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A. Histogram of S&P500 %Log-Returns 1980-2000−:
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Figure 1: S&P500 Daily Log-Return Adjusted Closings from 1980 (pre-
1987) to 2000 with barely visible long-tails. The red is a pure normal
density with the same mean and variance of the data and scaled to match
the data count, but missing extreme tails and many small returns.
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B. Extreme Tail Events for %Log-Returns (1980-2000−):
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(a) Extreme Negative Tails.
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(b) Extreme Positive Tails.

Figure 2: Extreme Negative and Positive Log-Return Tail Events, with
Peaks Over Thresholds POT ' −2.6 and +2.6, respectively. In normal
distribution terms this means tail probability less than 5.0e-3%. These
represent the significant crashes or bonanzas during the time period.
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1. Introduction.
1.1 Early Background:
• Merton pioneered the optimal portfolio and consumption problem

for geometric diffusions used HARA (hyperbolic absolute risk-aversion)
utility in his lifetime portfolio (RES 1969) and general portfolio (JET 1971)
papers. However, there were some errors, in particular with bankruptcy
boundary conditions and vanishing consumption.

• The optimal portfolio errors are throughly discussed in the collection of

papers of Sethi’s bankruptcy book (1997). See Sethi’s introduction, KLSS

paper (MOR 1986) and paper with Taksar (JET 1988).
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1.2 Market Jump Properties:
• Statistical evidence that jumps are significant in financial markets:

◦ Stock and Option Prices in Ball and Torous (JFQA 1985);
◦ Capital Asset Pricing Model in Jarrow and Rosenfeld (JB 1984);
◦ Foreign Exchange and Stocks in Jorion (RFS 1989).

• Log-return market distributions usually skewed negative,
η3 ≡ M3/(M2)

1.5 < 0 compared to the skew-less normal distribution, if
over sufficiently long times.

• Log-return market distributions usually leptokurtic,
η4 ≡ M4/(M2)

2 > 3, if over sufficiently long times, i.e., more peaked
than normal.

• Log-return market distribution have fatter or heavier tails than the normal
distribution’s exponentially small tails and also higher and sharper peaks.

• Stochastic dependence of volatility is important.
• Time-dependence of rate coefficients is important, i.e., non-constant

coefficients are important, such as stochastic volatility dynamics.
• Infinite jump domain is questionable for the optimal portfolio problem.
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1.3 Jump-Diffusion Models:
• Merton (JFE 1976) in his pioneering jump-diffusion option pricing model

used IID log-normally distributed jump-amplitudes with a compound
Poisson process. Other authors have also used the normal jump-amplitude
model.

• Kou (Mgt.Sci. 2002, and 2004 with Wang) used the IID
log-double-exponential for option pricing.

• Hanson, Westman and Zhu (2001-2006) have a number of optimal portfolio
papers using various log-return jump-amplitude distributions such as IID
log-discrete, normal, uniform and double-uniform distributions.

• And many more.

• Return Jump-diffusions give skewness and excess-leptokurtosis to market
distributions, and so do latent stochastic volatility jump-diffusions.
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1.5 Stochastic Jump and Volatility Considerations:
• Extreme jumps in the market are relatively rare (statistical outliers) among

the large number of daily fluctuations.
• NYSE have had circuit breakers installed since 1988 to suppress extreme

market changes, particularly the 1987 crash, with many recent updates due
to the 2007-2009 great recession, May 6, 2010 flash crash and Dodd-Frank
regulation changes.

• Finite range jump distributions are consistent with circuit breakers.
• Bankruptcy conditions also need to be considered for the global

dependence of jump-integrals of the SVJD PIDE as we shall see for the
optimal portfolio problem; unlike the local dependence option pricing
problem.

• Andersen, Benzoni and Lund (JF 2002) showed that both stochastic jump
and volatility models are needed to explain equity returns.

