

predictor step is the zeroth corrector step Ṽ
(xpec,0)

k+
1
2

= Ṽ
(xpe)

k+
1
2

. The corrector procedures are repeated

for γ = 0 to γmax or until a predetermined stopping criterion is met.

Parallelism is effective in the Crank-Nicolson computation loops over the state space indices

in the numerical equations (4.1-4.10). The data dependence across the time index k loops make

it difficult to parallelize the code beyond the state loops. The finite element structure saves on

memory requirements over finite differences, but the parallelization properties are similar to that

fo the implementation for finite differences.

5. STABILITY AND CONVERGENCE

In [14], the convergence and stability of the finite difference method for solving the Bellman

functional PDE is derived. The analysis is based on von Neumann’s Fourier stability applied to a

linearized comparison equation. In the analysis of the convergence and stability of the finite element

method, we adapted to the same single state linearized, constant coefficients, nonfunctional PDE

comparison equation. Instead of using von Neumann Fourier stability, eigenfunctions expansion is

used in the analysis. The one-dimensional heuristic comparison equation takes the form

0 = Vt + B̂ · Vx + Â · Vxx (5.1)

13

where

Â ≥ max[|
1

2
G2(x, t)|]

B̂ ≥ max[|F0(x, t) + 1
2F1(x, t) · u|]

are nonnegative constants, which are different form Ak+1/2 and Bk+1/2 in the previous section. This

equation, with maximal coefficients, may be thought of as the worst possible case of the Bellman’s

equation (2.4), but we ignore the inhomogeneous costs and Poisson related terms, which would

make our analysis intractable if we included them.

For a standard finite element analysis, consider the following self-adjoint alternate form of

(5.1),

0 = eB̂x/ÂVt +

(
ÂeB̂x/ÂVx

)

x
, (5.2)

where exp(B̂x/Â) is an integrating factor or the spatial part of (5.1. Applying the Galerkin ap-

proximation (3.1) to the variational formulation of (5.1), we have the backward matrix ODE

0 = M̂
dV̂

dt
(t) + K̂V̂(t), (5.3)

where

M̂ = [(φi, e
B̂x/Âφj)]N×N

K̂ = −Â · [(φ
′

i, e
B̂x/Âφ

′

j)]N×N , (5.4)

are, respectively, the mass matrix and stiffness matrix. φ
′

j is the derivative of the basis function φj

with respect to x.

Suppose the whole domain is divided into Ne elements. The same matrix ODE is applied to

both a single element and the whole domain. Let ke and me be the stiffness and mass matrix for

the ODE of a single element respectively. Then

0 = me
dv̂e

dt
+ kev̂e, (5.5)

14

where

me = [(φi, e
B̂x/Âφj)]ne×ne

ke = −Â · [(φ
′

i, e
B̂x/Âφ

′

j)]ne×ne , (5.6)

ne is the number of nodes in a single element. The nodal values vectors, v̂e, are related to the

element global nodal values vector, V̂, by

v̂e = AeV̂, (5.7)

where Ae are Boolean mapping matrices which maps the global numbering of the node in the whole

domain into the local numberering of a node in an element.

The global stiffness matrix K̂ and global mass matrix M̂ can be assembled from the corre-

sponding element matrices as

K̂ =
Ne∑

e=1

AT
e keAe, (5.8)

M̂ =
Ne∑

e=1

AT
e meAe. (5.9)

Consider the corresponding symmetric eigenproblems for the finite element approximation of

the self-adjoint form (5.2,

K̂ŷ = λ̂M̂ ŷ, (5.10)

and

keŷe = λ̂emeŷe, (5.11)

for the global and element problems, respectively.

Consider the linear finite element space, in order to motivate the use of general matrix analy-

sis. A typical finite element is given as

x1 ≤ x ≤ x1 + h = x2, (5.12)

15

where h is the size of an element. The linear basis functions on an element are then given as

φ1(x) =
x2 − x

h
,

φ2(x) =
x− x1

h
.

