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Chapter 5

Stochastic Calculus for
General Markov SDEs:
Space-Time Poisson,
State-Dependent Noise
and Multidimensions

Not everything that counts can be counted,
and not everything that can be counted counts.

—Albert Einstein (1879–1955)

The only reason for time is so that everything doesn’t happen at once.
—Albert Einstein at

http://www.brainyquote.com/quotes/authors/a/albert einstein.html

Time is nature’s way of keeping everything from happening at once.
Space is what prevents everything from happening to me.

—attributed to John Archibald Wheeler at
http://en.wikiquote.org/wiki/Time

What about stochastic effects?
—Don Ludwig, University of British Columbia,

printed on his tee-shirt to save having to ask it at each seminar

We are born by accident into a purely random universe.
Our lives are determined by entirely fortuitous combinations

of genes. Whatever happens happens by chance. The
concepts of cause and effect are fallacies. There is only

seeming causes leading to apparent effects. Since nothing
truly follows from anything else, we swim each day through

seas of chaos, and nothing is predictable, not even the events
of the very next instant.

Do you believe that?

If you do, I pity you, because yours must be a bleak and
terrifying and comfortless life.

—Robert Silverberg in The Stochastic Man, 1975
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132 Chapter 5. Stochastic Calculus for General Markov SDEs

This chapter completes the generalization of Markov noise in continuous time
for this book, by including space-time Poisson noise, state-dependent SDEs and
multidimensional SDEs.

5.1 Space-Time Poisson Process
Space-time Poisson processes are also called general compound Poisson processes,
marked Poisson point processes and Poisson noise with randomly distributed jump-
amplitudes conditioned on a Poisson jump in time. The marked adjective refers to
marks which are the underlying stochastic process for the Poisson jump-amplitude
or the space component of the space-time Poisson process, whereas the jump-
amplitudes of the simple Poisson process are deterministic or fixed with unit mag-
nitude. The space-time Poisson process is a generalization of the Poisson process.
The space-time Poisson process formulation helps in understanding the mechanism
for applying it to more general jump applications and generalization of the chain
rules of stochastic calculus.

Properties 5.1.

• Space-time Poisson differential process: The basic space-time or mark-
time Poisson differential process denoted as

dΠ(t) =

∫

Q
h(t, q)P(dt,dq) (5.1)

on the Poisson mark space Q can be defined using the Poisson random
measure P(dt,dq), which is shorthand measure notation for the measure-set
equivalence P(dt,dq) = P((t, t + dt], (q, q + dq]). The jump-amplitude h(t, q)
is assumed to be continuous and bounded in its arguments.

• Poisson mark Q: The space Poisson mark Q is the underlying IID ran-
dom variable for the mark-dependent jump-amplitude coefficient denoted by
h(t, Q) = 1, i.e., the space part of the space-time Poisson process. The real-
ized variable Q = q is used in expectations or conditional expectations, as well
as in definition of the type (5.1).

• Time-integrated, space-time Poisson process:

Π(t) =

∫ t

0

∫

Q
h(t, q)P(dt,dq)dt. (5.2)

• Unit jumps: However, if the jumps have unit amplitudes, h(t, Q) ≡ 1, then
the space time process in (5.1) must be the same result as the simple differential
Poisson process dP (t; Q) modified with a mark parameter argument to allow
for generating mark realizations, and we must have the equivalence

∫

Q
P(dt,dq) ≡ dP (t; Q), (5.3)
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5.1. Space-Time Poisson Process 133

giving the jump number count on (t, t + dt]. Integrating both sides of (5.3) on
[0, t] gives the jump-count up to time t,

∫ t

0

∫

Q
P(dt,dq) =

∫ t

0
dP (s; Q) = P (t; Q). (5.4)

Further, in terms of Poisson random measure P(dt, {1}) on the fixed set
Q = {1}, purely the number of jumps in (t, t + dt] is obtained,

∫

Q
P(dt,dq) = P(dt, {1}) = P (dt) = dP (t; 1) ≡ dP (t)

and the marks are irrelevant.

• Purely time-dependent jumps: If h(t, Q) = h1(t), then

∫

Q
h1(t)P(dt,dq) ≡ h1(t)dP (t; Q). (5.5)

• Compound Poisson process form: An alternate form of the space-time
Poisson process (5.2) that many may find more comprehensible is the marked
generalization of the simple Poisson process P (t; Q), with IID random
mark generation, that is, the counting sum called the compound Poisson
process or marked point process,

Π(t) =

P (t;Q)∑

k=1

h(T−
k , Qk), (5.6)

where h(T−
k , Qk) is the kth jump-amplitude, T−

k is the prejump value of the
kth random jump-time, Qk is the corresponding random jump-amplitude mark
realization and for the special case that P (t; Q) is zero the following reverse-
sum convention is used,

0∑

k=1

h(T−
k , Qk) ≡ 0 (5.7)

for any h. The corresponding differential process has the expectation,

E[dP (t; Q)] = λ(t)dt,

although it is possible that the jump-rate is mark-dependent (see [223], for
example) so that

E[dP (t; Q)] = EQ[λ(t; Q)]dt.

However, it will be assumed here that the jump-rate is mark-independent to
avoid complexities with iterated expectations later.
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134 Chapter 5. Stochastic Calculus for General Markov SDEs

• Zero-one law compound Poisson differential process form: Given the
Poisson compound process form in (5.6), the corresponding zero-one jump
law for the compound Poisson differential process is

dΠ(t) = h(t, Q)dP (t; Q), (5.8)

such that the jump in Π(t) at t = Tk is given by

[Π](Tk) ≡ Π(T +
k ) − Π(T−

k ) = h(T−
k , Qk). (5.9)

For consistency with the Poisson random measure and compound Poisson pro-
cess forms, it is necessary that

∫ t

0
h(s, Q)dP (s; Q) =

∫ t

0

∫

Q
h(s, q)P(ds,dq) =

P (t;Q)∑

k=1

h(T−
k , Qk),

so ∫ t

0
dP (s; Q) =

∫ t

0

∫

Q
P(ds,dq) = P (t; Q)

and

dP (t; Q) =

∫

Q
P(dt,dq).

Note that the selection of the random marks depends on the existence of the
Poisson jumps and that the mechanism is embedded in dP (t; Q) in the formu-
lation of this book.

• In the Poisson random measure notation P(dt, dq), the arguments dt
and dq are semiclosed subintervals when these arguments are expanded,

P(dt,dq) = P((t, t + dt], (q, q + dq]).