• Eraker, Johannes and Polson (JF 2003) show that jumps in volatility are also
needed.
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2. Optimal Portfolio Problem and Underlying
Stochastic-Volatility, Jump-Diffusion (SVJD) Return
Model.
2.1 Stock Price Linear Stochastic Differential Equation (SDE):

dS(t)=S(t)
(
µs(V (t))dt+

√
V (t)dGs(t)+QsdPs(t)

)
, (1)

where
• S(t) = stock price, S(0) = S0 > 0;

• µs(V (t)) = expected rate of return in absence of asset jumps;

• Gs(t) = stock price diffusion process, normally distributed such
that E[dGs(t)] = 0 and Var[dGs(t)] = dt;

• V (t) = stochastic variance = (stochastic volatility)2 = σ2
s(t);

• Ps(t) = Poisson jump counting process, Poisson distributed such
that E[dPs(t)] = λsdt = Var[dPs(t)];

SVJD Optimal Portfolio Problem — 9 — Floyd Hanson , UIC



2.1 Continued: Stock Price Dynamics:
• Qs = Poisson jump-amplitude underlying IID random mark

variable, selected for log-return so that
Qy ≡ Qln(s) = ln(1 + Qs), such that Qs > −1, preserving
positive returns;

• Definition of abbreviated compound Poisson jump term:

S(t)QsdPs(t) ≡
(Ps+dPs)(t)∑
k=Ps(t)+1

S(T−
k )Qs,k;

(Note:
PPs

k=Ps+1 Ak ≡ 0, i.e., when there is no jump, dPs = 0.)

• T −
k is the pre-jump time and Qs,k is an independent and identically

distributed (IID) mark realization at the kth jump;

• The processes Gs(t), Ps(t) = Ps(t; Qs), Qs are independent,
except that Qs = Qs,k is conditioned on a jump-event at T−

k .
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2.2 Log-Truncated Double-Exponential (TDE) Probability
Jump-Amplitude Qy Mark Distribution:

Φ(tde)
Qy

(q) = p1
e−(q−µj,y)/µ1 −e1

|µ1|(1−e1)
I{a≤q≤µj,y}

+
(
p1+p2

1−e−(q−µj,y)/µ2

µ2(1−e2)

)
I{µj,y≤q≤b}

+I{b,≤q<∞},

where a < µj,y < b, 0 ≤ p2 = 1− p1 ≤ 1, e1 ≡e−(a−µj,y)/µ1 and
e2 ≡e−(b−µj,y)/µ2 .
• Mark Mean: µ(tde)≡E(tde)

Qy
[Qy]=p1µ

(tde)
1 +p2µ

(tde)
2 ≡

p1(µj,y+µ1−(a−µj,y)e1/(1−e1))+p2(µj,y+µ2−(b−µj,y)e2/(1−e2));

• Mark Variance:(
σ(tde)

)2≡Var(tde)
Qy

[Q] =p1

(
σ

(tde)
1

)2

+p2

(
σ

(tde)
2

)2

.

• Mark motivation: The truncated double-exponential distribution
unlinks the different behaviors in crashes and rallies.
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2.3 Stochastic-Volatility with Jumps Model
(Eraker, Johannes and Polson, JF 2003 (jump-Heston model):

dV (t) = κv(θv−V (t)) dt+σv

√
V (t)dGv(t)+QvdPv(t), (2)

with
• V (t)≥min(V (t))>0+, V (0)=V0≥ min(V (t))> 0+;

• Log-rate κv >0; mean-reversion level θv >0; volatility of volatility
(variance) σv >0;

• Gv(t)= variance diffusion process, normally distributed such that
E[dGv(t)]=0 and Var[dGv(t)]=dt, with correlation
Corr[dGs(t), dGv(t)]=ρdt;

• Note: SDE (2) is singular for transformations as V (t)→0+ due to
the square root, unlike SDE (1) for S(t) where the singularity is
removable through the log transformation, but Itô-Taylor chain rule
or simulation applications might not be valid unless

∆t�√
εv �1, εv =min(V (t))>0.
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2.4 Stochastic Volatility Compound Poisson Process:
• dPv(t) = stochastic volatility Poisson counting process, with joint

mean and variance, E[dPv(t)]=λvdt=Var[dPv(t)] with λv >0.
This completes the SVIJ model of Eraker, Johannes and Polson
(2003), the stochastic volatility model with independent jumps,
assuming that generally that λv 6= λs.

