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Extended Abstract:
The Heston stochastic-volatility model is a square-root diffusion model for the stochastic-variance.
It gives rise to a singular diffusion for the distribution as noted by Feller [5]. Hence, there is an
order constraint on the relationship between the limit that the variance goes to zero and the limit
that time-step goes to zero, so that any non-trivial transformation of the Heston model leads to
a transformed diffusion in the Itô Calculus. Several transformations are introduced that lead to
proper diffusions and preservation of the nonnegativity of the variance in a perfect-square form.
An exact, nonsingular solution is found for a special combination of the Heston stochastic volatility
parameters.

A computationally simple and practical simulation recipe of solutions of the Heston model is
introduced that is consistent with the proper diffusion scaling for the time-step and the variance
when both are small.

In financial markets, the log-returns differ from the geometric or linear diffusions due to several
properties. Some of these are jumps and random or time-dependent statistical properties. One
significant property difference is that variance, or its square root, the volatility, can be stochastically
time-dependent, i.e., we have stochastic volatility. Stochastic volatility in the market, mostly in
options pricing, has been studied and justified by Ball and Torous [2], Bates [3], Andersen, Benzoni
and Lund [1], and Lord, Koekkoek and Dijk [8].

The mean-reverting, square-root-diffusion, stochastic-volatility model of Heston [7] is fre-
quently used. Heston’s model derives from the CIR model of Cox, Ingersoll and Ross [4] for
interest rates. The CIR paper also cites the Feller [5] justification for proper (Feller) boundary
conditions, process nonnegativity and the distribution for the general square-root diffusions.

The stochastic variance is modeled with the Cox-Ingersoll-Ross (CIR) [4] and Heston [7]
mean-reverting stochastic variance V (t) and square-root diffusion

√
V (t), with a triplet of pa-

rameters {κv(t), θ(t), σv(t)}:

dV (t) = κv(t) (θv(t)− V (t)) dt + σv(t)
√

V (t)dWv(t), (0.1)



with V (0) = V0 > 0, log-rate κv(t) > 0, reversion-level θv(t) > 0 and volatility of volatility
(variance) σv(t) > 0, where Wv(t) is a standard Brownian motion V (t). Equation (0.1) comprises
the underlying stochastic-volatility (SV) model.

It will be assumed that the variance is nonnegative, i.e., V (t) ≥ 0, in theory, but in practice
the variance needs to be sufficiently positive to avoid singularities and to preserve the diffusion
approximation in transformations. The nonnegativity for the usual range of the parameters has been
shown using the distribution by Feller in his seminal singular diffusion paper [5]. However, the
simple Euler simulations can generate small negative values of the variance and this is confirmed
in this paper. The likely reason is the simulations yields a discrete process and not the continuous
process of the theoretical model (0.1), which imply a reflecting boundary near zero for positive
parameters.

Using the transformation techniques of Hanson [6], it is shown that the transformation
Y (t) = β(t)/

√
(V (t)) + c(t), (0.2)

given functions, β(t) and c(t), lead to a state-independent noise term and a perfect square solution:

V (t)= es−κv(t)
(√

V0 + Ig(t)
)2

,

Ig(t)= 0.5

∫ t

0

eκv(s)/2


κvθv −

1

4
σ2

v
√

V

(s)ds + (σvdWv)(s)

 .
(0.3)

It is shown that this solution is consistent with Itô’s diffusion approximation lemma provided that
the time-step ∆t and minimum variance ε = min(V (t)) are constrained by ∆t � ε � 1.
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