These subintervals are closed on the left and open on the right due to the
definition of the increment, leaving no overlap between differential increments
and correspondings to the simple Poisson right continuity property that

∆P (t; Q) → P (t+; Q) − P (t; Q) as ∆t → 0+,

so we can write ∆P (t; Q) = P ((t, t + ∆t]; Q) and dP (t; Q) = P ((t, t + dt]; Q).
When tn = t and ti+1 = ti + ∆ti, the covering set of intervals is {[ti, ti +
∆ti) for i = 0 : n} plus t. If the marks Q are continuously distributed,
then closed subintervals can also be used in the q argument. For the one-
dimensional mark space Q, Q can be a finite interval such as Q = [a, b] or
an infinite interval such as Q = (−∞, +∞). Also, these subintervals are con-
venient in partitioning continuous intervals since they avoid overlap at the
nodes.
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5.1. Space-Time Poisson Process 135

• P has independent increments on nonoverlapping intervals in time t and
marks q, i.e., Pi,k = P((ti, ti + ∆ti], (qk, qk + ∆qk]) is independent of Pj,! =
P((tj , tj + ∆tj ], (q!, q! + ∆q!]), provided that the time interval (tj , tj + ∆tj ]
has no overlap with (ti, ti + ∆ti] and the mark interval (qk, qk + ∆qk] has no
overlap with (q!, q! + ∆q!]. Recall that ∆P (ti; Q) ≡ P (ti + ∆ti; Q) − P (ti; Q)
is associated with the time interval (ti, ti + ∆tj ], open on the left since the
process P (ti; Q) has been subtracted to form the increment.

• The expectation of P(dt, dq) is

E[P(dt,dq)] = ΦQ(dq)λ(t)dt
gen
= φQ(q)dqλ(t)dt, (5.10)

where, in detail,

ΦQ(dq) = ΦQ((q, q + dq]) = ΦQ(q + dq) − ΦQ(q)

= Prob[Q ≤ q + dq] − Prob[Q ≤ q] = Prob[q < Q ≤ q + dq]
gen
= φQ(q)dq

is the probability distribution measure of the Poisson amplitude mark in mea-
sure-theoretic notation corresponding to the mark distribution function ΦQ(q)
and where dq is shorthand for the arguments (q, q + dq], just as the dt in
P(dt,dq) is shorthand for (t, t + dt]. The corresponding mark density will
be equal to φQ(q) if Q is continuously distributed with continuously differen-
tiable distribution function and also if the mark density is equal to φQ(q) in

the generalized sense (symbol
gen
= ), for instance, if Q is discretely distributed.

Generalized densities will be assumed for almost all distributions encountered
in applications. It is also assumed that ΦQ is a proper distribution,

∫

Q
ΦQ(dq) =

∫

Q
φQ(q)dq = 1.

• Poisson random measure P(∆ti, ∆qj) is Poisson distributed, i.e.,

Prob[P(∆ti,∆qj) = k] = e−Pi,j
(
P i,j

)k
/k!, (5.11)

where

P i,j = E[P(∆ti,∆qj)] = ΦQ(∆qj)

∫

∆ti

λ(t)dt = ΦQ(∆qj)Λ(∆ti)

for sets ∆ti ≡ [ti, ti + ∆ti) in time and ∆qj ≡ [qj , qj + ∆qj) in marks.

Thus, as ∆ti and ∆qj approach 0+, they can be replaced by dt and dq, respec-
tively, so

Prob[P(dt,dq) = k] = e−P (P
)k

/k!, (5.12)

where
P = E[P(dt,dq)] = φQ(q)dqλ(t)dt,
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136 Chapter 5. Stochastic Calculus for General Markov SDEs

so by the zero-one jump law,

Prob[P(dt,dq) = k]
dt
=
zol

(1 − P)δk,0 + Pδk,1.

• The expectation of dP (t; Q) =
∫

Q
P(dt, dq) is

E

»Z

Q

P(dt,dq)

–
= λ(t)dt

Z

Q

φQ(q)dq = λ(t)dt = E[dP (t; Q)], (5.13)

corresponding to the earlier Poisson equivalence (5.3) and using the above
proper distribution property. Similarly,

E

[∫ t

0

∫

Q
P(ds,dq)

]
= E[P (t; Q)] =

∫ t

0
λ(s)ds = Λ(t).

• The variance of
∫

Q
P(dt, dq) ≡ dP (t; Q) is by definition

Var

[∫

Q
P(dt,dq)

]
= Var[dP (t; Q)] = λ(t)dt. (5.14)

Since

Var

[∫

Q
P(dt,dq)

]
=

∫

Q

∫

Q
Cov[P(dt,dq1),P(dt,dq2)],

then

Cov[P(dt, dq1),P(dt,dq2)]
gen
= λ(t)dtφQ(q1)δ(q1 − q2)dq1dq2, (5.15)

analogous to (1.48) for Cov[dP (s1), dP (s2)]. Similarly, since

Var

[∫ t+∆t

t

∫

Q
P(ds,dq)

]

= Var[∆P (t; Q)] = ∆Λ(t)

and

Var

»Z t+∆t

t

Z

Q

P(ds,dq)

–
=

Z t+∆t

t

Z t+∆t

t

Z

Q

Z

Q

Cov[P(ds1,dq1),P(ds2,dq2)],

then

Cov[P(ds1,dq1),P(ds2, dq2)]
gen
= λ(s1)δ(s2 − s1)ds1ds2

·φQ(q1)δ(q1 − q2)dq1dq2, (5.16)

embodying the independent increment properties in both time and mark argu-
ments of the space-time or mark-time Poisson process in differential form.



“bk0allfinal”
2007/8/10
page 137

!

!

!

!

!

!

!

!

5.1. Space-Time Poisson Process 137

• It is assumed that jump-amplitude function h has finite second order
moments, i.e.,

∫

Q
|h(t, q)|2φQ(q)dq < ∞ (5.17)

for all t ≥ 0 and, in particular,

∫ t

0

∫

Q
|h(s, q)|2φQ(q)dqλ(s)ds < ∞. (5.18)

• From Theorem 3.12 (p. 73) and (3.12), a generalization of the standard
compound Poisson process is obtained,

∫ t

0

∫

Q
h(s, q)P(ds,dq) =

P (t;Q)∑

k=1

h(T−
k , Qk), (5.19)

i.e., the jump-amplitude counting version of the space-time integral, where
Tk is the kth jump-time of a Poisson process P (t; Q) and provided comparable
assumptions are satisfied. This is also consistent for the infinitesimal counting
sum form in (5.6) and the convention (5.7) applies for (5.19). This form is
a special case of the filtered compound Poisson process considered in Snyder
and Miller [252, Chapter 5]. The form (5.19) is somewhat awkward due to
the presence of three random variables, P (t; Q), Tk and Qk, requiring multiple
iterated expectations.