• Stochastic Volatility Jump-Amplitude Exponential Distribution:

ΦQv
(q) =

(
1 − e−q/µj,v

)
I{0≤q<+∞},

where EQv [Q]= µj,v >0 and VarQv [Q]= µ2
j,v .

• Mark motivation: While the range of jumps in the asset returns can
have a significant effect on the range of the asset stock fraction in the
Merton-type optimal portfolio problem, the jumps in the stochastic
volatility do NOT restrict the range stock fraction, so the
semi-infinite range of the jumps of the stochastic volatility is a useful
approximation.
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2.5 Log-Return Stock Model:
• Log-Transform of Singular Diffusion to Regular Diffusion: Let

Y (t) = ln(S(t), then the removable singularity of the stock
geometric Brownian diffusion with linear jumps is transformed to a
regular jump-diffusion, as usual.

• Log-Return Jump-Diffusion (The Usual Econometric Model):

dY (t) = µydt +
√

V (t)dGs(t) + QydPs(t). (3)

• Transformed Drift: µy =µs(V (t))−V (t)/2, following Eraker,
Johannes and Polson (2003) whose estimations implied that the
log-return drift µ̂y ' constant.

• Transformed Jump-Amplitude Mark: Qy =ln(1+Qs), with
a≤Qy≤b for bounded log-return jumps.
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2.6 Wealth Portfolio with Bond, Stock and Consumption:
• Portfolio: Riskless asset or bond at price B(t) and Risky asset or

stock at price S(t) (1), with instantaneous portfolio change fractions
Ub(t) and Us(t), respectively, such that Ub(t) = 1 − Us(t).

• Exponential Bond Price Process:

dB(t) = r(t)B(t)dt , B(0) = B0 . (4)

• SVJD Portfolio Wealth Process W (t),
Less Consumption C(t) with Self-Financing:

dW (t) = W (t)
(
r(t)dt + Us(t)

(
(µy + V (t)/2 − r(t))dt

+
√

V (t)dGs(t) +
(
eQy − 1

)
dPs(t)

))
− C(t)dt ,

(5)

subject to constraints W (0) = W0 > 0, W (t) > 0,
v = V (t) > 0, 0 < C(t) ≤ C

(max)
0 W (t) and

U
(min)
0 ≤ Us(t) ≤ U

(max)
0 , while allowing extra shortselling

(Us(t) < 0) and extra borrowing (Ub(t) < 0) .
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2.7 Portfolio Optimal Objective (The Control Application):

J∗(w, v, t) = max
{u,c}

[
E

[
e−β(t,tf )Uw(W (tf))

+
∫ tf

t

e−β(t,τ)Uc(C(s)) dτ∣∣∣∣W (t)=w, V (t)=v, Us(t)=u, C(t)=c

]]
.

(6)

where

• Cumulative Discount: β(t, s) =
∫ s

t
β(τ)dτ , where β(t) is the

instantaneous discount rate.
• Consumption and Final Wealth Utility Functions: Uc(c) and Uw(w)

are bounded, strictly increasing and concave.
• Variable Classes: State variables are w and v, while control variables

are u and c.
• Final Condition: J∗(w, v, tf) = Uw(w).
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2.8 Absorbing Natural Boundary Condition:
Approaching bankruptcy as w → 0+, then by the consumption
constraint as c → 0+ and by the objective (6),

J∗(
0+, v, t

)
= Uw

(
0+

)
e−β(t,tf ) + Uc

(
0+

) ∫ tf

t

e−β(t,s)ds. (7)

• This is the simple variant of what Merton gave as a correction in his
1990 book for his 1971 optimal portfolio paper.

