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1. Introduction

The growth and control of brain tumors have been the subject of medical and
scientific scrutiny for a very long time as described in Murray’s book [35, vol.
II]. As in case of other cancers, brain tumors can originate from a single cell,
which then proliferates and starts affecting the neighboring healthy normal
tissues. As the tumor cells become malignant they become more dangerous
for the host and take life threatening proportions. Understanding the mecha-
nism that augment and abet tumor progression is necessary for its diagnosis
and optimal treatment. The most common and deadly form of brain tumors
are the gliomas, which account for more than half of the newly reported brain
tumor cases. Gliomas are highly invasive and severely infiltrate the surround-
ing tissues. Araujo and McElwain [3] did a historical survey of solid tumor
growth and the contribution of mathematical modeling. Baxter and Jain [5]
look at the transport mechanism taking into account the interstitial pressure
and convection factors. Engelhard’s [13] paper provides a nice description of
the difficulties that arise in drug delivery due to the presence of the blood
brain barrier (BBB). Gatenby and Gawlinski [14] and Mansuri’s thesis [33]
dwell on some general reaction–diffusion model for cancer growth. Murray’s
[34,35] classical texts are an excellent reference on growth and treatment of
brain tumors, with a historical prelude. Swanson’s thesis [37] is arguably the
most seminal work on the mathematical modeling of brain tumors using real
clinical data. This work is very important because it encompasses both the
mathematical and medical issues at work.

Despite improved diagnostic procedures such as computerized tomography
(CT) scan and magnetic resonance imaging (MRI), the benefits of such modern
accessories have been restricted by the treatment options available. According
to Engelhard [13], one major problem of administering the drugs to the brain
tumor site is the blood brain barrier (BBB), which exists in the human brain
as a desirable protection for the brain cells against the transport of water
soluble toxic substances between the blood and the central nervous system.
Another problem that arises is the residue of tumor cells which remains, after
the core mass of the tumor has been surgically removed, i.e., the brain has
been resectioned. Note that these residual cells which are above the detection
threshold in a CT/MRI scan are called tentacles due to their appearances
on the original tumor. One way to deliver the drug is to conjugated it with
a polymer and place it in the brain cavity for controlled release. One such
antibody agent used is VGEF or Vascular Endothelial Growth Factor [41].
But the approach we will focus on in this paper is the optimal drug delivery
at the original tumor site using invasive methods like the catheter.

While working on the mathematical representation of the brain tumor prob-
lem, researchers primary looked at two things. Firstly, the question was how
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to accurately represent the growth of tumor. Secondly, the question is what is
the mechanism of drug transport to the site of a brain tumor?

(1) The first aspect about the tumor growth has been elaborated in the
work of Murray [35] and Swanson [37]. They point out that unlike most
cancerous cells which primarily grow, gliomas are highly diffusive. Their
model of brain tumor growth is given by a reaction–diffusion PDE and
involves the diffusion of tumor accompanied by an exponential growth
and a natural no-flux boundary condition. It is important to note that
the diffusion for white matter is five times that of grey matter [37].

(2) On the other hand Wang et al. [38,39] have worked extensively on drug
delivery to tumors in three dimensions for drugs like IgG and BCNU [1].
They also used a PDE for the drug transport, akin to the mass conserva-
tion equation for porous media. Their model also involves the supply and
loss of drugs and also a chemical reaction term. The interstitial velocity
in the porous media is mathematically approached using Darcy’s law.

The mathematical model used in this work, was influenced (but is different)
by the models of Gatenby and Gawlinski [14] and Mansuri [33]. Both of these
papers, while not dealing directly with brain tumors, have models which closely
resemble the growth of brain tumors. Both these work not only take diffusion
into account but also the effects of competition for resources between the
cancerous cells and healthy tissues. The different kinds of cancerous growth
(exponential, logistic and Gompertz being the common ones) are detailed in
the books by Goldie and Coldman [16] and Murray [34,35] and also the work
of Westman et al. [40]. Also, Woodward et al. [42] study a model of glioma
growth and the effects of surgical resection.

The paper is organized as follows. Section 2 presents the mathematical tumor
drug delivery model. Section 3 gives the formulation of the optimal drug con-
trol problem. Section 4 concerns the Galerkin finite element method for the
computational model. Section 5 sets up the customized spherical finite element
configuration. Section 6 describes the forward state to backward co-state dou-
ble iterations. Section 7 gives details of the forward–backward computational
algorithm. Finally, conclusions and future directions are presented in Section 8.

2. Mathematical model

This work while being motivated by a biomedical problem will be mostly
mathematical and computational in content. We will focus primarily on control
for the optimal distribution of the drug about the original tumor site after the
bulk of the tumor has been surgically removed. In the PDE driven distributed
parameters control model of Chakrabarty and Hanson [8–10] and Chakrabarty
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[7], the density of tumor cells and normal tissues and the drug concentration
are taken as the state variables. Let T (x, t) be the density of tumor cells,
N(x, t) be the density of normal tissues and C(x, t) be the drug concentration
at any vector position x and time t ∈ [0, tf ], in the interior of the domain Ω.
Since this is a PDE driven control model it is called a distributed parameters
model, as opposed to a lumped parameter model in the case for ODE models.
While previous models only study the behavior of solutions we also study
the control of drug delivery. This spatiotemporal model is a system of three
coupled reaction–diffusion equations.

2.1. Tumor cells

It is assumed that the density of tumor cells, T (x, t), satisfies a reaction–
diffusion equation subject to competition with the normal cells with density
N(x, t) and killing due to drug concentration C(x, t),

∂T

∂t
= DT∇2

x[T ]+aTgT (T )T−(αT,NN+κT,CC)T, (2.1)

where the constant tumor diffusivity is DT . The term aTgT (T )T is the logistic
growth rate of the tumor cells, i.e.,

gT (T ) = (1− T/kT ) ,

where aT is the tumor cell intrinsic growth rate and kT is the tumor cell
carrying capacity. The interaction coefficient αT,N is the death rate of the
tumor cells due to competition for resources with the normal tissue, while
κT,C is the death rate of tumor cells due to drug treatment and could also
be a non-linear function of the localized drug concentration C(x, t) at the
tumor site. The initial and boundary conditions for the tumor cells are given
by T (x, 0) = T0 (T0 will be specified later) and DT (n̂·∇x)[T ] = 0 respectively.

2.2. Normal tissues

Similar assumptions are made for the density of normal cells N(x, t) with
similar coefficients. Thus, the reaction–diffusion equation for normal tissue
evolution is as follows,

∂N

∂t
= DN∇2

x[N ]+aNgN(N)N−(αN,TT+κN,CC)N, (2.2)
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where the normal tissue diffusivity (negligible compared to that of tumor cells)
is DN . As in the previous case, aNgN(N)N is the logistic growth rate of normal
tissue, i.e.,

gN(N) = (1−N/kN) ,

where aN is the intrinsic growth rate and kN is the normal tissue carrying
capacity. αN,T is the death rate of normal tissues due to competition with
tumor cells. Note that the −κN,CCN term indicates that some normal tissues
die as a result of the treatment. The term κN,C could also be a non-linear
function of the localized drug concentration C(x, t). The initial and boundary
conditions for the normal tissue are given byN(x, 0) = N0 (N0 will be specified
later) and DN(n̂·∇x)[N ] = 0 respectively.

2.3. Drug concentration

The drug shows a diffusive behavior and that there is a reabsorption at the rate
aC . Also U = U(x, t) is the rate at which the drug is being injected through
catheter or released through a drug polymer. The choice of the symbol U
indicates that we will use it as the control variable when dealing with the
optimal control system. We would like to point out that it is reasonable (as
is usually the case in such biomedical problems) to have the control to be
temporally dependent only. However in this case, the rationale behind taking
a distributed control is that physically the drug is being supplied using a
catether or a drug polymer. In case of the former the dependece on time
only would be prudent. But for a drug polymer the release would be spatially
dependent too and hence the usage of the distributed control. The equation
for drug concentration at position x and time t is,

∂C

∂t
= DC∇2

x[C]+aCCgC(C)+U, (2.3)

where CgC(C) = −C is the linear reabsorption function [39] and DC is the
constant concentration diffusivity. The intrinsic growth terms, like CgC(C),
have been kept simple, since the main computational demand is the optimal
control problem. The initial and boundary conditions for the drug concentra-
tion are given by C(x, 0) = C0 (C0 will be specified later) andDC(n̂·∇x)[C] = 0
respectively.