• For a compound Poisson process with time-independent jump-ampli-
tude, h(t, q) = h2(q) (the simplest case being h(t, q) = q), i.e., we then have

Π2(t)=

∫ t

0

∫

Q
h2(q)P(ds,dq)=

∫

Q
h2(q)P([0, t),dq)=

P (t;Q)∑

k=1

h2(Qk), (5.20)

where the sum is zero when P (t; Q) = 0, the jump-amplitudes h2(Qk) form
a set of IID random variables independent of the jump-times of the Poisson
process P (t; Q); see [56] and Snyder and Miller [252, Chapter 4]. The mean
can be computed by double iterated expectations, since the jump-rate is mark-
independent,

E[Π2(t)] = EP (t;Q)




P (t;Q)∑

k=1

EQ[h2(Qk)|P (t; Q)]





= EP (t;Q) [P (t; Q)EQ[h2(Q)]] = EQ[h2(Q)]Λ(t),

where the IID property and more have been used, e.g., Λ(t) =
∫ t
0 λ(s)ds.
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138 Chapter 5. Stochastic Calculus for General Markov SDEs

Similarly, the variance is calculated, letting h2 ≡ EQ[h2(Q)],

Var[Π2(t)] = E

2

4

0

@
P (t;Q)X

k=1

h2(Qk) − h2Λ(t)

1

A
23

5

= E

2

4

0

@
P (t;Q)X

k=1

`
h2(Qk) − h2

´
+ h2(P (t; Q) − Λ(t))

1

A
23

5

= EP (t;Q)

2

4
P (t;Q)X

k1=1

P (t;Q)X

k2=1

EQ

ˆ`
h2(Qk1) − h2

´ `
h2(Qk2) − h2

´˜

+ 2h2(P (t;Q) − Λ(t))
P (t;Q)X

k=1

EQ

ˆ
h2(Qk) − h2

˜

+ h
2
2(P (t;Q) − Λ(t))2

#

= EP (t;Q)

h
P (t;Q)VarQ[h2(Q)] + 2h2(P (t;Q)

−Λ(t))P (t;Q) · 0 + h
2
2(P (t; Q) − Λ(t))2

i

=
“
VarQ[h2(Q)] + h

2
2

”
Λ(t) = EQ

ˆ
h2

2(Q)
˜
Λ(t),

using the IID property, separation into mean-zero forms and the variance-
expectation identity (B.186).

• For compound Poisson process with both time- and mark-dependence,
h(t, q) and λ(t; q), we then have

Π(t) =

∫ t

0

∫

Q
h(s, q)P(ds,dq) =

P (t;Q)∑

k=1

h(T−
k , Qk); (5.21)

however, the iterated expectations technique is not very useful for the com-
pound Poisson form, due to the additional dependence introduced by the jump-
time Tk and the jump-rate λ(t; q), but the Poisson random measure form is
more flexible:

E[Π(t)] = E

[∫ t

0

∫

Q
h(s, q)P(ds,dq)

]
=

∫ t

0

∫

Q
λ(s, q)h(s, q)φQ(q)dq ds

=

∫ t

0
EQ[λ(s, Q)h(s, Q)]ds.

• Consider the generalization of mean square limits to include mark space
integrals. For ease of integration in mean square limits, let the mean-zero
Poisson random measure be denoted by

eP(dt,dq) ≡ P(dt,dq) − E[P(dt,dq)] = P(dt,dq) − φQ(q)dqλ(t)dt (5.22)
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5.1. Space-Time Poisson Process 139

and let the corresponding space-time integral be

Ĩ ≡
∫

Q
h(t, q)P̃(dt,dq). (5.23)

Let Tn = {ti|ti+1 = ti + ∆ti for i = 0 : n, t0 = 0, tn+1 = t, maxi[∆ti] → 0
as n → +∞} be a proper partition of [0, t). Let Qm = {∆Qj for j = 1 :
m|∪m

j=1 ∆Qj = Q} be a proper partition of the mark space Q, noting that it is
implicit that the subsets ∆Qj are disjoint. Let h(t, q) be a continuous function
in time and marks. Let the corresponding partially discrete approximation

Ĩm,n ≡
n∑

i=0

m∑

j=1

h(ti, q
∗
j )

∫

Qj

P̃([ti, ti + ∆T ), dqj) (5.24)

for some q∗j ∈ ∆Qj. Note that if Q is a finite interval [a, b], then Qj =
[qj , qj + ∆q] using even spacing with q1 = a, qm+1 = b and ∆q = (b − a)/m.

Then Ĩm,n converges in the mean square limit to Ĩ if

E[(Ĩ − Ĩm,n)2] → 0 (5.25)

as m and n → +∞.

For more advanced and abstract treatments of the Poisson random measure,
see Gihman and Skorohod [95, Part 2, Chapter 2], Snyder and Miller [252, Chapters
4 and 5], Cont and Tankov [60] and Øksendal and Sulem [223] or the applied to
abstract bridge Chapter 12.

Theorem 5.2. Basic Infinitesimal Moments of the Space-Time Poisson
Process.

E[dΠ(t)] = λ(t)dt

∫

Q
h(t, q)φQ(q)dq ≡ λ(t)dtEQ[h(t, Q)] ≡ λ(t)dth(t) (5.26)

and

Var[dΠ(t)] = λ(t)dt

∫

Q
h2(t, q)φQ(q)dq = λ(t)dtEQ[h2(t; Q)] ≡ λ(t)dth2(t). (5.27)

Proof. The jump-amplitude function h(t, Q) is independently distributed, through
the mark process Q, from the underlying Poisson counting process here, except that
this jump in space is conditional on the occurrence of the jump-time or -count of
the underlying Poisson process. However, the function h(t, q) is deterministic since
it depends on the realization q in the space-time Poisson definition, rather than the
random variable Q. The infinitesimal mean (5.26) is straightforward:

E[dΠ(t)] = E

[∫

Q
h(t, q)P(dt,dq)

]
=

∫

Q
h(t, q)E[P(dt,dq)]

= λ(t)dt

∫

Q
h(t, q)φQ(q)dq = λ(t)dtEQ[h(t, Q)] ≡ λ(t)dth(t);
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140 Chapter 5. Stochastic Calculus for General Markov SDEs

note that the expectation operator applied to the mark integral can be moved to
apply just to the Poisson random measure P(dt,dq).

However, the result for the variance in (5.27) is not so obvious, but the co-
variance formula for two Poisson random measures with differing mark variables
Cov[P(dt,dq1),P(dt,dq2)] in (5.15) will be made useful by converting it to the
mean-zero Poisson random measure P̃(dt,dq) in (5.22),

Var[dΠ(t)] = E

[(∫

Q
h(t, q)P(dt,dq) − h(t)λ(t)dt

)2
]

= E

[(∫

Q
(h(t, q)P(dt,dq) − h(t, q)φQ(q)λ(t)dt)

)2
]

= E

[(∫

Q
h(t, q)P̃(dt,dq)

)2
]

= E

[∫

Q
h(t, q1)

∫

Q
h(t, q2)P̃(dt,dq1)P̃(dt,dq1)

]

=

∫

Q
h(t, q1)

∫

Q
h(t, q2)Cov

[
P̃(dt,dq1), P̃(dt,dq1)

]

= λ(t)dt

∫

Q
h2(t, q1)φQ(q1)dq1 = λ(t)dtEQ

[
h2(t, Q)

]
≡ λ(t)dth2(t).