• However, KLASS 1986 and Sethi with Taksar 1988 pointed out that
it was necessary to enforce the non-negativity of wealth and
consumption.
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3. Portfolio Stochastic Dynamic Programming .
3.1 Portfolio Stochastic Dynamic Programming PIDE:

0 = J∗
t (w, v, t)−β(t)J∗(w, v, t) + Uc(c

∗)

+ (r(t)+(µy+v/2−r(t))u∗) wJ∗
w(w, v, t)

−c∗J∗
w(w, v, t)+ 1

2
v(u∗)2w2J∗

ww(w, v, t)+κv(θv −v)J∗
v (w, v, t)

+1
2
σ2

vvJ∗
vv(w, v, t)+ρσvvu∗wJ∗

wv(w, v, t)

+λs

Z b

a

φ(tde)
y (q)

“
J∗(K(u, q)w, v, t)−J∗(w, v, t)

”
dq

+λv

Z ∞

0

φv(q)(J∗(w, (1+q)v, t)−J∗(w, v, t)) dq,

(8)

where u∗ = u∗(w, v, t) ∈
h
U

(min)
0 , U

(max)
0

i
and

c∗ = c∗(w, v, t) ∈
h
0, C

(max)
0 w

i
are the optimal controls if they exist,

while J∗
w, J∗

v , J∗
ww, J∗

wv and J∗
vv are the continuous partial derivatives

with respect to wealth w and/or v when 0 ≤ t < tf . Note that
K(u, q)w=(1+(eq−1)u∗(w, v, t))w is a wealth argument.
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3.2 Positivity of Wealth with the Stock Jump Distribution:
Since K(u, q)w=(1+(eq−1)u∗(w, v, t))w is a wealth argument in
(8), it must satisfy the wealth positivity condition, so

K(u, q) ≡ 1 + (eq − 1)u > 0

on the support [a, b] of the jump-amplitude density φQy (q).

Lemma 3.2 Bounds on Optimal Stock Fraction due to Positivity
of Wealth Jump Argument:

(a) If the support of φQy
(q) is the finite interval q ∈ [a, b] with

a<µj,y <b and a<0<b, then u∗(w, v, t) is restricted by (8) to
−1

eb − 1
< u∗(w, v, t) <

1

1 − ea , (9)

where Qs = eQy − 1 is the stock jump-amplitude relative to price.

(b) If the support of φQy (q) is fully infinite, i.e., (−∞,+∞), then
u∗(w, v, t) is restricted by (8) to

0 < u∗(w, v, t) < 1. (10)
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3.2 Remarks: Non-Negativity of Wealth and Jump
Distribution:
• Recall that u is the stock fraction, so that short-selling and

borrowing will be overly restricted in the infinite support case (10)
where a→−∞ and b→+∞, unlike the finite case (9) where
−∞<a<0<b<+∞.

• So, unlike option pricing, finite support of the mark density makes a
big difference in the optimal portfolio and consumption problem!

• Thus, it would not be practical to use either normally or
double-exponentially distributed marks in the optimal portfolio and
consumption problem with a bankruptcy condition.

• For TDE parameters, [a, b]=[−0.08396,+0.02226], then the
overall u∗ range for the S&P500 data used is

[umin, umax]=[−44.43,+12.42]⊂
( −1

(eb−1)
,

+1

(1−ea)

)
.
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3.3 Unconstrained Optimal or Regular Control Policies:
In absence of control constraints and in presence of sufficient
differentiability, the dual policy, implicit critical conditions are

• Regular Consumption c(reg)(w, v, t) {Implicitly}:

U ′
c(c

(reg)(w, v, t)) = J∗
w(w, v, t). (11)

• Regular Portfolio Fraction u(reg)(w, v, t) {Implicitly}:

vw2J∗
ww(w, v, t)u(reg)(w, v, t)=−(µy+v/2−r(t))wJ∗

w(w, v, t)

−ρσvvwJ∗
wv(w, v, t)

−λ(t)w

Z b

a

φQy(q)(eq −1)J∗
w

“
K
“
u(reg)(w, v, t), q

”
w, v, t

”
dq.

