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Negative numbered lines imply lines counted up from the bottom,
designated as line -1.

• Page 1, line -5: Replace “continuous-time stochastic pro-
cesses” by “stochastic processes in continuous-time”.

• Page 3, line 19: Replace “time-interval [tj , tj + ∆tj)” by “time-
interval [ti, ti + ∆ti)”.

• Page 12, line -5: Replace “is independent of t.” by “is independent
of t with constant jump-rate λ.”.

• Page 16, line 2: Replace “Poisson process,” by “Poisson process
with constant jump-rate λ,”.

• Page 19, Defn. 1.18: Replace “dt ≥ 0” by “dt > 0”.

• Page 25, Ex. 2a: Replace “with µ and” by “with µ0 and”.

• Page 48, Remark 2.16. line 4: Replace “where g(w, t)” by “i.e.,

the Itô forward approximation (IFA) denoted by
ifa� and limit by

ifa
=,

where g(w, t)”.

• Pages 48-51, starting with Eq. (2.43): Replace multiple occur-

rences of “
ims
=” by “

ifa
=” and “

ims−→” by “
ifa−→”.

• Page 70, Th. 3.12: Replace “kth jump of Poisson” by “kth jump-
time of Poisson”.

• Page 89, line -12, Th. 3.12: Replace “d (e−awG)w” by “(e−awG)w”.
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• Page 93, Fig. 4.2: Replace the figure (a copy of Fig. 4.3) by the
correct figure:
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Figure 4.2. Example of a simulated Itô discrete approximation to the stochastic
diffusion integral In[g](ti+1) =

Pi
j=0 gj∆Wj for i = 0 : n, using MATLAB randn with

sample size n = 10, 000 on 0 ≤ t ≤ 2.0. Presented are the simulated Itô partial sums Si+1,

the simulated noise Wi+1 and the error Ei+1 relative to the exact integral, I(ims)[g](ti+1)
ims
=

exp(Wi+1 − ti+1/2) − 1, in the Itô mean square sense.

• Page 97, Eq. (4.37): Replace “ln(x0)µn(t)” by “µn(t)”.

• Page 103, Lemma 4.22: Insert equal sign in “[X](t)h(X(t), t)dP (t)”
to get “[X](t) = h(X(t), t)dP (t)” in unnumbered equation.

• Page 107, line 5: Replace “at jumps” by “at jump-time”.

• Page 108, line 11: Replace “two-term” by “second-order”.

• Page 109, line 1 in Subsect. 4.3.3: Replace “jump-diffusion” by
“jump and diffusion”.

• Page 111, lines 5 & 4 prior to Eq. (4.83): Replace “which in turn is
the time integral of” by “whose time integral yields” and “((µ0 +
λ0ν0)t)” by“(2(µ0 + λ0ν0)t)”, respectively.

• Page 115, lines 7 & 8: Delete both occurrences of “the example”
referring to Eqs. (4.24) and (4.56), respectively.

• Page 116, Figure 4.5 Caption: Replace “randn” by “rand”.
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• Page 118, line 11 : Replace “stochastic diffusion integral” by
“stochastic jump integral”.

• Page 118, line -5 : Replace “λi∆t” by “(λi∆t)k” for correct Poisson
distribution power.

• Page 119, line 6 : Replace “algebraic exercise” by “optional alge-
braic exercise”.

• Page 130, line -10 : Replace “h(t, Q) = 1” by “h(t, Q)”.

• Page 130, line -6, Eq. (5.2) : Replace “P(dt,dq)dt.”
by “P(dt,dq).”.

• Page 132, lines -11 & -7 : Replace “(t, t+dt]” by “[t, t+dt)” on both
lines, “(q, q +dq]” by “[q, q +dq)” and ‘(t, t+∆t]” by “[t, t+∆t)”,
corresponding to right-continuity and Itô forward approximation.

• Page 133, in first item: Replace “(ti, ti + ∆ti]” by “[ti, ti + ∆ti)”in
two occurrences, “(qk, qk + ∆qk]” by “[qk, qk + ∆qk)” in two oc-
currences, “(tj, tj + ∆tj ]” by “[tj , tj + ∆tj)” in two occurrences,
“(q�, q� +∆q�]” by “[q�, q� +∆q�)” in two occurrences, and “(ti, ti +
∆tj ]” by “[ti, ti + ∆ti)”’.

• Page 133, in second item: Replace “(q, q + dq]” by “[q, q + dq)”
and “(t, t + dt]” by “[t, t + dt)”.

• Page 134, lines 8: Replace “Pδk,1” by “Pδk,1”.

• Page 136, Eq. (5.23): Replace “
∫
Q h(t, q)P̃(dt,dq)”

by “
∫ t

0

∫
Q h(t, q)P̃(dt,dq)”.

• Page 142, lines 6: Replace “
sym
= ” by “=”.

• Page 142, eqs. (5.42) and (5.43): Also, replace both “
dt
=” by “

dt
=
zol

”.

• Page 141, Eq. (5.34); p. 142, Eqs. (5.42) and (5.43): Replace “
dt
=”

by “
dt
=
zol

”.

• Page 143, Eq. (5.47): Replace “(1 + ν0(Q))∆Pi”

by “exp
(∑∆Pi

j=1 Qj

)
”.
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• Page 143, lines -10 to -8: Replace “E
[
(1 + ν0(Q))∆Pi

]
= E

[
eQ∆Pi

]
”

by “E
[
Π∆Pi

j=1(1 + ν0(Q))
]

= E
[
exp

(∑∆Pi

j=1 Qj

)]
”,

“= e−λi∆ti
∑∞

k=0(λi∆ti)
kEQ

[
ekQ

]
”

by “= E∆P

[
EQ

[
exp

(∑∆Pi

j=1 Qj

)∣∣∣ ∆Pi

]]
”

and “= e−λi∆ti
∑∞

k=0(λi∆ti)
k
(
EQ

[
eQ

])k
”

by “= e−λi∆ti
∑∞

k=0
(λi∆ti)k

k!
Ek

Q

[
eQ

]
”.