2.4. Vector formulation

For compact notation, the global state vector is defined to be,
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Y(x, t) = [Yi(x, t)]3×1 =


T (x, t)

N(x, t)

C(x, t)

 , (2.4)

at position x in the interior of the domain Ω (the whole brain) at time t ∈
[0, tf ], the governing non-linear vector PDE is given by,

∂Y

∂t
(x, t) = D∇2

x[Y](x, t) + (A+B)(Y(x, t))Y(x, t) + U(x, t), (2.5)

where
D = DTe1e

>
1 +DNe2e

>
2 +DCe3e

>
3 ,

A(Y) = aT (1− T/kT )e1e
>
1 + aN(1−N/kN)e2e

>
2 − aCe3e

>
3 ,

B(Y) = −(αT,NN + κT,CC)e1e
>
1 − (αN,TT + κN,CC)e2e

>
2 ,

and

U(x, t) = U3(x, t)e3. (2.6)

Note that the bilinear component functions, A and B, should be explicit
functions of x and t as well as Y(x, t). Here, ei is the ith unit vector and
U3(x, t) = U(x, t). It should be noted that the diffusion operator D∇2

x will
have to be replaced by ∇>

x ·D(x, t)∇x in case of inhomogeneous brain matter.
The initial conditions for the state equations are given by,

Y(x, 0) =


T (x, 0)

N(x, 0)

C(x, 0)

 =


T0(x)

N0(x)

C0(x)

 ≡ Y0(x), (2.7)

for x in Ω. Murray [35] recommends using Gaussian distribution for the initial
distributions of tumors, but a conical distribution of compact support will be
used to avoid spurious spreading of cancer cells due to exponential tails of the
Gaussian. The no-flux boundary conditions are,

−D(n̂ · ∇x)[Y](x, t)=


−DT (n̂·∇x)[T ]

−DN(n̂·∇x)[N ]

−DC(n̂·∇x)[C]

(x, t)=0, (2.8)
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assuming that the diffusion coefficients are not zero (or else they would not be
used in the condition), for x ∈ Γ= ∂Ω, i.e., on the boundary of the domain,
and for t ∈ [0, tf ]. Here n̂(x, t) is the normal to the boundary. The diffusion
matrix,

D =


DT 0 0

0 DN 0

0 0 DC


is diagonal, but could be inhomogeneous depending on the brain matter [37].
At this point we note that for the purpose of computation in this paper we
have taken the diffusion coefficient to be homogeneous even though the code
could be set up using the same scheme to handle the case of inhomogeneous
diffusion coefficient. Note that the no-flux condition at the boundary is a
natural condition motivated by the physical reality that the brain is a finite
and closed domain.

The interested reader (looking for a more mathematical flavor for the problem)
may refer to the distributed parameter system references of Ahmed and Teo [2],
Banks and Kunish [4] or Lions [32]. Also, the reader may refer to the Ph.D.
thesis of Joshi [27] for a readable account on how to prove the existence of
distributed parameter control state system. In addition, the authors are aware
of the proof of the existence of our system that appeared as an abstract [29].
The interested readers may refer to a paper cited [30] in this abstract for a
proof of the existence of the solution and the control itself for such systems.

3. Optimal control problem

In this section, we formulate an optimal control problem for general dimen-
sions. The objective functional is taken to be a quadratic form of running and
terminal costs,

J [x, U ] =
1

2

∫ tf

0
dt
∫
Ω
dx
(
rTT

2(x, t)+sU (U−U0)
2 (x, t)

)
+
∫
Ω
dx
(
qTT

2(x, tf ) + qCC
2(x, tf )

)
.

(3.9)

The goal is to minimize this functional with respect to the drug input rate
U(x, t) relative to some threshold rate U0(x, t) and the terminal costs at tf ,
i.e., minU [J [x, U ]]. In other words, we are trying to minimize the density of
tumor cells and the drug delivery quadratic control term (U(x, t)−U0(x, t))

2,
as also the tumor density and drug concentration at final time to reduce
the effects of toxicity. The concentration term is not included in the running
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costs, keeping in mind some amount of side effects is an inevitable part of
the treatment. Note that here rT > 0 is the tumor burden cost coefficient
and sU > 0 is the drug delivery cost coefficient, while qT > 0 and qC > 0
are the corresponding tumor and drug final costs. We could have chosen a
linear control which would not only have been less realistic, but would have
given rise to singular control complications. In addition no assumption is made
about the control constraints, but U0(x, t) serves as physical restriction on the
amount and costs of drugs that can be administered. While we have U as
unconstrained regular control, there is a physical upper limit in terms of drug
that can be injected.

The quadratic objective functional in more general vector form is given by,

J [Y,U] =
1

2

∫ tf

0
dt
∫
Ω
dx
(
Y>RY+(U−U0)

>S (U−U0)
)

(x, t)

+
1

2

∫
Ω
dx
(
Y>QY

)
(x, tf ),

(3.10)

where R = rTe1e
>
1 , S = sUe3e

>
3 , Q = qTe1e

>
1 + qCe3e

>
3 , and U0 = U0(x, t)e3.

To define an integral-Hamiltonian, we use three vectors for the Lagrange multi-
pliers, to include the optimization constraints in the extended objective for the
state PDE (2.5), the initial condition (2.7) and the boundary condition (2.8).
Two multipliers are functions of space and time, while one is independent of
time,

ξ(x, t) =


ξ1

ξ2

ξ3

 , η(x, t) =


η1

η2

η3

 , χ(x) =


χ1

χ2

χ3

 , (3.11)

i.e., ξi = ξi(x, t), ηi = ηi(x, t) and χi = χi(x), for i = 1 : 3. Letting Z =
(Y,U, ξ,η,χ), be an extended state vector we define the inclusive integral-
Hamiltonian as in Gunzburger [18],
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H(Z) ≡ 1

2

∫ tf

0
dt
∫
Ω
dx
(
Y>RY+(U−U0)

>S (U−U0)
)

+
1

2

∫
Ω
dx
(
Y>QY

)
(x, tf )

+
∫ tf

0
dt
∫
Ω
dx ξ>

(
∂Y

∂t
−D∇2

x[Y]− (A+B)(Y)Y −U

)

+
∫ tf

0
dt
∫
∂Ω
dΓ η>(−D (n̂·∇x) [Y])

+
∫
Ω
dx

(
χ>(Y−Y0)

)
(x, 0).

(3.12)

3.1. Derivation of optimal trajectory equations

We then modify the standard method of calculus of variations for this in-
tegral formulation to find the differential equations for the optimal controls,
states and the co-states (adjoint variables or Lagrange multipliers) by seek-
ing the functional critical point necessary conditions for the first variation of
the integral-Hamiltonian H(Z) (Gunzburger [18] and Kirk [31]). The extended
state vector is perturbed about the optimal trajectory Z∗, so that Z = Z∗+δZ,
where δZ is the perturbation. Next, simplifying and modifying the approach
in Gunzburger [18], we expand the integral-Hamiltonian as,

H(Z∗ + δZ) = H(Z∗) + δH(Z∗, δZ) +O
(
(δZ)2

)
.

Neglecting the quadratic order Hamiltonian perturbation terms, including the
second variation of H, the first variation is given by functional terms linear in
δZ using (3.12),
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δH(Z∗, δZ) =
∫ tf

0
dt
∫
Ω
dx
(
(Y∗)>RδY+(U∗−U0)

>SδU
)

+
∫
Ω
dx
(
(Y∗)>QδY

)
(x, tf )

+
∫ tf

0
dt
∫
Ω
dx

(
(ξ∗)>

(
δ
∂Y

∂t
−D∇2

x[δY]

−(A+B)(Y∗)δY−(δY·∇Y )[A+B](Y∗)−δU
)

+δξ>
(
∂Y∗

∂t
−D∇2

x[Y
∗]−(A+B)(Y∗)Y∗ −U∗

))

−
∫ tf

0
dt
∫
∂Ω
dΓ
(
(η∗)>D (n̂·∇x) [δY] + δη>D (n̂·∇x) [Y∗]

)
+
∫
Ω
dx
(
(χ∗)>δY+δχ>(Y−Y0)

)
(x, 0).

(3.13)

Before the critical conditions for first variation in (3.13) can be applied to
obtain the extended state equations, the higher order derivatives in time and
state of the extended state perturbations must be eliminated in favor of inde-
pendent lower order terms, first using integrations by parts,

∫ tf

0
dt(ξ∗)>δYt = (ξ∗)>δY

∣∣∣∣∣
tf

0

−
∫ tf

0
dtδY>ξ∗t

and secondly by using the Green’s formula as in Haberman [19],

∫
Ω
dx(ξ∗)>D∇2

x[δY] =
∫
Ω
dxδY>∇2

x[Dξ
∗]

+
∫
∂Ω
dΓ

(
(n̂·∇x)[δY

>]Dξ∗ − δY>(n̂·∇x)[Dξ
∗]

)
.