(12)
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4. CRRA Canonical Solution to Optimal Portfolio Problem.
4.1 CRRA Utilities:

• Constant Relative Risk-Aversion (CRRA ⊂ HARA) Power Utilities:

Uc(x) = U(x) = Uw(x) =

8<: xγ/γ, γ 6= 0

ln(x), γ = 0

9=; , x ≥ 0, γ < 1. (13)

• ⇐= Relative Risk-Aversion (RRA):

RRA(x) ≡ −U ′′(x)/(U ′(x)/x) = (1− γ) > 0, γ < 1,

i.e., negative of ratio of marginal to average change in marginal
utilility (U ′(x) > 0 & U ′′(x) < 0) is a constant.

• CRRA Canonical Separation of Variables:

J∗(w, v, t) = U(w)J0(v, t), J0(v, tf) = 1, (14)

i.e., if valid, then wealth state dependence is known and only the
variance-time dependent factor J0(v, t) need be determined.
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4.2 Canonical Simplifications with CRRA Utilities:
• Regular Consumption Control is Linear in Wealth:

c(reg)(w, v, t) = w · c
(reg)
0 (v, t) ≡ w/J

1/(1−γ)
0 (v, t), (15)

where c
(reg)
0 (v, t) is a wealth fraction, with optimal consumption
c∗
0(v, t) = max

h
min

h
c
(reg)
0 (v, t), C

(max)
0

i
, 0
i

per w.
• Regular Portfolio Fraction Control is Independent of Wealth:

u(reg)(w, v, t)≡ u
(reg)
0 (v, t)

= 1

(1−γ)v

“
µy + v/2−r(t)+ρσvv(J0,v/J0)(v, t)

+λsI1

“
u

(reg)
0 (v, t)

””
,

(16)

in fixed point form, where
u∗ = u∗

0(v, t) = max
h
min

h
u

(reg)
0 (v, t), U

(max)
0

i
, U

(max)
0

i
,

and I1(u) ≡
Z b

a
φQy (q)(eq − 1)Kγ−1(u, q)dq.
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4.3 CRRA Time-Variance Dependent Component in
Formal “Bernoulli” PIDE (γ 6= 0; γ < 1):
0= J0,t(v, t)+(1 − γ)

„
g1(v, t)J0(v, t)+g2(v, t)J

γ
γ−1

0 (v, t)

«
+g3(v, t)J0,v+ 1

2
σ2

vvJ0,vv,

(17)

where
• Bernoulli Coefficients g1(v, t), g2(v, t), and g3(v, t):

g1(v, t) = g1(v, t; u∗0(v, t)), g2(v, t) = g2

“
v, t; c∗0(v, t), c

(reg)
0 (v, t)

”
, and

g3(v, t) = g3(v, t; u∗0(v, t)) , introduce implicit nonlinear dependence
on u∗0(v, t), c∗0(v, t) and c

(reg)
0 (v, t) , so iterations are required.

• Formal (Implicit) Solution using Bernoulli transformation,
x(v, t) = J

1/(1 − γ)
0 (v, t) , improving interations:

0 = xt(v, t) + g1(v, t)x(v, t) + g4(v, t), x(v, tf) = 1,

J0(v, t) =

»
eg1(v, t, tf)+

Z tf

t

g4(v, τ)eg1(v, t, τ)dτ

–1−γ

, (18)
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4.3 Continued, Coefficient Functions for Reference Only:

where the coefficient function are

g1(v, t) ≡ 1

1−γ
(−β(t)+γ (r(t)+(µy+v/2−r(t))u∗0(v, t))

−0.5(1−γ)v(u∗0)
2(v, t)+λs(I2(u

∗
0(v, t))−1)

+λv((I3[J0]/J0)(v, t)−1)) ,

g1(v, t, τ) ≡
Z τ

t

g1(v, s)ds.