Examples 5.3.

• Uniformly distributed jump-amplitudes:
As an example of a continuous distribution, consider the uniform density for
the jump-amplitude mark Q given by

φQ(q) =
1

b − a
U(q; a, b), a < b, (5.28)

where U(q; a, b) = 1q∈[a,b] is the step or indicator function for the interval
[a, b], i.e., U(q; a, b) is one when a ≤ q ≤ b and zero otherwise. The first few
moments are

EQ[1] =
1

b − a

∫ b

a
dq = 1,

EQ[Q] =
1

b − a

∫ b

a
qdq =

b + a

2
,

VarQ[Q] =
1

b − a

∫ b

a

(
q − b + a

2

)2

dq =
(b − a)2

12
.

In the case of the log-uniform amplitude letting Q = ln(1+h(Q)) be the mark-
amplitude relationship using the log-transformation form from the linear SDE
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5.1. Space-Time Poisson Process 141

problem (4.76), we then then

h(Q) = eQ − 1

and the expected jump-amplitude is

EQ[h(Q)] =
1

b − a

∫ b

a
(eq − 1)dq =

eb − ea

b − a
− 1.

• Poisson distributed jump-amplitudes:
As an example of a discrete distribution of jump-amplitudes, consider

ΦQ(k) = pk(u) = e−u uk

k!

for k = 0 : ∞. Thus, the jump process is a Poisson–Poisson process or a
Poisson-mark Poisson process. The mean and variance are

EQ[Q] = u,

VarQ[Q] = u.

Remark 5.4. For the general discrete distribution,

ΦQ(k) = pk,
∞∑

k=0

pk = 1,

the comparable continuous form is

ΦQ(q)
gen
=

∞∑

k=0

HR(q − k)pk =

%q&∑

k=0

pk,

where HR(q) is again the right-continuous Heaviside step function and )q* is
the maximum integer not exceeding q. The corresponding generalized density
is

φQ(q)
gen
=

∞∑

k=0

δR(q − k)pk.

The reader should verify that this density yields the correct expectation and
variance forms.
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142 Chapter 5. Stochastic Calculus for General Markov SDEs

5.2 State-Dependent Generalization of
Jump-Diffusion SDEs

5.2.1 State-Dependent Generalization for Space-Time Poisson
Processes

The space-time Poisson process is generalized to include state-dependence with X(t)
in both the jump-amplitude and the Poisson measure, such that

dΠ(t; X(t), t) =

∫

Q
h(X(t), t, q)P(dt,dq; X(t), t) (5.29)

on the Poisson mark space Q with Poisson random measure P(dt,dq; X(t), t),
which helps to describe the space-time Poisson mechanism and related calculus.
The space-time state-dependent Poisson mark, Q = q, is again the underlying
random variable for the state-dependent and mark-dependent jump-amplitude co-
efficient h(x, t, q). The double time t arguments of dΠ, dP and P are not considered
redundant for applications, since the first time t or time set dt is the usual Pois-
son jump process implicit time dependence, while the second to the right of the
semicolon denotes explicit or parametric time dependence paired with explicit state
dependence that is known in advance and is appropriate for the application model.

Alternatively, the Poisson zero-one law form may be used, i.e.,

dΠ(t; X(t), t)
dt
=
zol

h(X(t), t, Q)dP (t; Q, X(t), t) (5.30)

with the jump of Π(t; X(t), t) being

[Π](Tk) = h(X(T−
k ), T−

k , Qk)

at jump-time Tk and jump-mark Qk. The multitude of random variables in this sum
means that expectations or other Poisson integrals will be very difficult to calculate
even by conditional expectation iterations.

Definition 5.5. The conditional expectation of P(dt,dq; X(t), t) is

E[P(dt,dq; X(t), t)|X(t) = x] = φQ(q; x, t)dqλ(t; x, t)dt, (5.31)

where φQ(q; x, t)dq is the probability density of the now state-dependent Poisson
amplitude mark and the jump rate λ(t; x, t) now has state-time dependence. In this
notation, the relationship to the simple counting process is given by

∫

Q
P(dt,dq; X(t), t) = dP (t; Q, X(t), t).

Hence, when h(x, t, q) = h̃(x, t), i.e., independent of the mark q, the space-time
Poisson is the simple jump process with mark-independent amplitude,

dΠ(t; X(t), t) = h̃(X(t), t)dP (t; Q, X(t), t),
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but with nonunit jumps in general. Effectively the same form is obtained when there
is a single discrete mark, e.g., φQ(q) = δ(q − 1), so h(x, t, q) = h(x, t, 1) always.

Theorem 5.6. Basic Conditional Infinitesimal Moments of the State-
Dependent Poisson Process.

E[dΠ(t; X(t), t)|X(t) = x] =

∫

Q
h(x, t, q)φQ(q; x, t)dqλ(t; x, t)dt

≡ EQ[h(x, t, Q)]λ(t; x, t)dt (5.32)

and

Var[dΠ(t; X(t), t)|X(t) = x] =

∫

Q
h2(x, t, q)φQ(q; x, t)dqλ(t; x, t)dt

≡ EQ[h2(x, t; Q)]λ(t; x, t)dt. (5.33)

Proof. The justification is the same justification as for (5.26)–(refVarSTPoisson).
It is assumed that the jump-amplitude h(x, t, Q) is independently distributed due
to Q from the underlying Poisson counting process here, except that this jump in
space is conditional on the occurrence of the jump-time of the underlying Poisson
process.