The element mass matrix and element stiffness matrix for the self-adjoint problem are given re-

spectively as

me =
Â

B̂
eB̂x1/Â

2

ĥ
2

(
eĥ − 1

)

1 −1

−1 1

 +

1

ĥ

−2 1 + eĥ

1 + eĥ −2eĥ

−1 0

0 eĥ

, (5.13)

which is positive definite, where ĥ ≡ B̂h/Â, and

ke = −
B̂

ĥ
2 e
B̂x1/Â

(
eĥ − 1

)

1 −1

−1 1

 . (5.14)

which is negative semi-definite, corresponding to the backward time property of the problem. Com-

putations show that

max[λ̂
(j)
e] = 0,

min[λ̂
(j)

e] = −
Â

h2

(
eĥ − 1

)2

2

ĥ
2 (eĥ − 1)2 +

(
4

ĥ
2 − 1

)
eĥ − 1

ĥ
2

(
eĥ + 1

)2 (5.15)

−→ −
12

h2
,

as ĥ ≡ B̂h/Â→ 0+.

Let λ̂
(1)

e and λ̂
(n)

e be the largest and smallest eigenvalue of (5.11), respectively. Since me is sym-

metric positive definite and ke is symmetric negative semi-definite, for linear elements, Rayleigh’s

Theorem [8] implies

λ̂
(n)

e ŷT
e meŷe ≤ ŷT

e keŷe ≤ λ̂
(1)

e ŷT
e meŷe. (5.16)

Assembling ke into K̂, we have

ŷT K̂ŷ =
∑Ne

e=1 ŷT
e keŷe ≤ max

e
[λ̂

(1)
e]

Ne∑

e=1

ŷT
e meŷe = max

e
[λ̂

(1)
e]ŷT M̂ ŷ, (5.17)

16

and

ŷT K̂ŷ ≥ min
e

[λ̂
(n)

e]
Ne∑

e=1

ŷT
e meŷe = min

e
[λ̂

(n)

e]ŷT M̂ ŷ. (5.18)

Therefore

min
e

[λ̂
(n)

e] ≤ ŷT K̂ŷ/ŷT M̂ ŷ ≤ max
e

[λ̂
(1)

e], (5.19)

that is, the range of the eigenvalue λ̂ for the eigenproblem (5.10) lies within range of the eigenvalues

of the element eigenproblem (5.11).

Since Bellman functional PDE is a final time problem, therefore (5.3) is a backward time

ODE. Following the Crank-Nicolson time discretization scheme, Eq. (5.3) in the kth step becomes

0 = M̂ ·
Ṽk − Ṽk−1

−DT
+ K̂ ·

Ṽk + Ṽk−1

2
, (5.20)

i.e.

Ṽk = (I −
DT · M̂

−1
K̂

2
)−1(I +

DT · M̂
−1
K̂

2
)Ṽk−1, (5.21)

where Ṽk = V̂(Tk). Suppose the starting final guess, Ṽ0 = V̂f = V̂(Tf), is expanded in terms of

the discrete orthonormal eigenfunction ŷj of M̂
−1
K̂, i.e.

Ṽ0 =
N∑

j=1

ĉj ŷj , (5.22)

where

ĉj = Ṽ
T
0 M̂ ŷj .

Substituting into (5.21) recursively, we have

Ṽk =
N∑

j=1

(µj)
k · ĉjByhj , (5.23)

where the amplification factor µj is given as

µj =
1 + λ̂j

DT
2

1 − λ̂j
DT
2

. (5.24)

17

Since λ̂j is nonpositive for linear elements, therefore

|µj| ≤ 1, (5.25)

and the Crank-Nicolson scheme is asymptotically stable as k → ∞.

The rate of convergence can also be determined from the corresponding eigenfunction expansion

in the space-time domain [17]. The orthonormal eigenfunction expansions of the exact solution

and the approximation, recalling the backward time nature of the problem, are given as

V ∗(x, t) ≈
∞∑

j=1

cje
λj(tf−t)Yj(x), (5.26)

where

∫

Dx

Yi(x)Yj(x)dx = δi,j ,

cj =

∫

Dx

V (x, tf)Yj(x)dx,

and

V̂ (x, t) =
N∑

j=1

ĉje
λ̂j(tf−t)Ŷ j(x), (5.27)

where

∫

Dx

Ŷ i(x)Ŷ j(x)dx = δi,j ,

ĉj =

∫

Dx

V (x, tf)Ŷ j(x)dx,

respectively.