I2(u) ≡
Z b

a

φQy (q)Kγ(u, q)dq, I3[J0](v, t)) ≡
Z ∞

0

φQv (q)J0((1+q)v, t)dq,

g2 ≡
1

1−γ

  
c∗0(v, t)

c
(reg)
0 (v, t)

!γ

−γ

 
c∗0(v, t)

c
(reg)
0 (v, t)

!!
,

g3(v, t) =+κv(θv−v)+γρσvvu∗0(v, t),

g4(v, t) = g2(v, t)+g3(v, t)xv(v, t)+
1

2
σ2

v(t)v
`
xvv−γ((xv)2/y)

´
(v, t).
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4.4 CRRA Time-Variance Dependent Component in Formal
“Bernoulli” PDE (γ = 0; Kelly Criterion) :

In this medium risk-averse case of the logarithmic CRRA utility, the formal,
implicit canonical solution has two terms,

J∗(w, v, t) = ln(w)J0(v, t) + J1(v, t), (19)

with final boundary conditions J0(v, t) = 1 and J1(v, t) = 0, The regular
controls satisfy,

c(reg)(w, v, t) = wc
(reg)
0 (v, t) ≡ w/J0(v, t),

u(reg)(w, v, t) = u
(reg)
0 (v, t) ≡ 1

v

“
µy+v/2−r(t)+ρσv(J0,v/J0)(v, t)

+λsI1

“
u

(reg)
0 (v, t)

””
.
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4.4 γ = 0 case continued:
The ln(w) and w-independent coefficients satisfies the implicit,
uni-directionally-coupled PIDEs,

0 = J0,t(v, t)− β(t)J0(v, t) + g0(v, t),

0 = J1,t(v, t)− β(t)J1(v, t) + eg2(v, t),

with formal solutions

J0(v, t) = e−β(t; tf ) +

Z tf

t

e−β(t; τ)g0(v, τ)dτ,

J1(v, t) =

Z tf

t

e−β(t; τ)eg2(v, τ)dτ,

where

g0(v, t) ≡ 1 + κv(θv − v)J0,v(v, t) + 1
2
σ2

vvJ0,vv(v, t),

eg2(v, t) ≡ − ln(J0(v, t))− 1 + r̀(t)+(µy+v/2−r(t))u∗0(v, t)

−0.5v(u∗0)2(v, t) +λsI
(0)
2 (u∗0(v, t))

”
J0(v, t)

+κv(θv−v)J1,v(v, t)+0.5σ2
vvJ1,vv(v, t),

and where I
(0)
2 has ln(K) replacing Kγ in I2.
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5. Computational Considerations and Results.
5.1 Parameter Data

• Due to the complexity of the data, the elaborate parameter estimates
of Eraker, Johannes and Polson (2003) for their SVIJ model from the
S&P 500 index returns from the beginning of 1980 to the end of
1999, including the extreme market stresses in 1987, 1997 and 1998.
Their methods of estimation include Bayesian oriented Markov chain
Monte Carlo simulations.

• In our notation, the original parameter estimates of Eraker, Johannes
and Polson (2003) are given in Table 1 along with converted estimate
in units appropriate for the PIDE formulation (i.e., annualized and
non-percentage units):
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Table 1: SVIJ Parameter Estimates

Estimated SVIJ SVIJ Scale
Parameter Original Converted Factors∗

µy 0.0506 0.1275 ×252/100

κv 0.0250 6.3000 ×252

θv 0.5585 0.01407 ×252/1002

σv 0.0896 0.2258 ×252/100

ρ -0.5040 -0.5040 ×1

λy 0.0046 1.1592 ×252

µjy -3.0851 -0.030851 ×1/100

σjy 2.9890 0.02989 ×1/100

λv 0.0055 1.3860 ×252

µjv 1.7980 0.04531 ×252/1002

σjv 1.7980 0.04531 (exponential dist.)

ρjvy 0 0 (independent jumps)
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• The standard 252 trading days was used to convert daily units to
annual units, while division by 100 cancels percentage scaling. The
conversion factors follow from the comments on a few key
parameters in Eraker, Johannes and Polson (2003) and preserving
dimensional consistency with the driving SDEs, (1) and (2).