5.2.2 State-Dependent Jump-Diffusion SDEs

The general, scalar SDE takes the form

dX(t) = f(X(t), t)dt + g(X(t), t)dW (t) +

∫

Q
h(X(t), t, q)P(dt,dq; X(t), t)

dt
= f(X(t), t)dt + g(X(t), t)dW (t) + h(X(t), t, Q)dP (t; Q, X(t), t)

(5.34)

for the state process X(t) with a set of continuous coefficient functions {f, g, h}.
However, the SDE model is just a useful symbolic model for many applied situations,
but the more basic model relies on specifying the method of integration. So

X(t) = X(t0) +

∫ t

t0

(f(X(s), s)ds + g(X(s), s)dW (s)

+ h(X(t), s, Q)dP (s; Q, X(s), s))

ims
= X(t0) +

ms
lim

n→∞

[
n∑

i=0

(

fi∆ti + gi∆Wi +
Pi+∆Pi∑

k=Pi+1

hi,k

)]

,

(5.35)

where fi = f(Xi, ti), gi = g(Xi, ti), hi,k = h(Xi, Tk, Qk), ∆ti = ti+1 − ti, ∆Pi =
∆P (ti; Q, Xi, ti) and ∆Wi = ∆W (ti). Here, Tk is the kth jump-time and {Q, Qk}
are the corresponding random marks.
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The conditional infinitesimal moments for the state process are

E[dX(t)|X(t) = x] = f(x, t)dt + h(x, t)λ(t; x, t)dt, (5.36)

h(x, t)λ(t; x, t)dt ≡ EQ[h(x, t, Q)]λ(t; x, t)dt, (5.37)

and

Var[dX(t)|X(t) = x] = g2(x, t)dt + h2(x, t)λ(t; x, t)dt, (5.38)

h2(x, t)λ(t; x, t)dt ≡ EQ[h2(x, t, Q)]λ(t; x, t)dt (5.39)

using (1.1), (5.32), (5.33), (5.34) and assuming that the Poisson process is inde-
pendent of the Wiener process. The jump in the state at jump time Tk in the
underlying Poisson process is

[X ](Tk) ≡ X(T +
k ) − X(T−

k ) = h(X(T−
k ), T−

k , Qk) (5.40)

for k = 1, 2, . . . , now depending on the kth mark Qk at the prejump-time T−
k at

the kth jump.

Rule 5.7. Stochastic Chain Rule for State-Dependent SDEs.
The stochastic chain rule for a sufficiently differentiable function
Y (t) = F (X(t), t) has the form

dY (t) = dF (X(t), t)
sym
= F (X(t) + dX(t), t + dt) − F (X(t), t)

= d(cont)F (X(t), t) + d(jump)F (X(t), t)

dt
= Ft(X(t), t)dt + Fx(X(t), t)(f(X(t), t)dt + g(X(t), t)dW (t))

+
1

2
Fxx(X(t), t)g2(X(t), t)dt (5.41)

+

∫

Q
(F (X(t) + h(X(t), t, q), t) − F (X(t), t))P(dt,dq; X(t), t)

to precision-dt. It is sufficient that F be twice continuously differentiable in x and
once in t.

5.2.3 Linear State-Dependent SDEs

Let the state-dependent jump-diffusion process satisfy an SDE linear in the state
process X(t) with time-dependent rate coefficients

dX(t)
dt
= X(t) (µd(t)dt + σd(t)dW (t) + ν(t, Q)dP (t; Q)) (5.42)

for t > t0 with X(t0) = X0 and E[dP (t; Q)] = λ(t)dt, where µd(t) denotes the mean
and σ2

d(t) denotes the variance of the diffusion process, while Qk denotes the kth
mark and Tk denotes the kth time of the jump process.
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Again, using the log-transformation Y (t) = ln(X(t)) and the stochastic chain
rule (5.41),

dY (t)
dt
= (µd(t) − σ2

d(t)/2)dt + σd(t)dW (t) + ln (1 + ν(t, Q)) dP (t; Q) (5.43)

with immediate integralsvspace*-0.5em

Y (t) = ln(x0) +

∫ t

t0

dY (s) (5.44)

and
X(t) = x0 exp

(∫ t

t0

dY (s)

)
, (5.45)

or in recursive form,

X(t + ∆t) = X(t) exp

(∫ t+∆t

t
dY (s)

)

. (5.46)

Linear Mark-Jump-Diffusion Simulation Forms

For simulations, a small time-step, ∆ti + 1, approximation of the recursive form
(5.46) would be more useful with Xi = X(ti), µi = µd(ti), σi = σd(ti), ∆Wi =
∆W (ti), ∆Pi = ∆P (ti; Q) and the convenient jump-amplitude coefficient approxi-
maton, ν(t, Q) , ν0(Q) ≡ exp(Q) − 1, i.e.,

Xi+1 , Xi exp
(
(µi − σ2

i /2)∆ti + σi∆Wi

)
(1 + ν0(Q))∆Pi (5.47)

for i = 1 : N time-steps, where a zero-one jump law approximation has been used.
For the diffusion part, it has been shown that

E
[
eσi∆Wi

]
= eσ2

i ∆ti/2,

using the completing the square technique. In addition, there is the following lemma
for the jump part of (5.47).

Lemma 5.8. Jump Term Expectation.

E
[
(1 + ν0(Q))∆Pi

]
= eλi∆tiE[ν0(Q)], (5.48)

where E[∆Pi] = λi∆ti and ν0(Q) = exp(Q) − 1.

Proof. Using given forms, iterated expectations, the Poisson distribution and the
IID property of the marks Qk, we then have

E
[
(1 + ν0(Q))∆Pi

]
= E
[
eQ∆Pi

]

= e−λi∆ti
∞∑

k=0

(λi∆ti)
kEQ

[
ekQ
]

= e−λi∆ti
∞∑

k=0

(λi∆ti)
k
(
EQ

[
eQ
])k

= e−λi∆tieλi∆tiEQ

[
eQ
]

= eλi∆tiEQ[ν0(Q)].
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An immediate consequence of this result is the following corollary.

Corollary 5.9. Discrete State Expectations.

E[Xi+1|Xi] , Xi exp((µi + λiEQ[ν0(Q)])∆ti) (5.49)

and

E[Xi+1] , x0 exp




i∑

j=0

(µj + λjEQ[ν0(Q)])∆tj



 . (5.50)

Further, as ∆ti and δtn → 0+, the continuous form of the expectation follows
and is given later in Corollary 5.13 on p. 149 using other justification.

Example 5.10. Linear, Time-Independent, Constant-Rate Coefficient
Case.
In the linear, time-independent, constant-rate coefficient case with µd(t) = µ0,
σd(t) = σ0, λ(t) = λ0 and ν(t, Q) = ν0(Q) = eQ − 1,

X(t) = x0 exp



(µ0 − σ2
0/2)(t − t0)+ σ0(W (t) − W (t0))+

P (t;Q)−P (t0;Q)∑

k=1

ν0Qk



, (5.51)

where the Poisson counting sum form is now more manageable since the marks do
not depend on the prejump-times T−

k .
Using the independence of the three underlying stochastic processes, (W (t) −

W (t0)), (P (t; Q)−P (t0; Q)) and Qi, as well as the stationarity of the first two and
the law of exponents to separate exponents, leads to partial reduction of the expected
state process:

E[X(t)] = x0e
(µ0−σ2

0/2)(t−t0)EW

[
eσ0W (t−t0)

] ∞∑

k=0

E[P (t − t0; Q) = k]E
[
e

Pk
!=1 Q!