Note that here we have used the Green’s second identity,

∫
Ω
dx
(
u∇2[v]− v∇2[u]

)
=
∫
∂Ω
dΓ (un̂ · ∇[v]− vn̂ · ∇[u]) .

Merging these identities with (3.13), rearranging inner products and collecting
terms the extended state equations yields the following intermediate form:
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δH(Z∗, δZ) =
∫ tf

0
dt
∫
Ω
dx δY>

(
RY∗− ∂ξ

∗

∂t
−∇2

x[Dξ
∗]−(A+B)(Y∗)ξ∗

−∇Y [A+B](Y∗):(ξ∗(Y∗)>
)

+
∫ tf

0
dt
∫
Ω
dx δU>(S (U∗−U0)−ξ∗)

+
∫ tf

0
dt
∫
Ω
dx δξ>

(
∂Y∗

∂t
−D∇2

x[Y
∗]−(A+B)(Y∗)Y∗ −U∗

)

−
∫ tf

0
dt
∫
∂Ω
dΓ δη>D (n̂·∇x) [Y∗] +

∫ tf

0
dt
∫
∂Ω
dΓ δY>(n̂·∇x) [Dξ∗]

−
∫ tf

0
dt
∫
∂Ω
dΓ(n̂·∇x)

[
δY>

]
D(η∗+ξ∗)

+
∫
Ω
dx
(
δχ> (Y∗−Y0(x))

)
(x, 0)

+
∫
Ω
dx
(
δY>(χ∗−ξ∗)

)
(x, 0) +

∫
Ω
dx
(
δY>(ξ∗+QY∗)

)
(x, tf ),

where A :B denotes the trace of the matrix AB or the double-dot product,
e.g.,

A : B =
3∑
j=1

3∑
k=1

AijBjk = Trace[AB].

Using the fundamental theorem of calculus of variations [23,31] we set the
coefficients of the independent variations to be equal to zero to obtain the
optimal state, control and the co-state equations.

3.2. State equations

The optimal state equation is recovered by setting the coefficient of (δξ)> to
zero:

∂Y∗

∂t
= D∇2

x[Y
∗] + (A+B)(Y∗)Y∗ + U∗ (3.14)

on Ω× (0, tf ], with boundary conditions on ∂Ω×[0, tf ] from the coefficient of
(δη)>, i.e.,

−D(n̂·∇x)[Y
∗](x, t) = 0, (x, t)∈∂Ω×[0, tf ] (3.15)

and with initial conditions on the interior Ω from the coefficient of (δχ)>,i.e.,

Y∗(x, 0) = Y0(x), x∈Ω. (3.16)
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Due to the presence of the functions (A+B)(Y∗)Y∗ the forward PDE (3.14)
is non-linear.

3.3. Regular optimal control

Since the control has been defined in (2.6) as only having one component (the
other components are automatically zero), only the coefficient of δU3 is set to
zero giving the corresponding regular control

U∗
3 (x, t) = U0(x, t) + ξ∗3(x, t)/s3, (x, t)∈Ω× [0, tf ], (3.17)

provided s3 6= 0. Note that this control law only requires solving for the third
component of the first co-state vector ξ∗(x, t), since δU1 ≡ 0 and δU2 ≡ 0.

3.4. Co-state equations

Setting the functional coefficient of (δY)> to zero yields the primary co-state
backward PDE,

0 =
∂ξ∗

∂t
+∇2

x[Dξ
∗]+(A+B)(Y∗)ξ∗

+∇Y [A+B](Y∗):
(
ξ∗(Y∗)>

)
−RY∗,

(3.18)

for (x, t)∈Ω×[0, tf ). This PDE (3.18) is unidirectionally coupled to the state
PDE (3.14), except that only the third component ξ∗3(x, t) is needed for the
regular optimal control U∗

3 (x, t) from (3.17). The boundary condition follows
from setting the coefficient of δY(x, t), for x∈Γ=∂Ω to zero, so

(n̂·∇x)[Dξ
∗](x, t) = 0, (x, t) ∈ ∂Ω× [0, tf ) (3.19)

and the final condition for this backward PDE follows from forcing the coef-
ficient of δY(x, tf ) to be zero on Ω,

ξ∗(x, tf ) = −QY(x, tf ), x ∈ Ω. (3.20)

The two other co-state vectors should not be needed, but satisfy rather simple
equations. The second co-state vector equation follows as the zero coefficient
of (n̂·∇x)[δY>] on the state boundary Γ=∂Ω,
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η∗(x, t) = −ξ∗(x, t), (x, t) ∈ ∂Ω× [0, tf ].

The third co-state vector equation follows as the zero coefficient of state initial
condition δY(x, 0),

χ∗(x) = ξ∗(x, 0), x ∈ Ω.

4. Galerkin finite element method

The PDEs derived in the previous section are highly non-linear and coupled
in nature. As such they require numerical methods instead of analytical meth-
ods. We have used modified Crank–Nicolson method [8] to obtain results in
one–dimension. However, using finite difference methods like Crank–Nicolson
method or alternating directions implicit method have serious drawbacks and
they can not be directly used for non-linear problems using predictor–corrector
modifications. Moreover finite difference techniques are more likely to have
higher computational requirements, i.e., they suffer from the curse of dimen-
sionality. Finite element methods require a relatively smaller number of nodes
as compared to the finite difference methods while maintaining the same level
of accuracy. Also, the finite element methods can better handle irregular struc-
ture, such as the brain tumor and brain structure. Hanson [21,22] has worked
extensively in high performance computing and has made a comparative study
of different numerical methods for stochastic dynamic programming. For the
problem under consideration, we use the Galerkin finite element method so as
to reduce the number of state nodes.

4.1. Galerkin approximation and element integrals

In this section, we reduce the state and co-state PDEs to Galerkin ODEs.
The Galerkin approximation for any state or control vector summation in the
optimal global vector Z∗(x, t) is given by,

Z∗(x, t) ' Ẑ(x, t) ≡
M̂∑
i=1

Ẑi(t) · φi(x),

where [φi(x)]
M̂×1

is a set of M̂ linearly independent continuous basis functions,
with the normalization property,

φi(xj) = δj,i,
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at the element node xj, implying the interpolation property that

Z∗(xj, t) = Ẑj(t),

for j = 1:M̂ finite element nodes. We now define some element integral matrix
coefficients that will be used in the Galerkin ODE formulation.

(1) The element mass integral for i, j = 1:M̂ is:

Mi,j ≡
∫
Ω
dxφi(x)φj(x). (4.21)

(2) The element stiffness integral for i, j = 1:M̂ is:

Ki,j ≡
∫
Ω
dx∇>

x [φi](x)∇x[φj](x). (4.22)

(3) The triple basis element integral for i, j, k = 1:M̂ newly arising from the
non-linear terms is:

Ti,j,k ≡
∫
Ω
dxφi(x)φj(x)φk(x). (4.23)

The Galerkin basis integral coefficients (Mi,j,Ki,j, Ti,j,k) can be computed by
exact symbolic methods or numerical quadrature if there is sufficient element
complexity. In our case MapleTM is used to do this computation symbolically.
The predictor–corrector modification is necessary to handle the non -linearities
and multi-dimension. These coefficients were calculated on an element-by-
element decomposition and element results are later reassembled to form the
global solution as in Sewell [36].

4.2. Galerkin ODEs

The Galerkin ODEs that we will derive now, analogous to the optimal con-
trol problem derivation, is numerically solved by our extrapolated predictor–
corrector Crank–Nicolson method [8], the details of which are outlined in a
later section.