• Since the log-return jump-amplitude distributions are different from
those of Eraker, Johannes and Polson (2003), it is necessary to
convert the log-return normal jump-amplitude basic moments to the
basic moments of the truncated double-exponential distribution here
to take advantage of Eraker, Johannes and Polson’s very large scale
estimation, assuming that a consistent matching of half-range and full
range moments will be suitable for our purpose. The computational
results for the TDE parameters to three significant figures were

p1 =0.5, µ1'−0.0863, µ2'+0.0863, a'−0.0840, b'+0.0223.
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Interest Primes Rates r(t) and Discount Rates β(t),
1980-2000− (Federal Reserve Statistical Release H.15):
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Figure 3: FRB prime rates r(t) and discount rates β(t) for
t ∈ [1980, 2000−].
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5.2 Computational Considerations:

• The primary problem is having stable computations and much smaller
time-steps ∆t are needed compared to variance-steps ∆V , since the
computations are drift-dominated over the diffusion coefficient, in
that the mesh coefficient associated with J0,v can be hundreds times
larger than that associated with J0,vv for the variance-diffusion.

• Drift-upwinding is needed so the finite differences for the
drift-partial derivatives follow the sign of the drift-coefficient, while
central differences are sufficient for the diffusion partials.

• Iteration calculations in time, controls and volatility are sensitive to
small and negative deviations, as well as the form of the iteration in
terms of the formal implicitly-defined solutions.
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5.3 Results for Regular u(reg)(vp, t) and Optimal
u∗(vp, t) Portfolio Fraction Policies, σp =

√
vp = 22% :
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(a) Regular fraction policy u(reg)(vp, t).
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(b) Optimal fraction policy, u∗(vp, t).

Figure 4: Regular and optimal portfolio stock fraction policies, u(reg)(vp, t)

and u∗(vp, t) at σp =
√

vp = 0.22 = 22% on t ∈ [1980, 2000), while
u∗(vp, t) ∈ [−44.4, 12.4]. Jump-bankruptcy bounds are included only in (b).

SVJD Optimal Portfolio Problem — 33 — Floyd Hanson , UIC



5.3 Results for Optimal Value J∗(w, vp, t) and
Optimal Consumption c∗(w, vp, t), σp =

√
vp = 22% :
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(a) Optimal portfolio value J∗(w, vp, t).
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(b) Optimal consumption policy c∗(w, vp, t).

Figure 5: Optimal portfolio value J∗(w, vp, t) and optimal consump-
tion policy c∗(w, vp, t) at σp = √

vp = 0.22 = 22% on (w, t) ∈
[0, 110] × [1980, 2000), while c∗(w, vp, t) ∈ [0, 0.75 · w].
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5.4 Results for Optimal Value J∗(wp, v, t) and
Optimal Consumption c∗(wp, v, t), wp = 55 :
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(a) Optimal portfolio value J∗(wp, v, t).
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Figure 6: Optimal portfolio value J∗(wp, v, t) and optimal consumption
c∗(wp, v, t) at wp = 55 for (v, t) ∈ ×[vmin, 1.0] × [1980, 2000),
while c∗(wp, v, t) ∈ [0, 0.75 · wp].
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5.5 Results for Optimal Portfolio Fraction u∗(v, t):
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Figure 7: Optimal portfolio fraction policy u∗(v, t) for (v, t) ∈
×[vmin, 1.0]×[1980, 2000), while u∗(v, t)∈ [−44.4, +12.4]. Note
the large changes of fraction for small variance, v, tracking Fed Chair
Paul Volcker’s frequent interest rate swings in 1980s.
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6. Conclusions
• Generalized the optimal portfolio and consumption problem for

stochastic-volatility jump-diffusions to include jumps in the
stochastic volatility/variance .

• Confirmed significant effects on variation of instantaneous stock
fraction policies due to time-dependence of interest and discount
rates for SJVJD optimal portfolio and consumption models.

• Showed jump-amplitude distributions with compact support are
much less restricted on short-selling and borrowing compared to the
infinite support case in the SjVJD optimal portfolio and consumption
problem.

• Noted that the CRRA reduced canonical optimal portfolio problem is
strongly drift-dominated for sample market parameter values over
the diffusion terms, so at least first order drift-upwinding is essential
for stable Bernoulli PIDE computations.
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