Applied Stochastic

Processes and Control

for Jump-Diffusions:

Modeling, Analysis, and Computation

Floyd B. Hanson, University of Illinois at Chicago, Chicago, Illinois

Post Publication Errata

March 20, 2008

Negative numbered lines imply lines counted up from the bottom, designated as line -1.

- Page 1, line -5: Replace "continuous-time stochastic processes" by "stochastic processes in continuous-time"
- Page 190, line -6: Delete "dps".
- Page 290, Eq. (10.8), line -13: Insert " $S^2(t)$ " before $\frac{"\partial^2 F''}{\partial S^2}$ so equation is

$$dV^*(t) = N_F^*\left(dF - \frac{\partial F}{\partial S}dS\right) = N_F^*\left(\frac{\partial F}{\partial t} + \frac{1}{2}\sigma^2 S^2(t)\frac{\partial^2 F}{\partial S^2}\right)dt$$

• Page 290, Eq. (10.11), line -3: Insert " s^{2} " before $\frac{"\partial^2 F''}{\partial s^2}$, changing all S"s to cs"s, so equation is

$$\frac{\partial F}{\partial t}(s,t) + \frac{1}{2}\sigma^2 s^2 \frac{\partial^2 F}{\partial s^2}(s,t) = r\left(F(s,t) - s\frac{\partial F}{\partial s}(s,t)\right)$$

- Page 291, line 1 to 5: Replace all occurrences of the stochastic variable "S" with the PDE variable "s".
- Page 313, Eq. (10.103), line 2 of eq.: Insert the missing argument " Q_k " of the sum " $\sum_{k=1}^{P(T)}$ " in the exponent inside the max function, so the line of the equation is

$$\equiv e^{-rT} \mathbf{E} \bigg[\max \bigg[S_0 e^{(r-\lambda\mu_J - \sigma_d^2/2)T + \sigma_d W(T) + \sum_{k=1}^{P(T)} Q_k} - K, 0 \bigg] \bigg]$$

• Page 314, eq. unnumbered, line 14: Change the arguments of the functions A and B from " $S_0 e^{\widehat{S}_k - \lambda \mu_J T}$ " to " \widehat{S}_k ", so the line of the equation is

$$=\sum_{k=0}^{\infty} p_k(\lambda T) \mathbf{E}_{\widehat{\mathcal{S}}_k} \Big[S_0 e^{\widehat{\mathcal{S}}_k - \lambda \mu_J T} A\Big(\widehat{\mathcal{S}}_k\Big) - K e^{-rT} B\Big(\widehat{\mathcal{S}}_k\Big) \Big],$$