(1) Let the Galerkin approximation for the state be,

Y∗(x, t) ' Ŷ(x, t) ≡
M̂∑
i=1

Ŷi(t) · φi(x), (4.24)

along with a similar approximation for the optimal control,
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U∗(x, t) ' Û(x, t) ≡
M̂∑
i=1

Ûi(t) · φi(x). (4.25)

The properties of [φi(x)]
M̂×1

have already been described. Before apply-
ing the Galerkin approximation (4.24) to the state equation (3.14), the
equation must be put into integral form on Ω with respect to a test
function φi(x) taken from the basis and then further prepared for low or-
der basis function by reducing the second order derivatives to first order
derivatives using integration by parts (Green’s formula [19]). Thus,

0=
∫
Ω
dxφi(x)

(
Y∗
t−D∇2

x[Y
∗]−(A+B)(Y∗)Y∗−U∗

)
=
∫
Ω
dx
(
φiY

∗
t +D∇>

x [φi]∇x[Y
∗]−φi ((A+B)(Y∗)Y∗+U∗)

)
−
∫
∂Ω
dΓφiD(n̂·∇x) [Y∗]

=
∫
Ω
dx
(
φiY

∗
t +D∇>

x [φi]∇x[Y
∗]−φi ((A+B)(Y∗)Y∗+U∗)

)
,

for i = 1:M̂ , where the exact no-flux boundary condition has been used in
the last step. Note that for the Galerkin approximation to be compatible
with this no-flux condition, the boundary basis functions φj(x) would best
satisfy this condition on ∂Ω, or the no-flux condition should be satisfied in
the variational integral form neglected in the exact formulation above. We
would like to point out that the no-flux condition in the implementation
of the code was done using a discretization (see section 5.2). The proper
theoretical setting for the no-flux should be for the usual finite elements,
but for practical computational reasons for the spherical elements, we
found that forcing the boundary elements to automatically satisfy no-
flux was a more certain and efficient technique to prevent computational
leakage at the boundary. Now, the Galerkin approximation (4.24) can be
applied yielding,

0 '
M̂∑
j=1

∫
Ω
dx
(
Ŷ′
jφiφj+DŶj

(
∇>
x [φi]∇x[φj]

)
−
(
(A+B)

(
Ŷ
)
Ŷj+Ûj

)
φiφj

)
,

for i = 1:M̂ . Upon further reduction using the finite element integrals the
compact state Galerkin ODE is given by:
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0=
M̂∑
=1

(
Mi,j

(
Ŷ′
j(t)−

(
a1e1e

>
1 +a2e2e

>
2

−a3e3e
>
3

)
Ŷj(t)− Ûj(t)

)
+Ki,jDŶj(t)

+
M̂∑
k=1

Ti,j,k
(
a1

k1

Ŷ1,j(t)Ŷ1,k(t)e1 +
a2

k2

Ŷ2,j(t)Ŷ2,k(t)e2 (4.26)

+
(
α1,2Ŷ2,k(t)+κ1,3Ŷ3,k(t)

)
Ŷ1,j(t)e1

+
(
α2,1Ŷ1,k(t)+κ2,3Ŷ3,k(t)

)
Ŷ2,j(t)e2

))
,

for i = 1:M̂ .
(2) Similar to the state equation, a Galerkin approximation for the co-state

equation using the same basis is given by,

ξ∗(x, t) ' ξ̂(x, t) ≡
M̂∑
j=1

ξ̂j(t) · φj(x) (4.27)

for t < tf . As with the state Galerkin variational formulation, the varia-
tion formulation for the co-state equation (3.18) is

0=
∫
Ω
dxφi(x)

(
ξ∗t+∇2

x[Dξ
∗]+(A+B)(Y∗)ξ∗

+∇Y [A+B](Y∗):(ξ∗(Y∗)>)−RY∗
)

=
∫
Ω
dx (φi (ξ

∗
t+ (A+B)(Y∗)ξ∗

+∇Y [A+B](Y∗):(ξ∗(Y∗)>)−RY∗
)

−∇>
x [φi]∇x[Dξ

∗]
)

+
∫
∂Ω
dΓφi (n̂·∇x) [ξ∗].

A form with reduced order derivatives is derived by eliminating the
boundary integral by the no-flux condition (3.19) and then the Galerkin
approximations are substituted for the state and co-state, thus producing,

0'
M̂∑
j=1

∫
Ω
dx
((
ξ̂
′
j(t)+ (A+B)(Ŷ)ξ̂j

+∇Y [A+B](Ŷ):(ξ̂j(Ŷ)>)−RŶj

)
φiφj−Dξ̂j∇>

x [φi]∇x[φj]
)
,

except that the non-linear terms are only symbolically designated by Ŷ,
for i = 1:M̂ . Next by substituting the Galerkin approximation for Ŷ
in the non-linear terms and using the element Galerkin integral notation
the compact co-state Galerkin ODEs are obtained:
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0=
M̂∑
j=1

(
Mi,j

(
ξ̂
′
j(t)+a1ξ̂1,je1+a2ξ̂2,je2

−a3ξ̂3,je3−RŶj(t)
)
−Ki,jDξ̂j(t)

−
M̂∑
k=1

Ti,j,k
(
2a1

k1

Ŷ1,k(t)ξ̂1,j(t)e1 +
2a2

k2

Ŷ2,k(t)ξ̂2,j(t)e2 (4.28)

+α1,2

(
Ŷ2,k(t)e1 + Ŷ1,k(t)e2

)
ξ̂1,j(t)

+κ1,3

(
Ŷ3,k(t)e1 + Ŷ1,k(t)e3

)
ξ̂1,j(t)

+α2,1

(
Ŷ2,k(t)e1 + Ŷ1,k(t)e2

)
ξ̂1,j(t)

+κ2,3

(
Ŷ3,k(t)e2 + Ŷ2,k(t)e3

)
ξ̂2,j(t)

))
,

for i = 1:M̂ . This Galerkin ODE (4.28) may be computed by the appro-
priate method using the same Galerkin integral basis coefficients.

5. Spherical finite element test configuration

This section will focus on a simple three–dimensional test configuration that
is a sphere of radius Rr. We use a spherical configuration since it resembles the
basic structure of the brain better than a cartesian configuration. Transforming
the spherical coordinates in space as usual,

(x, y, z) = r(cos(θ) sin(ψ), sin(θ) sin(ψ), cos(ψ)), (5.29)

where r, θ, ψ are the radius, polar angle and azimuthal angle, respectively. Also

0 ≤ r ≤ Rr, 0 ≤ θ ≤ 2π and 0 ≤ ψ ≤ π.

The brick element grid in spherical coordinates is constructed of Mr radial
sectors of width ∆r = Rr/Mr, Mθ polar sectors of width ∆θ = 2π/Mθ and
Mψ azimuthal sectors of width ∆ψ = π/Mψ. The global nodal values are given
by,

(θie , ψje , rke) = ((ie − 1)∆θ, (je − 1)∆ψ, (ke − 1)∆r),

for ie = 1 :Mθ + 1, je = 1 :Mψ + 1 and ke = 1 :Mr + 1. The elements are
numbered in (θ, ψ, r) linear priority order like the nodal values,

eie,je,ke = ie + (je − 1) ·Mθ + (ke − 1) ·Mθ ·Mψ,

for ie = 1:Mθ, je = 1:Mψ and ke = 1:Mr. Within element eie,je,ke , the element
primary node with local node number i = 1 has the same global node number
k̄e = {ie, je, ke} as the element, i.e., nk̄e,1 = eie,je,ke , for ie = 1:Mψ, je = 1:Mθ
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and ke = 1:Mr. The element local node numbering is i = 1:8 as shown in the
Fig. 1.
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Fig. 1. Local node numbering with i = 1:8 for general element eie,je,ke .

5.1. Tri–linear basis functions

For simplicity, tri–linear basis functions are used for all brick elements in
spherical coordinates. The tri–linear bases in three dimensions are constructed
from the more basic one–dimensional linear bases with only two nodes labeled
1 and 2

φ
(ke)
1,r (r) =

(
rke+1 − r

∆r

)
, φ

(ke)
2,r (r) =

(
r − rke

∆r

)
, (5.30)

φ
(ie)
1,θ (θ) =

(
θie+1 − θ

∆θ

)
, φ

(ie)
2,θ (θ) =

(
θ − θie

∆θ

)
, (5.31)

φ
(je)
1,ψ (ψ) =

(
ψje+1 − ψ

∆ψ

)
, φ

(je)
2,ψ (ψ) =

(
ψ − ψje

∆ψ

)
. (5.32)

18



For the general element,

eie,je,ke on [θie , θie+1]× [ψje , ψje+1]× [rke , rke+1]

for ie = 1:Mθ, je = 1:Mψ and ke = 2:Mr in the i = 1:8 element node
numbering,

φ
(ie,je,ke)
1 (r, θ, ψ) =φ

(ke)
1,r (r) · φ(ie)

1,θ (θ) · φ(je)
1,ψ (ψ), (5.33)

φ
(ie,je,ke)
2 (r, θ, ψ) =φ

(ke)
1,r (r) · φ(ie)

2,θ (θ) · φ(je)
1,ψ (ψ), (5.34)

φ
(ie,je,ke)
3 (r, θ, ψ) =φ

(ke)
1,r (r) · φ(ie)

1,θ (θ) · φ(je)
2,ψ (ψ), (5.35)

φ
(ie,je,ke)
4 (r, θ, ψ) =φ

(ke)
1,r (r) · φ(ie)

2,θ (θ) · φ(je)
2,ψ (ψ), (5.36)

φ
(ie,je,ke)
5 (r, θ, ψ) =φ

(ke)
2,r (r) · φ(ie)