• Page 144, Eq. (5.51): Delete “ν0” appearing in summand “ν0Qk”.

• Page 146, line 5–6: Replace all “Pi,j” by “P i,j”.

• Page 146, Eq. (5.54): In first line replace “(µd(s)λ(s)ν(s))ds”
by “(µd(s) + λ(s)ν(s))ds”
and in second line replace “E[dX(s)/X(s)]ds”
by “E[dX(s)/X(s)]”.

• Page 148, line -2: Replace “= (n + 1)M (4) + 3(n + 1)((n + 1) −
1)(M (2))2.” by “= (n+1)(M (4) +3n(M (2))2).”, for simplicity only.

• Page 153, Eq. (5.69): Replace “
∑∆P (t;Q)

j ” by “
∑∆P (t;Q)

j=1 ”.

• Page 153ff, Eqs. (5.70)-(5.75): Replace all “
∑∞

k=1 ” by “
∑∞

k=0 ”.

• Page 155, line -2: Replace “σd(t)∆t,” by “σ2
d(t)∆t,”.

• Page 166, Exercise 5: In the first equation replace “σ2
d(t) + ν2(t)”

by “
(
σ2

d(t) + λ(t)ν2(t)
)

dt”

and in the second equation replace “Var[dX(s)/X(s)]ds”
by “Var[dX(s)/X(s)]”.

• Page 190, line -6: Delete ”dps”.

• Page 228, Eq. (8.35): Replace ”0.5|Fj,k+0.5|” by ”0.5|Fj,k+0.5|∆X”.

• Page 290, Eq. (10.8), line -13: Insert “S2(t)” before “∂2F ′′

∂S2 so

equation is

dV ∗(t) = N∗
F

(
dF − ∂F

∂S
dS

)
= N∗

F

(
∂F

∂t
+

1

2
σ2S2(t)

∂2F

∂S2

)
dt
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• Page 290, Eq. (10.11), line -3: Insert “s2” before “∂2F ′′

∂s2 , changing

all upper case S to lower case s, so equation is

∂F

∂t
(s, t) +

1

2
σ2s2∂2F

∂s2
(s, t) = r

(
F (s, t) − s

∂F

∂s
(s, t)

)
,

while replacing the preceding “independent stock variable S” by
“independent stock variable s”.

• Page 291, line 1 to 5: Replace all occurrences of the stochastic
variable “S” with the PDE variable “s”.

• Page 312, Eq. (10.101): Replace all 9 occurrences of the stochastic
variable “N(T )” with the variable “P (T )”.

• Page 313, Eq. (10.103), line 2 of eq.: Insert the missing argument

“Qk” of the sum “
∑P (T )

k=1 ” in the exponent inside the max function,
so the line of the equation is

≡ e−rT E
[
max

[
S0e

(r−λµJ−σ2
d/2)T+σdW (T )+

PP (T )
k=1 Qk − K, 0

]]

• Page 314, eq. unnumbered, line 14: Change the arguments of the

functions A and B from “S0e
bSk−λµJT ” to “Ŝk”, so the line of the

equation is

=
∞∑

k=0

pk(λT )E bSk

[
S0e

bSk−λµJ T A
(
Ŝk

)
− Ke−rTB

(
Ŝk

)]
,

• Page 322, Eq. (10.129) and surrounding text: The material should
read: “Here a modification Merton boundary condition correction
in his 1990 text [203,Chap. 6] is used,

v∗(t, 0+) = Uf(0
+)e−β(t,tf ) + U(0+)

∫ tf

t

e−β(t,s)ds, (10.129)

since the consumption must be zero when the wealth is zero at
t = τa, the time of absorption, and remains there, τa ≤ t ≤ tf ,
provided Uf (0

+) and U(0+) are bounded, otherwise asymptotic
conditions may be needed.”
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• Pages B37, replace the unnumbered equation

Cov[Xk, Xj] = Var[Xj]δk,j.

by “ the joint distribution is“

ΦXk ,Xj
(xk, xj) = ΦXk

(xk) · ΦXj
(xj).

Also, replace Equations (B.111) and (B.112),

E[s2
n] = σ2, (B.111)

E[ŝ2
n] =

n

n − 1
σ2, (B.112)

by

E[s2
n] =

n − 1

n
σ2, (B.111)

E[ŝ2
n] = σ2, (B.112)

• Page B69, Exercise 3, replace the unnumbered equation

Var[XY ] = X
2
Var[Y ] + 2XY Cov[X, Y ] + Y

2
Var[X] − Cov2[X, Y ]

+ 2XE[δX(δY )2] + 2XE[(δX)2δY ] + E[(δX)2(δY )2],

by

Var[XY ] = X
2
Var[Y ] + 2XY Cov[X, Y ] + Y

2
Var[X] − Cov2[X, Y ]

+ 2XE[δX(δY )2] + 2XE[(δX)2δY ] + E[(δX)2(δY )2],

• Page B70, Exercise 6, Jensen’s inequality, replace Equation (B.191)

E[f(X)] ≤ f(E[X]). (B.191)

by
E[f(X)] ≥ f(E[X]). (B.191)