]

= x0e
(µ0−σ2

0/2)(t−t0)

∫ +∞

−∞

e−w2/(2(t−t0))

√
2π(t − t0)

eσ0wdw

·e−λ0(t−t0)
∞∑

k=0

(λ0(t − t0))k

k!

k∏

i=1

EQ

[
eQ
]

= x0e
µ0(t−t0)e−λ0(t−t0)

∞∑

k=0

(λ0(t − t0))k

k!
Ek

Q

[
eQ
]

= x0e(
µ0+λ0(EQ[eQ]−1))(t−t0), (5.52)

where λ0(t− t0) is the Poisson parameter and Q = (−∞, +∞) is taken as the mark
space for specificity with

EQ

[
eQ
]

=

∫

Q
eqφQ(q)dq.
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Little more useful simplification can be obtained analytically, except for infinite ex-
pansions or equivalent special functions, when the mark density φQ(q) is specified.
Numerical procedures may be more useful for practical purposes. The state expecta-
tion in this distributed mark case (5.52) should be compared with the pure constant
linear coefficient case (4.81) of Chapter 4.

Exponential Expectations

Sometimes it is necessary to get the expectation of an exponential of the integral of
a jump-diffusion process. The procedure is much more complicated for distributed
amplitude Poisson jump processes than for diffusions since the mark-time process
is a product process, i.e., the product of the mark process and the Poisson process.
For the time-independent coefficient case, as in a prior example, the exponential
processes are easily separable by the law of exponents. However, for the time-
dependent case, it is necessary to return to using the space-time process P and the
decomposition approximation used in the mean square limit. The h in the following
theorem might be the amplitude coefficient in (5.43) or h(s, q) = q = ln(1+ν(s, q)).

Theorem 5.11. Expectation for the Exponential of Space-Time Counting
Integrals.
Assuming finite second order moments for h(t, q) and convergence in the mean
square limit,

E

[
exp

(∫ t

t0

∫

Q
h(s, q)P(ds,dq)

)]
= exp

(∫ t

t0

∫

Q

(
eh(s,q) − 1

)
φQ(q, s)dqλ(s)ds

)

≡ exp

(∫ t

t0

(eh − 1)(s)λ(s)ds

)
. (5.53)

Proof. Let the proper partition of the mark space over disjoint subsets be

Qm = {∆Qj for j = 1:m| ∪m
j=1 ∆Qj = Q}.

Since Poisson measure is Poisson distributed,

ΦPj (k) = Prob[P(dt, ∆Qj) = k] = e−Pj
(Pj)k

k!

with Poisson parameter

Pj ≡ E[P(dt, ∆Qj)] = λ(t)dtΦQ(∆Qj , ti)

for each subset {∆Qj}.
Similarly, let the proper partition over the time interval be

Tn = {ti|ti+1 = ti + ∆ti for i = 0:n, t0 = 0, tn+1 = t, max
i

[∆ti] → 0 as n → +∞}.

The disjoint property over subsets and time intervals means P([ti, ti + ∆ti), ∆Qj)
and P([ti, ti + ∆ti), ∆Q′

j) will be pairwise independent provided j′ -= j for fixed
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i corresponding to property (5.15) for infinitesimals, while P([ti, ti + ∆ti), ∆Qj)
and P([ti, ti + ∆t′i), ∆Q′

j) will be pairwise independent provided i′ -= i and j′ -= j,
corresponding to property (5.16) for infinitesimals.

For brevity, let hi,j ≡ h(ti, q∗j ), where q∗j ∈ ∆Qj , Pi,j ≡ Pi([ti, ti +∆ti), ∆Qj)

and P i,j ≡ λi∆tiΦQ(∆Qj).
Using mean square limits, with Pi,j playing the dual roles of the two incre-

ments (∆ti, ∆Qj), the law of exponents and the independence denoted by
ind
=
inc

, we

have

E

[
exp

(∫ t

t0

∫

Q
hP
)]

ims
=

ms
lim

m,n→∞
E



exp




n∑

i=0

m∑

j=1

hi,jPi,j









ind
=
inc

ms
lim

m,n→∞
Πn

i=0Π
m
j=1E [exp (hi,jPi,j)]

=
ms
lim

m,n→∞
Πn

i=0Π
m
j=1 exp

(
−Pi,j

) ∞∑

ki,j=0

Pi,j
ki,j

ki,j !
exp (hi,jki,j)

=
ms
lim

m,n→∞
Πn

i=0Π
m
j=1 exp

(
Pi,j (exp(hi,j) − 1)

)

=
ms
lim

m,n→∞
exp




n∑

i=0

m∑

j=1

(exp(hi,j) − 1)λi∆tiΦQ(∆Qi, ti)





ims
= exp

(∫ t

t0

∫

Q
(exp(h(s, q)) − 1)φQ(q, s)dqλ(s)ds

)

≡ exp

(∫ t

t0

(exp(h(s, Q)) − 1)λ(s)ds

)
.

Thus, the main technique is to unassemble the mean square limit discrete approx-
imation to get at the independent random part, take its expectation and then
reassemble the mean square limit, justifying the interchange of expectation and
exponent-integration.

Remarks 5.12.

• Note that the mark space subset ∆Qj is never used directly as a discrete
element of integration, since the subset would be infinite if the mark space
were infinite. The mark space element is used only through the distribution
which would be bounded. This is quite unlike the time domain, where we can
select t to be finite. If the mark space were finite, say, Q = [a, b], then a
concrete partition of [a, b] similar to the time-partition can be used.

• Also note that the dependence on (X(t), t) was not used, but could be consid-
ered suppressed but absorbed into the existing t dependence of h and P.
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Corollary 5.13. Expectation of X(t) for Linear SDE.
Let X(t) be the solution (5.45) with ν(t) ≡ E[ν(t, Q)] of (5.42). Then

E[X(t)] = x0 exp

(∫ t

t0

(µd(s) + λ(s)ν(s)) ds

)

= x0 exp

(∫ t

t0

E[dX(s)/X(s)]ds

)
. (5.54)

Proof. The jump part, i.e., the main part, follows from exponential Theorem 5.11,
(5.53) and the lesser part for the diffusion is left as an exercise for the reader.

However, note that the exponent is the time integral of E[dX(t)/X(t)], the
relative conditional infinitesimal mean, which is independent of X(s) and is valid
only for the linear mark-jump-diffusion SDE.

Remark 5.14. The relationship in (5.54) is a quasi-deterministic equivalence
for linear mark-jump-diffusion SDEs and was shown by Hanson and Ryan [115]
in 1989. They also produced a nonlinear jump counterexample that has a formal
closed-form solution in terms of the gamma function, for which the result does not
hold and a very similar example is given in Exercise 9 in Chapter 4.