1,θ (θ) · φ(je)
1,ψ (ψ), (5.37)

φ
(ie,je,ke)
6 (r, θ, ψ) =φ

(ke)
2,r (r) · φ(ie)

2,θ (θ) · φ(je)
1,ψ (ψ), (5.38)

φ
(ie,je,ke)
7 (r, θ, ψ) =φ

(ke)
2,r (r) · φ(ie)

1,θ (θ) · φ(je)
2,ψ (ψ), (5.39)

φ
(ie,je,ke)
8 (r, θ, ψ) =φ

(ke)
2,r (r) · φ(ie)

2,θ (θ) · φ(je)
2,ψ (ψ). (5.40)

The mapping (5.29) from spherical to cartesian coordinates is not unique
since the mapping is many-to-one. The non-unique nodes arise at the origin
for r = r1 = 0 and any (θ, ψ), or at the poles for ψ = 0, π and any (r, θ), or at
the polar angle line of discontinuity for θ = 2π for any (r, ψ) (really a periodic
boundary condition). The non-uniqueness or resulting over-determinism can
simply be removed by adding together the appropriate bases in (5.33)-(5.36)
corresponding to the same non-unique nodes, using the identities for the one–
dimensional bases and their derivatives,

φ
(`e)
1,ρ (ρ) + φ

(`e)
2,ρ (ρ) = 1, φ

(`e) ′
1,ρ (ρ) + φ

(`e) ′
2,ρ (ρ) = 0, (5.41)

for ρ = r, θ or ψ and `e = ke, ie or je, respectively. Details are given in
Appendix A. While it may appear awkward to have to make this adjustment,
the disadvantage is out-weighed by the ease of deforming a sphere into a
brain geometry rather than deforming a brick or rectangular solid into a brain
geometry. As far as we know, there does not exist a description of spherical
elements, at least to this detail.

5.2. No-flux boundary condition for spherical Galerkin approximation

Another advantage of spherical coordinates is the ease of imposing the no-flux
boundary condition (BC) at r = Rr, since on the element eie,je,ke the isth state
solution for is = 1:3 is expressed as a preliminary Galerkin approximation,
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Y
(ie,je,ke)
is (r, θ, ψ, t) '

8∑
j=1

Ỹ
(ie,je,ke)
is,j (t) · φ(ie,je,ke)

j (r, θ, ψ), (5.42)

so the normal gradient, at boundary element ke = Mr with r = Rr for local
nodes j = 5:8, reduces to

Y
(ie,je,Mr)
is,r (Rr, θ, ψ, t) '

8∑
j=5

(
Ỹ

(ie,je,Mr)
is,j (t)−Ỹ (ie,je,Mr)

is,j−4 (t)
)
· φ(ie,je,Mr)

j,r (Rr, θ, ψ),

and then

Ỹ
(ie,je,Mr)
is,j (t) = Ỹ

(ie,je,Mr)
is,j−4 (t) (5.43)

for j = 5:8 and arbitrary (θ, ψ), if Y
(ie,je,Mr)
is,r (Rr, θ, ψ, t) = 0 for no-flux.

Here the symmetries and asymmetries of the bases functions (5.30-5.40) and
derivatives have been used. This version of the no-flux condition is much better
and simpler to use than the the one we had previously used [9], even when
dealing with a deformed sphere in the form of a brain case.

5.3. Local node spherical element matrix coefficients

The element matrices for local node numbers i, j, k = 1:8 are

M(ie,je,ke)
i,j =

∫ θie+1

θie

dθ
∫ ψje+1

ψje

dψ
∫ rke+1

rke

dr r2 sin(ψ)(
φ

(ie,je,ke)
i φ

(ie,je,ke)
j

)
(r, θ, ψ),

(5.44)

K(ie,je,ke)
i,j =

∫ θie+1

θie

dθ
∫ ψje+1

ψje

dψ
∫ rke+1

rke

dr r2 sin(ψ)(
φ

(ie,je,ke)
i,r φ

(ie,je,ke)
j,r +

1

r2
φ

(ie,je,ke)
i,ψ φ

(ie,je,ke)
j,ψ

+
1

r2 sin2(ψ)
φ

(ie,je,ke)
i,θ φ

(ie,je,ke)
j,θ

)
(r, θ, ψ),

(5.45)

T (ie,je,ke)
i,j,k =

∫ θie+1

θie

dθ
∫ ψje+1

ψje

dψ
∫ rke+1

rke

dr r2 sin(ψ)(
φ

(ie,je,ke)
i φ

(ie,je,ke)
j φ

(ie,je,ke)
k

)
(r, θ, ψ),

(5.46)

where in (5.45) φ
(ie,je,ke)
i,ρ denotes the partial derivative of φ

(ie,je,ke)
i with respect

to generic spherical coordinate ρ. In the stiffness matrix (5.45), the mapping
singularities of the gradient lead to reciprocal factors in r and sin(ψ), but
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the r factors are simply cancelled by the Jacobian r2 sin(ψ) and leave uncan-
celled sin(ψ)–denominators in the θ–derivative term. However, these sin(ψ)–
denominators are completely eliminated in later analysis upon eliminating
non-unique nodes by combining terms and associated ODEs.

6. Forward–backward computational iteration method

In this section, we present a double shot, forward–backward iteration algo-
rithm This method is similar to the multiple shooting method of Hackbusch
[20] used for solving parabolic PDEs with opposite orientation or to what
Gunzburger [18] calls the one-shot method. Since the shots are forward and
backward, we prefer to call them double shots. See Gunzburger [18] for more
rigorous justification with Sobolev spaces in the more general abstract case.
However the model here is quite concrete and much more appropriate for
computation. The numerical implementation of the algorithm is akin to our
previous work [8], except that here we use it solve for Galerkin ODEs instead of
PDEs. The only problem which arises are the non-unique degeneracies of states
and co-states due to aliases and boundary conditions. These are eliminated
so that there are only M̂ linearly independent Galerkin coefficients, Ŷk̂(t)

in ODE (4.26), ξ̂k̂(t) in ODE (4.28) and control Ûk̂(t). This non-uniqueness
elimination keeps the system of ODEs from being over-determined, preserv-
ing the symmetry of the mass and other coefficient arrays, and eliminating
the 1/ sin(ψ) singularity in the stiffness integrals by virtue of identities of the
one–dimensional basis and their elements (5.41). A summary of the degen-
eracy removal by combining unknowns and the corresponding equations are
given in the Appendix A and Appendix B (also see Chakrabarty’s thesis [7]).
This method uses a combination of Crank–Nicolson and prediction-correction
methods developed in [21–24] for solving high dimensional stochastic control
problems on supercomputers. The general method can handle both implicit
and non-linear terms provided the modified parabolic mesh ratio is sufficiently
small. We would like to point out here that we will use the symbol δ to indicate
the iteration number or the number of double shots and γ for the correction
number in the predictor–corrector step.

These methods have been extensively and successively developed by one of
the authors [21–23] for a wide variety of problems in the biosciences, includ-
ing non-linear ones. The authors considered Newton-like methods, but thought
they were not practical due to the complexity of the non-linear terms and the
computational cost of Hessian terms, whether exact or approximate. Moreover
such schemes are unstable unless one is very close to the optimal and away
from singular points. In addition, general fixed point method, other than fast
Newton methods, are usually not considered for serious computational prob-
lems, although often used in purely theoretical treatment. We have found the
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predictor–corrector approach most useful and dependable for a wide range of
non-linear applications in optimal control, as long as the effective parabolic
mesh ratio is kept sufficiently small. It would be naive to try to use a simple
fixed point method on this. Our computational convergence has been regulated
by our extrapolated, predictor–corrector methods and mesh-ratio conditions,
else we would find divergence or very slow computational convergence. In
fact convergence for this problem was acheived with three double shot itera-
tions, showing that the method is computationally robust. Also the two-shot
forward–backward iteration works because there is prediction and correction
for the non-linear problem, as well as global corrections with each forward
shot and backward shot, providing the mesh ratio is sufficiently small.