There are two sources of error: the initial error, which is the error of the interpolated initial

value, and the evolution error, which is the error that evolves with time [17]. When the interpolating

functions in the finite element space are of order k − 1, the initial error V0 − V̂0 is of order

(∆x)k. The evolution error is found when the same initial condition V̂0 is used as in both

equations (5.26) and (5.27). The error in the eigenvalues and eigenfunctions are given [8, 17] as

λ̂j − λj = O(h2(k−1)λk
j), (5.28)

18

and

||Ŷ j − Yj ||2 = O(hkλ
k/2
j), (5.29)

as h→ 0. The error in the eigenfunctions is measured in the L2 norm, where

||Ŷ j − Yj||2 =

[∫

Dx

(Ŷ j − Yj)
T (Ŷ j − Yj)dx

]1
2
, (5.30)

for some domain Dx. Similarly, the difference in the weights [17] is

ĉj − cj =

∫

Dx

V̂ (x, tf)(Ŷ j − Yj)dx = O(hk), (5.31)

as h→ 0, ignoring the eigenvalue dependence. Therefore, comparing V and V̂ in (5.26) and (5.27),

the evolution error is also of order hk.

While our application of the estimates of [8, 17] is quite straight-forward, our reduction of the

more complex Bellman equation to a more standard PDE, that is more amenable to analysis, is

not standard and is our more significant contribution, as our numerical results demonstrate.

6. MEMORY REQUIREMENTS

We have seen in the previous section that the order of accuracy of the finite element method

depends on the degree of the interpolating function. For cubic interpolating functions, the error is

of order (∆x)4. In the conventional finite difference scheme, the local truncation error is of order

(∆x)2. With this observation, one can conclude that the numerical efficiency of n mesh points per

state in the finite element method with cubic interpolating function is comparable with n2 mesh

points in the finite difference scheme.

It has been shown that the storage requirement for the finite difference method solution of the

Bellman’s functional PDE (2.4) grows exponentially as the number of states in the problem. If m

is the number of states and M is the number of mesh points per state, then the storage requirement

is given as

Sm,M
fdm = Kfdm ·m ·Mm. (6.1)

19

In [5], we have shown that the asymptotic value of Kfdm in (6.1) is approximately 13. In the finite

element (Galerkin) method, the resulting coefficient matrices (Ak+1/2 and Bk+1/2 in (4.2)) are

sparse and the average number of nonzero entries per row depends on the dimension and the order

of the interpolating function, if H ≡ 0. However, with the Poisson noise in the stochastic model and

the corresponding functional argument x + Hl, sparseness and the usual local DE behavior is no

longer assured. In case that the Poisson terms do not contribute significantly to array denseness,

the extra nonzero entries due to the Poisson term is small, it is reasonable to assume that the

storage requirement is given as

Sm,M
fem = Kfem ·Mm, (6.2)

if only the matrices are stored in a compressed form where only the nonzero entries in each row

are stored. Now for large state space problems, the storage requirement is dominated by ma-

trices Ak+1/2 and Bk+1/2 in (4.2) and a pointer array with the same dimension as Ak+1/2 and

Bk+1/2. Thus the asymptotic value of Kfem in (6.2) is given as

Kfem ≈ 3 × (number of nonzero entries per row in Ak+1/2, Bk+1/2). (6.3)

Consider, for example, a 3 state problem with 64 mesh points in the finite difference solution. The

number of mesh points per state in the finite element (Galerkin) method with comparable order of

accuracy should be 8 and the number of nonzero entries per row in the coefficient matrix is 165 for

a cubic interpolating function. The storage requirements for the two methods are

S3,64
fdm ≈ 3 × 13 × 643 ≈ 10.2 × 106 (6.4)

S3,8
fem ≈ 3 × 165 × 83 ≈ 0.25 × 106 (6.5)

This gives an approximate 40 times saving, a substantial improvement in terms of storage require-

ment.

7. CONCLUSIONS

20

It has been shown that the order of accuracy of the finite element method for the Bellman

functional PDE depends on the degree of the interpolating basis function. For an interpolating

function of degree (k − 1), the order of accuracy is O(∆x)k. Since the order of accuracy for the

finite element method can be controlled through the degree of interpolating function, higher order

finite element methods can be used in high state-space problems. This has the effect that the

same degree of accuracy can be maintained while coarser mesh points can be used, alleviating

Bellman’s curse of dimensionality. In Section 6, we have demonstrated that an almost 40 times

saving in memory requirements is achieved when the finite element method is compared with the

finite difference method for a 3-state problem.