Moments of Log-Jump-Diffusion Process

For the log-jump-diffusion process dY (t) in (5.43), suppose that the jump-amplitude
is time-independent and that the mark variable was conveniently chosen as

Q = ln(1 + ν(t, Q))

so that the SDE has the form

dY (t)
dt
= µld(t)dt + σd(t)dW (t) + QdP (t; Q), (5.55)

or in the case of applications for which the time-step ∆t is an increment that is not
infinitesimal like dt, there is some probability of more than one jump,

∆Y (t) = µld(t)∆t + σd(t)∆W (t) +

P (t;Q)+∆P (t;Q)∑

k=P (t;Q)+1

Qk. (5.56)

The results for the infinitesimal case (5.55) are contained in the incremental case
(5.56).

The first few moments can be found in general for (5.56), and if up to the
fourth moment, then the skew and kurtosis coefficients can be calculated. These
calculations can be expedited by the following lemma, concerning sums of zero-mean
IID random variables.
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Lemma 5.15. Zero-Mean IID Random Variable Sums.
Let {Xi|i = 1 :n} be a set of zero-mean IID random variables, i.e., E[Xi] = 0. Let
M (m) ≡ E[Xm

i ] be the mth moment and

S(m)
n ≡

n∑

i=1

Xm
i

with S(1)
n = Sn the usual partial sum over the set and

E[S(m)
n ] = nM (m); (5.57)

then the expectation of powers of Sn for m = 1:4 is

E [(Sn)m] =






0, m = 1
nM (2), m = 2
nM (3), m = 3

nM (4) + 3n(n − 1)
(
M (2)

)2
, m = 4





. (5.58)

Proof. The proof is done first by the linear property of the expectation and the
IID properties of the Xi,

E
[
S(m)

n

]
=

n∑

i=1

E[Xm
i ] =

n∑

i=1

M (m) = nM (m). (5.59)

The m = 1 case is trivial due to the zero-mean property of the Xi’s and the
linearity of the expectation operator, E[Sn] =

∑n
i=1 E[Xi] = 0.

For m = 2, the induction hypothesis from (5.58) is

E
[
S2

n

]
≡ E

[(
n∑

i=1

X2
i

)]

= nM (2),

where the initial condition at n = 1 is E[S2
1 ] = E[X2

1 ] = M (2) by definition. The
hypothesis can be proved easily by partial sum recursion Sn+1 = Sn + Xn+1, ap-
plication of the binomial theorem, expectation linearity and the zero-mean IID
property:

E
[
S2

n+1

]
= E
[
(Sn + Xn+1)

2
]

= E
[
S2

n + 2Xn+1Sn + X2
n+1

]

= nM (2) + 2 · 0 · 0 + M (2) = (n + 1)M (2). (5.60)

QED for m = 2.
This is similar for the power m = 3, again beginning with the induction

hypothesis

E
[
S3

n

]
≡ E




(

n∑

i=1

Xi

)3


 = nM (3).
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where the initial condition at n = 1 is E[S3
1 ] = E[X3

1 ] = M (3) by definition. Using
the same techniques as in (5.60),

E
[
S3

n+1

]
= E
[
(Sn + Xn+1)

3
]

= E
[
S3

n + 3Xn+1S
2
n + 3X2

n+1S
2
n + X3

n+1

]

= nM (3) + 3 · 0 · nM (2) + 3 · M (2) · 0 + M (3) = (n + 1)M (3). (5.61)

QED for m = 3.
Finally, the case for the power m = 4 is a little different since an additional

nontrivial term arises from the product of the squares of two independent variables.
The induction hypothesis is

E
[
S4

n

]
≡ E




(

n∑

i=1

Xi

)4


 = nM (4) + 3n(n − 1)(M (2))2,

where the initial condition at n = 1 is E[S4
1 ] = E[X4

1 ] = M (4) by definition. Using
the same techniques as in (5.60),

E
[
S4

n+1

]
= E
[
(Sn + Xn+1)

4
]

= E
[
S4

n + 4Xn+1S
3
n + 6X2

n+1S
2
n + 4X3

n+1S
1
n + X4

n+1

]

= nM (4) + 3n(n − 1)(M (2))2 + 4 · 0 · nM (3) + 6 · M (2) · nM(2)

+4 · M (3) · 0 + M (4)

= (n + 1)M (4) + 3(n + 1)((n + 1) − 1)(M (2))2. (5.62)

QED for m = 4.

Remark 5.16. The results here depend on the IID and zero-mean properties, but
do not otherwise depend on the particular distribution of the random variables. The
results are used in the following theorem.

Theorem 5.17. Some Moments of the Log-jump-Diffusion (LJD) Process
∆Y (t).
Let ∆Y (t) satisfy the stochastic difference equation (5.56)and let the marks Qk

be IID with mean µj ≡ EQ[Qk] and variance σ2
j ≡ VarQ[Qk]. Then the first four

moments, m = 1:4, are

µljd(t) ≡ E[∆Y (t)] = (µld(t) + λ(t)µj)∆t; (5.63)

σljd(t) ≡ Var[∆Y (t)] =
(
σ2

d(t) +
(
σ2

j + µ2
j

)
λ(t)
)
∆t; (5.64)

M (3)
ljd (t) ≡ E

[
(∆Y (t) − E[∆Y (t)])3

]
=
(
M (3)

j + µj

(
3σ2

j + µ2
j

))
λ(t)∆t, (5.65)

where M (3)
j ≡ EQ[(Qi − µj)3];

M (4)
ljd (t) ≡ E

[
(∆Y (t) − E[∆Y (t)])4

]

=
(
M (4)

j + 4µjM
(3)
j + 6µ2

jσ
2
j + µ4

j

)
λ(t)∆t

+3
(
σ2

d(t) +
(
σ2

j + µ2
j

)
λ(t)
)2

(∆t)2, (5.66)
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where M (4)
j ≡ EQ[(Qi − µj)4].

Proof. One general technique for calculating moments of the log-jump-diffusion
process is iterated expectations. Thus

µljd(t) = E[∆Y (t)] = µld(t)∆t + σd(t) · 0 + E∆P (t;Q)



EQ




∆P (t;Q)∑

i=1

Qi

∣∣∣∣∣∣
∆P (t; Q)









= µld(t)∆t + E∆P (t;Q)




∆P (t;Q)∑

i=1

EQ[Qi]





= µld(t)∆t + E∆P (t;Q)[∆P (t; Q)EQ[Qi]] = (µld(t) + µjλ(t)) ∆t,

proving the first moment formula, using the increment jump-count.
For the higher moments, the main key technique for efficient calculation of the

moments is decomposing the log-jump-diffusion process deviation into zero-mean
deviation factors, i.e.,

∆Y (t) − µljd(t) = σd(t)∆W (t) +

∆P (t;Q)∑

i=1

(Qi − µj) + µj(∆P (t; Q) − λ(t)∆t).