6.1. Forward step

The first step (δ = 1) would be to make a guess about the control U∗
3 (x, t)'

U
(1)
3 (x, t). We substitute it into the forward state equations and use the finite

element method to solve for the state Y∗(x, t)'Y(1)(x, t) for t > 0. Initially,
Y∗(x, 0) = Y0(x). For simplicity, the forward ODE (4.26) for the degeneracy
removed isth-state Ŷis,̂ at node ̂ can be written symbolically, for is = 1:3 and

nodes ̂ = 1:M̂ , as

M̂∑
k̂=1

M̂,k̂Ŷ
′
is,k̂

(t) =
3∑

js=1

M̂∑
k̂=1

Ais,js,̂,k̂(Ŷ(t)) · Ŷjs,k̂(t)−
M̂∑
k̂=1

M̂,k̂Ûk̂(t),

where Ais,js,̂,k̂(Ŷ(t)) symbolically represents the right-hand-side matrices in-

cluding non-linear terms and Ŷ(t) represents the combined states and nodes
array. The essential set–up for a general Crank–Nicolson method is to use
the midpoint approximation on the integral form of the differential equations
followed by an average approximation of the midpoint values, producing from
the state ODE for Ŷis,k̂,`+1 at time t` = (`− 1) ∗∆t with ` = 1:Nt, ı̂, ̂ = 1:M̂
and is = 1:3,

M̂∑
k̂=1

M̂,k̂

(
Ŷis,k̂,`+1 − Ŷis,k̂,`

)
= +∆t

3∑
js=1

M̂∑
k̂=1

Ais,js,̂,k̂,`+0.5 · Ŷjs,k̂,`+0.5

−∆t
M̂∑
k̂=1

M̂,k̂Ûk̂,`+0.5,

where the average approximation at the midpoint is
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Ŷjs,k̂,`+0.5 ' 0.5 ∗
(
Ŷis,k̂,`+1 + Ŷis,k̂,`

)
,

Ûk̂,`+0.5 ' 0.5 ∗
(
Ûk̂,`+1 + Ûk̂,`

)
,

and is compatible with the midpoint approximation in accuracy. The approx-
imation Ajs,̂,k̂,`+0.5 is similarly computed.

6.2. Backward step

In the second shot of the double shot algorithm, the final condition (3.20),

ξ(δ)(x, tf ) ' −QŶ(δ)(x, tf ) = −Q
M∑
k̂=1

Ŷ
(δ)

k̂
(tf )φk̂(x),

for δ = 1:L double shots, is used to start the backward co-state solution. A
similar backward ODE can be written for the co-state ξ̂isk̂(t) with the state
replacing the role of the control in the source while remaining in the general
non-linear coefficient Bis,js,̂,k̂(Ŷ(t)) as in (4.28), i.e.,

M̂∑
k̂=1

M̂,k̂ξ̂
′
is,k̂

(t) = −
3∑

js=1

M̂∑
k̂=1

Bis,js,̂,k̂(Ŷ(t)) · ξ̂js,k̂(t) +
M̂∑
k̂=1

M̂,k̂RŶisk̂(t).

In an manner analogous to the state equations, except for backward integra-
tion, the co-state ξ̂is,k̂,`−1 satisfies

M̂∑
k̂=1

M̂,k̂

(
ξ̂is,k̂,`−1 − ξ̂is,k̂,`

)
= +∆t

3∑
js=1

M̂∑
k̂=1

Bis,js,̂,k̂,`−0.5 · ξ̂js,k̂,`−0.5

−∆t
M̂∑
k̂=1

M̂,k̂RŶk̂,`−0.5,

where the average approximation at the midpoint is

ξ̂js,k̂,`−0.5 ' 0.5 ∗
(
ξ̂is,k̂,`−1 + ξ̂is,k̂,`

)
,
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6.3. Predictor–corrector step

While we are running the iterations from δ = 1:L, within each iteration the
predictor–corrector procedure is used for γ = 1:γmaxto handle the implicit and
non-linear terms. For the sake of brevity we will provide an explanation only
for the case of state equations. The zeroth corrector, given the final correction
Ŷis,̂,` at time stage i is the predictor,

YC
(0)

is,̂,`+1
= Ŷis,̂,`,

for ` = 1:Nt, ı̂, ̂ = 1:M̂ and is = 1:3. This initialization permits finding the
(γ + 1)th correction YC

(γ+1)

̂,`+1
from

M̂∑
k̂=1

M̂,k̂

(
YC

(γ+1)

is,k̂,`+1
− YC

(γ)

is,k̂,`

)
= +∆t

3∑
js=1

M̂∑
k̂=1

AC
(γ)

js,̂,k̂,`+0.5
· YC

(γ)

js,k̂,`+0.5

−∆t
M̂∑
k̂=1

M̂,k̂UC
(γ)

k̂,`+0.5
,

for ` = 1:Nt, ı̂, ̂ = 1:M̂ and is = 1:3, where Y C
(γ)

js,k̂,`+0.5
and other midpoint

terms are evaluated as before by averaging. The final correction at the final
time of the state-shot forward iteration, Ŷ̂,Nt+1 yields the starting or final-time

condition for ξ̂is,k̂,Nt+1 using (3.20). Then the final correction at the initial time
of the costate-shot backward iteration produces the initial control condition
when is = 3 which is used to begin another double shot.

6.4. Regular optimal control step

For each completed double shot for δ = 1 : L, the co-state approximation

ξ̂
(δ)

(x, t) =
∑M̂
k̂=1
ξ̂

(δ)

k̂ (t)φk̂(x) is used to determine the regular optimal con-

trol (3.17) updated value third component, with ξ̂
(δ)
3 = e3 · ξ̂

(δ)
(x, t),

Û
(δ+1)
3 (x, t) = U0,3(x, t) + ξ̂

(δ)
3 (x, t)/s3.
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6.5. Convergence criteria step

This process is repeated for δ=2:L double shot iterations until a convergence
criterion for sufficiently large L is reached, e.g., the relative criterion for the
control,

∣∣∣∣∣∣U (δ)
3 (x, t)−U (δ−1)

3 (x, t)
∣∣∣∣∣∣<tolu

∣∣∣∣∣∣U (δ−1)
3 (x, t)

∣∣∣∣∣∣ ,
and,

∣∣∣∣∣∣Y(δ)(x, t)−Y(δ−1)(x, t)
∣∣∣∣∣∣<toly

∣∣∣∣∣∣Y(δ−1)(x, t)
∣∣∣∣∣∣ ,

for δ = 2:L until satisfied, provided ||U (δ−1)
3 (x, t)|| 6= 0 and ||Y(δ−1)(x, t)|| 6= 0,

where tolu > 0 and toly > 0 are some prescribed tolerances. The algorithm
was implemented in MATLABTM on a desktop computer.

For the benefit of the readers whose interest is primarily in the mathematical
flavor, we have included a compact matrix-vector notation in the Appendix.

7. Computational results

The data for the numerical parameters are drawn from various sources includ-
ing Wang et al. [38,39], Swanson [37] and Murray [35], while unavailable pa-
rameters were estimated (see Table in Appendix C). The initial tumor spread
and drug concentration are assumed to be conically distributed with scale
and state dependent means and weights. MapleTM was used to exactly eval-
uate the integrals of the element matrices off-line. A sample history of the
optimal relative tumor density Y ∗

1 (r, θ, ψ, t) for r over [0, 5] in centimeters at
fixed (θ, ψ) = (π, π/2) in radians and at quartiles in time of a 5 day treatment
schedule is given in Fig. 2. The initial tumor peak is at (r, θ, ψ) = (2.5, π, π/2).
This test case shows significant reduction of tumor density over the treatment
schedule. Fig. 3 shows the time-dependence of the optimal drug bolus density,
with a significant decline coming at the end of the treatment period. The dou-
ble shot computations took 7.3 h on a Macintosh G5 dual 2GHz, using three
double shots and a maximum of two corrections per shot. The finite element
mesh set-up takes less than one second. The double shot time is much longer
than our prior reported results [10], mainly since the control quadratic cost co-
efficient sU = s3 was significantly reduced to get more satisfactory resolution
for the drug delivery control U = U3 decline near the final time. Nevertheless,
the grid is somewhat coarse due to the high computational complexity of the
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Fig. 2. The optimal, relative tumor density Y ∗
1 (r, θ, ψ, t) versus r at the quartile

times, as a cross-section at (θ, ψ) = (π, π/2) radians, with the initial tumor density
peak location at (r, θ, ψ) = (2.5, π, π/2). The grid size is (Mr,Mθ,Mψ) = (6, 6, 6).
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Fig. 3. On the right is the optimal drug bolus density U∗
3 (r, θ, ψ, t) versus t at

(r, θ, ψ) = (2.5, π, π/2). The grid size is (Mr,Mθ,Mψ) = (6, 6, 6).

the numerical problem, so more high performance computing [22] would be
needed for greater grid refinement.