The National Computing Initiative [15] noted that stochastic dynamic programming is com-

putationally demanding. As technology advances, stochastic control problems with larger size can

be handled through the use of advanced computing facilities and computing methods. Preliminary

results with the finite element method indicates that the method provides advantages for reducing

dimensionality problems in existing hardware. The solutions for stochastic dynamic programming

are far from perfect. Much more needs to be done to solve problems of higher dimensions. They

include

• more advanced supercomputing methods such as the use of data parallel methods which can

achieve scalar, linear growth in both memory and computational requirements [18] ;

• development of more general and efficient code for the finite element method to cut down the

number of nodes per state;

• multigrid methods;

• domain decomposition methods.

ACKNOWLEDGMENT

This work was supported in part by the National Science Foundation under Grants DMS 88 06099

21

and DMS 91 02343, the Advanced Computing Research Facilities of the Argonne National Labora-

tory, the National Center for Supercomputing Applications of the University of Illinois at Urbana,

the UIC Workshop Program on Scientific Supercomputing and the UIC Software Technologies Re-

search Center (SofTech).

REFERENCES

[1] M. Akian, J.P. Chancelier and J.P. Quadrat, Dynamic programming complexity and applica-

tions, Proc. 27th IEEE Conf. on Decision and Control 2 : 1551-1558, Dec. 1988.

[2] L. Arnold, Stochastic Differential Equations : Theory and Applications, Wiley, New York,

1974.

[3] A.E. Bryson and Y.C. Ho, Applied Optimal Control, Hemisphere Publ. Corp., New York, 1975.

[4] S.L. Chung and F.B. Hanson , Parallel Optimization for Computational Stochastic Dynamic

Programming, in Proc. 1990 Int. Conf. Parallel Processing, Algorithms and Applications, (Pen-

Chung Yew, Editor), Pennsylvania State University Press, University Park, vol. 3: 245-260,

Aug. 1990.

[5] S.L. Chung and F.B. Hanson , Optimization Techniques for Stochastic Dynamic Programming,

Proc. 29th IEEE Conf. on Decision and Control, 4:2450-2455, Dec. 1990.

[6] S.L. Chung, Supercomputing Optimization of Stochastic Dynamic Programming, Ph.D. The-

sis, University of Illinois at Chicago, Aug. 1991.

[7] W.H. Fleming and R.W. Rishel, Deterministic and Stochastic Optimal Control, Springer-

Verlag, New York, 1975.

[8] I. Fried, Numerical Solution of Differential Equations, Academic Press, New York, 1979.

22

[9] I.I. Gihman and A.V. Skorohod, Stochastic Differential Equations, Springer-Verlag, New York,

1972.

[10] I.I. Gihman and A.V. Skorohod, Controlled Stochastic Processes, Springer-Verlag, New York,

1979.

[11] F.B. Hanson, Computational Dynamic Programming for Stochastic Optimal Control on a

Vector Multiprocessors, Technical Memorandum No. 113, Mathematics and Computer Science

Division, Argonne National Laboratory, June 1988.

[12] F.B. Hanson, Parallel computation for Stochastic Dynamic Programming: Row versus Column

code orientation, in Proc. 1988 Int.Conf. Parallel Processing, Algorithms and Applications,

(D.H. Bailey, Editor), Pennsylvania State University Press, University Park, vol. 3:117-119,

Aug., 1988.

[13] R.E. Larson, State Increment Dynamic Programming, American Elsevier, New York, 1968.

[14] K. Naimipour and F.B. Hanson, Convergence of Numerical Method for the Bellman Equation

of Stochastic Optimal Control with Quadratic Costs and Constrained Control, submitted 1991.

[15] H.J. Reveché, Chair, A National Computing Initiative: The Agenda for Leadership, Society

for Industrial and Applied Mathematics, Philadelphia, 1987.

[16] Z. Schuss, Theory and Applications of Stochastic Differential Equations, Wiley, New York,

1980.

[17] G. Strang, G.J. Fix, An Analysis of the Finite Element Method, Englewood Cliffs, Prentice-

Hall, New York 1973.

[18] H.H. Xu , F.B. Hanson and S.L. Chung, Parallel Optimal Data Parallel Methods for Stochastic

Dynamic programming, accepted in Proc. 1991 Int. Conf. Parallel Processing , Pennsylvania

State University Press, University Park, Aug. 1991.