A more detailed presentation of the initial and final tumor densities are pre-
sented for t= t0 =0 in Fig. 4 and t= tf =5 days is given in Fig. 5, both over
the larger (r, θ) plane section with fixed ψ = π/2. They show that the final
peak value is small and the tumor has not spread too much through the rest of
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the plane in spherical coordinates, although somewhat in the θ–direction but
not much in the r–direction. The final peak to peak tumor density reduction
is 40.6%.
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Fig. 4. The initial relative tumor density Y ∗
1 (r, θ, ψ, t), when t = 0 over (r, θ) plane

ψ = π/2. The FEM grid size is (Mr,Mθ,Mψ) = (6, 6, 6).
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Fig. 5. The final relative tumor density Y ∗
1 (r, θ, ψ, t), when t = 5, over (r, θ) plane

ψ = π/2. The FEM grid size is (Mr,Mθ,Mψ) = (6, 6, 6).
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The total decrease of the Galerkin integral of the optimal tumor density
Int[Y ∗

1 ](t) relative to the initial state Int[Y ∗
1 ](0) over time is displayed in Fig. 6,

showing a tapering off of the decay of the tumor as the end of the treatment
period is reached. The Galerkin integral is the integral of the Galerkin approx-
imation (5.42) of Y ∗

1 (r, θ, ψ, t) over the sphere of radius r = Rr in spherical
coordinates (r, θ, ψ).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

5

10

15

20

25

30

35

40

Decrease in Int[Y1*](t) Relative to Int[Y1*](0) (%)

t, time in days

In
t[Y

1*] 
Re

la
tiv

e 
De

cr
ea

se
 (%

)

 

 

Int[Y1*](t)

Fig. 6. The total decrease in the integral of the optimal tumor density Int[Y ∗
1 ](t)

relative to the initial value Int[Y ∗
1 ](0) versus t at the quartile times. The grid size

is (Mr,Mθ,Mψ) = (6, 6, 6) and wUC = 8.0.

There are some parameters associated with the drug delivery that will likely
vary with the treatment, the particular drug and the patient condition. Hence,
in Fig. 7 the sensitivity of the relative total decrease in the Galerkin integral of
the optimal tumor density, Int[Y ∗

1 ](t), to the drug kill rate κT,C when at end of
the treatment, t = 5 days. Then, the accompanying Fig. 8 shows sensitivity of
the relative Int[Y ∗

1 ](t) to the weighting parameter, wU C , for the distribution of
the threshold control variable U0,3 and the sensitivity results are very similar
to that of Fig. 7 for the unrelated parameter κT,C . Both sensitivity plots peak
when the parameters have a common value, e.g., κT,C = 8.0 = wU C here.

8. Conclusion and future directions

The theory of Galerkin finite elements is used to develop approximations to
the distributed parameter optimal control problem of cancer drug delivery to
the brain governed by a coupled set of three reaction–diffusion PDEs in three
space dimensions. The three state variables are the tumor cell density, nor-
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Fig. 7. The final optimal, relative tumor density Y ∗
1 (r, θ, ψ, t) versus the drug kill

rate κT,C is shown. The grid size is (Mr,Mθ,Mψ) = (6, 6, 6) and wUC = 8.0.
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Fig. 8. The final optimal, relative tumor density Y ∗
1 (r, θ, ψ, t) versus the threshold

weighting wUC is shown. The grid size is (Mr,Mθ,Mψ) = (6, 6, 6) and κT,C = 8.0.

mal cell density and cancer drug concentration. While the tumor and normal
cells are highly coupled through competitive interactions, the concentration
is directly controlled by the drug delivery control rate. The optimally con-
trolled distributed parameter system is derived by a straight-forward calculus
of variations technique without resort to an very abstract formulation, and
that should be useful in other similar scientific or engineering applications.
The resulting system of six optimal PDEs is reduced by Galerkin approxima-
tions of the state, co-state and control vectors to a system of six ODEs in time
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with three fundamental element integral coefficient forms: the mass, the stiff-
ness and non-linear coefficients. The finite element configuration is given for a
spherical geometry that can be used to test the optimal drug delivery compu-
tations. This finite element configuration will be more amenable to complex
brain structures and three-dimensional geometries than the finite difference
method and low dimension of our earlier work.

The natural question that one might ask is what are the biomedical implica-
tions of the work. Firstly the model tries to capture the dynamics of interaction
of gliomas and normal cells in the human brain in conjunction with the ef-
fects of drugs. To the best of our knowledge this is probably the first such
work which tries to focus on this aspect taking into account the augmentation
of the treatment and it’s ramification due to the control. However the most
crucial factor that would be of interest to researchers in biomedicine is that
we try to make the problem more practical in terms of the geometry. Unlike
the treatment of many mathematical biology problem such as viral dynamics
and vector borne diseases, where the spatial factors are negligible, the spa-
tial geometry is very very important for this problem. Hence our choice of
a sphere (which is a smooth structure that is a characteristic of the human
brain and a rough model of the resected tumor space). We see this work as
a first step to extend this to more realistic regular structure like curvilinear
coordinates and eventually to the irregular human brain structure. The most
important fact here is that most finite element formulation in literature tend to
be in cartesian coordinates in lower dimension, which really cannot be applied
to real world which is three–dimensional. We believe that biomedical teams
working on aspects like image processing of human brain could use this work
as a starting point to design a simulation where one can predict the optimal
dosage of the drug in–silico. Because of the optimization problem the optimal
drug dosage would ensure that the sole focus is not on reduction of the tumor
burden but also to enhance the quality of life of the patient in terms of mini-
mal side effects. We do however acknowledge that this challenging task would
involve a big team comprising of bioengineers, oncologist, computer scientists,
statisticians and mathematicians.

8.1. Future directions

One issue that is worth studying is to relate our data to the ones obtained from
MRI/CT scan as outlined in Clatz et al. [11] or using translated /wrapped
version given by Gee et al. [15]. Some of these data can be obtained from nice
computerized brain atlas like the one by Greitz et al. [17]. Following Davis et
al. [12] the mathematical representation of mapping elastic deformation can
be done between ΩR (our results) with a target domain Ω∗

MC as defined by the
MRI/CT scan. A couple of other different approaches to the problem include:
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• Application to general curvilinear coordinates for general brain geometries;
• Application to heterogeneous brain structures such as spinal fluid cavities,

variable brain matter, vascular system and the blood brain barrier.
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Appendix A. Spherical degeneracy removed

(1) Origin: r = 0, ke = 1, (x, y, z) = (0, 0, 0) for ie = 1 :Mθ, je = 1 :Mψ,
i = 1:4 (see Fig.1 to see why only local nodes i = 1:4 are involved), so

Y
(ie,je,1)
is,i (t) = Y

(1,1,1)
is,1 (t) = Ŷis,̂(t),

where the initial count is ̂ = 1 of an independent set of unknowns;
then the ODEs must be combined corresponding to the combined aliased
unknowns, but this is only illustrated on the central derivative terms as

M̂,̂ · Ŷ ′
is,̂(t) ≡ Y

(1,1,1) ′
is,1 (t) ·

Mθ∑
ie=1

Mψ∑
je=1

4∑
i=1

4∑
j=1

M(ie,je,1)
i,j ,

where ̂ is 1.
(2) Higher Pole: ψ = 0, (x, y, z) = r(0, 0,+1) for elements ie = 1:Mθ, je = 1,

ke = 2:Mr − 1 for i = 1:2 (see Fig.1),

Y
(ie,1,ke)
is,i (t) = Y

(1,1,ke)
is,1 (t) = Ŷis,̂(t)

where ̂ = 2+(ke−2)(Mθ(Mψ−1)+2), but also in the ke−1 neighboring
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element Y
(ie,1,ke−1)
is,i (t) = Ŷis,̂(t) for i = 5:6, then

M̂,̂ · Ŷ ′
is,̂(t) ≡ Y

(1,1,ke) ′
is,1 (t) ·

Mθ∑
ie=1

1∑
k=0

īk+1∑
i=īk

īk+1∑
j=īk

M(ie,1,ke−k)
i,j ,

where ī0 = 1 and ī1 = 5. If ke = Mr when je = 1, then the no-flux BC
(5.43) holds so these terms must be added,

M̂,̂ · Ŷ ′
is,̂(t)≡Y

(1,1,Mr) ′
is,1 (t) ·

Mθ∑
ie=1

 1∑
k=0

īk+1∑
i=īk

īk+1∑
j=īk

M(ie,1,Mr−k)
i,j

+
6∑
i=5

6∑
j=5

M(ie,1,Mr)
i,j

 ,
where ̂ = 2 + (Mr − 2)(Mθ(Mψ − 1) + 2).

(3) Lower Pole: ψ = π, (x, y, z) = r(0, 0,−1) for elements ie = 1 : Mθ,
je = Mψ, ke = 2:Mr − 1 for i = 3:4 (see 1),

Y
(ie,Mψ ,ke)
is,i (t) = Y

(1,Mψ ,ke)
is,3 (t) = Ŷis,̂(t)

where ̂ = 1+(ke−1)(Mθ(Mψ−1)+2), but also in the ke−1 neighboring

element Y
(ie,Mψ ,ke−1)
is,i (t) = Ŷis,̂(t) for i = 7:8, then

M̂,̂ · Ŷ ′
is,̂(t) ≡ Y

(1,Mψ ,ke) ′
is,3 (t) ·

Mθ∑
ie=1

1∑
k=0

īk+1∑
i=īk

īk+1∑
j=īk

M(ie,Mψ ,ke−k)
i,j ,

where ī0 = 3 and ī1 = 7. If ke = Mr when je = Mψ, then the no-flux BC
(5.43) holds so these terms must be added,

M̂,̂ · Ŷ ′
is,̂(t) ≡ Y

(1,Mψ ,Mr) ′
is,3 (t) ·

Mθ∑
ie=1

 1∑
k=0

īk+1∑
i=īk

īk+1∑
j=īk

M(ie,Mψ ,Mr−k)
i,j

+
8∑
i=7

8∑
j=7

M(ie,Mψ ,Mr)
i,j

 ,
where ̂ = 1 + (Mr − 1)(Mθ(Mψ − 1) + 2).

(4) Periodic BC : θ = 2π, ie = Mθ, (x, y, z) = r(sin(ψ), 0, cos(ψ)), the same
if θ = 0 or θ = 2π, for element ie = Mθ, je = 2 :Mψ − 1, ke = 2 :Mr − 1
for local node i = 4 (see 1), so

Y
(Mθ,je,ke)
is,4 (t) = Y

(1,je,ke)
is,3 (t) = Ŷis,̂(t)
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where ̂ = 3 + (ke − 2)(Mθ(Mψ − 1) + 2) + (je − 1)Mθ, but also

Y
(Mθ,je+j̄m,ke−k̄m)
is,2 (t) = Ŷis,̂(t)

when j̄m = 1, 0, 1, 0 and k̄m = 0, 0, 1, 1, respectively, for m = 1:4, then

M̂,̂ · Ŷ ′
is,̂(t)≡

(
M(1,je,ke)

3,3 +
4∑

m=1

M(Mθ,je+j̄m,ke−k̄m)
2m,2m

)
· Y (1,je,ke) ′

is,3 (t).

If ke = Mr when ie = Mθ and je = 2:Mψ − 1, then the no-flux BC must
be added, so

M̂,̂ · Ŷ ′
is,̂(t) ≡

(
M(1,je,Mr)

3,3 +
4∑

m=1

M(Mθ,je+j̄m,Mr−k̄m)
2m,2m

+M(Mθ,je+1,Mr)
6,6 +M(Mθ,je,Mr)

8,8

)
· Y (1,je,Mr) ′

is,3 (t),

where ̂ = 3 + (Mr − 2)(Mθ(Mψ − 1) + 2) + (je − 1)Mθ.

The actual implementation uses subscripted subscripts to gather the aliased
unknowns and equation into their unique locations.

Appendix B. De-aliased spherical node count

The total number of de-aliased points used for the purpose of plotting the
results is given by

1 +Mr +Mr · (Mψ − 1) ·Mθ +Mr,

and can be seen by the following argument.

(1) 1 + Mr points come from the degeneracies at ψ = 0, θ = 2π and for
0 < r < Rr.

(2) 0 < ψ < π, 0 ≤ θ < 2π and 0 < r ≤ Rr degeneracies provide for
Mr · (Mψ − 1) ·Mθ points.

(3) Finally we get Mr points for the case where ψ = π, θ = 2π and 0 < r <
Rr.

We use the three steps above to keep track of the values of the radial, azimuthal
and polar values given by rke , ψje and θie and made the spherical conversion
as usual,
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xh = (rke)h · cos(θie)h · sin(ψje)h,

yh = (rke)h · sin(θie)h · sin(ψje)h,

zh = (rke)h · cos(ψje)h.

Here h is the index used in steps (1)-(3) outlined above. It is important to point
out at this stage that the plots obtained were for r ∈ [0, 5] and not centered
as in the case of the two dimensional plots. To obtain plots in three dimension
the key thing was the definition of kplot which is an (Mr)×(Mθ+1)×(Mψ+1)
array. The kplot is an indexing to convert the 1+2Mr+Mr ·(Mψ − 1) ·Mθ back
to indices for the three variables. The reconversions are summarized below.

(1) For the non-boundary case ke = 2 : Mr,
(a) je = 1,

kplot,ke,ie,je =

2 + (ke − 2)[Mθ(Mψ − 1) + 2], ie = 1 : Mθ

kplot,ke,1,1, ie = Mθ + 1.

(b) je = 2 : Mψ,

kplot,ke,ie,je =


2 + (ke − 2)[Mθ(Mψ − 1)] +Mθ(je − 2) + ie

for ie = 1 : Mθ

kplot,ke,1,Mψ+1, ie = Mθ + 1.

(c) je = Mψ,

kplot,ke,ie,je =

1 + (ke − 1)[Mθ(Mψ − 1)], ie = 1 : Mθ

kplot,ke,1,Mψ+1, ie = Mθ + 1.

(2) For the boundary case ke = Mr + 1,
(a) je = 1,

kplot,ke,ie,je =

2 + (Mr − 2)[Mθ(Mψ − 1) + 2], ie = 1 : Mθ

kplot,ke,1,1, ie = Mθ + 1.

(b) je = 2 : Mψ,

kplot,ke,ie,je =


2 + (ke − 2)[Mθ(Mψ − 1)] +Mθ(je − 2) + ie,

for ie = 1 : Mθ

kplot,ke,1,Mψ+1, ie = Mθ + 1.

(c) je = Mψ,
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kplot,ke,ie,je =

1 + (Mr − 1)[Mθ(Mψ − 1)], ie = 1 : Mθ

kplot,ke,1,Mψ+1, ie = Mθ + 1.

MapleTM was used to exactly evaluate the integrals of the element matrices
off-line. The the integrals and their exact values evaluated by MapleTM .

Appendix C. A constrained control formulation

In this Appendix, we briefly present an alternative numerical approach, as
suggest by one of the reviewers, from the perspective of constrained and flow
control optimization as envisioned in [6,25,26,28]. The state equations in the
compact form can be written as,

M1Ŷ
′ = A(Ŷ)Ŷ −M2Û(t),

where Mi has a dimension of 3 × 3. The corresponding objective functional
in a terse form is as follows,

J(Ŷ, Û) =
1

2

∫ tf

0
dt
∫
Ω
dx
(
Ŷ>RŶ +

(
Û− Û0

)>
S
(
Û− Û0

))
+

1

2

∫
Ω
dx
(
Ŷ>QŶ

)
(x, tf ).

The discretized version of this control problem would be,

min
∆t

2

[[
tmax∑
i=1

(
0.5

(
Ŷ>
i RŶi + Ŷ>

i+1RŶi+1

)
+0.5

((
Ûi − Û0,i

)>
S
(
Ûi − Û0,i

)
+
(
Ûi+1 − Û0,i+1

)>
S
(
Ûi+1 − Û0,i+1

)))]
+
(
0.5

(
Ŷ>
i QŶi + Ŷ>

i+1QŶi+1

))]
.

subject to,

M1

(
Ŷi+1 − Ŷi

)
=

∆t

2

[
0.5

(
A(Ŷi)Ŷi +A(Ŷi+1)Ŷi+1

)
−M20.5

(
Ûi + Ûi+1

)]
.
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4. Parameter values for numerical implementation

Symbol Parameter Value

aC Reabsorption rate for the drug [39] 11.3 per day

aN Intrinsic growth rate for normal tissue 8.64e-7 per day

aT Intrinsic growth rate for tumor cells [37] 1.20e-2 per day

DC

Diffusion coefficient for drug con-

centration [39]
2.16e-1 cm2 per day

DN Diffusion coefficient for normal tissue 1.0e-15 cm2 per day

DT Diffusion coefficient for tumor cells [37] 4.2e-3 cm2 per day

kN Normal tissue carrying capacity 1.0

kT Tumor cell carrying capacity 1.0

qC Drug delivery final cost coefficient 0.1

qT Tumor burden final cost coefficient 0.1

rT Tumor burden running cost coefficient 0.2

sU Drug delivery running cost coefficient 0.05

RT Initial tumor radius 1.25 cm

RD Initial drug radius 1.25 cm

wUC Weight of U0 drug control distributions 8.0

αT,N Death rate of tumor cells due to competition 1.0e-4 per day

αN,T
Death rate of normal tissue due to

competition
1.0e-4 per day

κT,C Death rate of tumor cells due to treatment 8.0 per day

κN,C Death rate of normal tissue due to treatment 1.0e-4 per day
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