In addition, the multiple applications of the binomial theorem and the convenient
increment power Table 1.1 for ∆W (t) and Table 1.2 for ∆P (t; Q) are used.

The incremental process variance is found by

σljd(t) ≡ Var[∆Y (t)]

= E

2

4

0

@σd(t)∆W (t) +
∆P (t;Q)X

i=1

(Qi − µj) + µj(∆P (t;Q) − λ(t)∆t)

1

A
23

5

= σ2
d(t)E∆W (t)[(∆W )2(t)]+2σd ·0

+ E

2

4

0

@
∆P (t;Q)X

i=1

(Qi−µj) + µj(∆P (t; Q)−λ(t)∆t)

1

A
23

5

= σ2
d(t)∆t + E∆P (t;Q)

2

4
∆P (t;Q)X

i=1

∆P (t;Q)X

k=1

EQ[(Qi − µj)(Qk − µj)]

+ 2µj(∆P (t;Q) − λ(t)∆t)
∆P (t;Q)X

i=1

EQ[(Qi − µj)] + µ2
j (∆P (t;Q) − λ(t)∆t)2

3

5

= σ2
d(t)∆t + E∆P (t;Q)

ˆ
∆P (t;Q)σ2

j + 0 + µ2
j (∆P (t;Q) − λ(t)∆t)2

˜

=
`
σ2

d(t) +
`
σ2

j + µ2
j

´
λ(t)

´
∆t.
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The case of the third central moment is similarly calculated,

M (3)
ljd (t) ≡ E

ˆ
(∆Y (t) − µljd(t))3

˜

= E

2

4

0

@σd(t)∆W (t) +
∆P (t;Q)X

i=1

(Qi − µj) + µj(∆P (t;Q) − λ(t)∆t)

1

A
33

5

= σ3
d(t)E∆W (t)

ˆ
(∆W )3(t)

˜

+ 3σ2
dE∆W (t)

ˆ
(∆W )2(t)

˜
E

2

4
∆P (t;Q)X

i=1

(Qi − µj) + µj(∆P (t; Q) − λ(t)∆t)

3

5

+ 3σd · 0 + E

2

4

0

@
∆P (t;Q)X

i=1

(Qi − µj) + µj(∆P (t;Q) − λ(t)∆t)

1

A
33

5

= σ3
d(t) · 0 + 3σ2

d(t)∆t · 0

+ E∆P (t;Q)

2

4
∆P (t;Q)X

i=1

∆P (t;Q)X

k=1

∆P (t;Q)X

!=1

EQ[(Qi − µj)(Qk − µj)(Q! − µj)]

+ 3µj(∆P (t;Q) − λ(t)∆t)
∆P (t;Q)X

i=1

∆P (t;Q)X

k=1

EQ[(Qi − µj)(Qk − µj)]

+ 3µ2
j (∆P (t;Q) − λ(t)∆t)2 · 0 + µ3

j (∆P (t;Q) − λ(t)∆t)3
#

= E∆P (t;Q)

h
∆P (t; Q)M (3)

j + 3µj(∆P (t;Q) − λ(t)∆t)∆P (t;Q)σ2
j

+ µ3
j (∆P (t;Q) − λ(t)∆t)3

˜

=
“
M (3)

j + µj

`
3σ2

j + µ2
j

´”
λ(t)∆t,

depending only on the jump component of the jump-diffusion.



“bk0allfinal”
2007/8/10
page 154

!

!

!

!

!

!

!

!

154 Chapter 5. Stochastic Calculus for General Markov SDEs

The case of the fourth central moment is similarly calculated,

M (4)
ljd (t) ≡ E

ˆ
(∆Y (t) − µljd(t))

4
˜

= E

2

4

0

@σd(t)∆W (t) +
∆P (t;Q)X

i=1

(Qi − µj) + µj(∆P (t; Q) − λ(t)∆t)

1

A
43

5

= σ4
d(t)E∆W (t)

ˆ
(∆W )4(t)

˜
+ 4σ3

d · 0 + 6σ2
dE∆W (t)

ˆ
(∆W )2(t)

˜

E

2

4

0

@
∆P (t;Q)X

i=1

(Qi − µj) + µj(∆P (t; Q) − λ(t)∆t)

1

A
23

5

+ 4σd · 0 + E

2

4

0

@
∆P (t;Q)X

i=1

(Qi − µj) + µj(∆P (t;Q) − λ(t)∆t)

1

A
43

5

= 3σ4
d(t)(∆t)2 + 6σ2

d(t)∆tE∆P (t;Q)

2

4
∆P (t;Q)X

i=1

∆P (t;Q)X

k=1

EQ[(Qi − µj)(Qk − µj)]

+ 2µj(∆P (t; Q) − λ(t)∆t) · 0 + µ2
j (∆P (t; Q) − λ(t)∆t)2

#

+ E∆P (t;Q)

2

4
∆P (t;Q)X

i=1

∆P (t;Q)X

k=1

∆P (t;Q)X

!=1

∆P (t;Q)X

m=1

EQ[(Qi − µj)(Qk − µj)(Q! − µj)(Qm − µj)]

+ 4µj(∆P (t; Q) − λ(t)∆t)
∆P (t;Q)X

i=1

∆P (t;Q)X

k=1

∆P (t;Q)X

!=1

EQ[(Qi − µj)(Qk − µj)(Q! − µj)]

+ 6µ2
j (∆P (t; Q) − λ(t)∆t)2

∆P (t;Q)X

i=1

∆P (t;Q)X

k=1

EQ[(Qi − µj)(Qk − µj)]

+ 4µ3
j (∆P (t; Q) − λ(t)∆t)3 · 0 + µ4

j (∆P (t;Q) − λ(t)∆t)4
#

= 3σ4
d(t)(∆t)2 + 6σ2

d(t)∆tE∆P (t;Q)

ˆ
∆P (t;Q)σ2

j + µ2
j (∆P (t;Q) − λ(t)∆t)2

˜

+ E∆P (t;Q)

h
∆P (t;Q)M (4)

j +3∆P (t; Q)(∆P (t;Q)−1)σ4
j

+ 4µj(∆P (t; Q)−λ(t)∆t)∆P (t;Q)M (3)
j

+ 6µ2
j (∆P (t; Q) − λ(t)∆t)2∆P (t; Q)σ2

j + µ4
j (∆P (t;Q) − λ(t)∆t)4

–

=
“
M (4)

j + 4µjM
(3)
j + 6µ2

jσ
2
j + µ4

j

”
λ(t)∆t + 3

`
σ2

d(t) +
`
σ2

j + µ2
j

´
λ(t)

´2
(∆t)2,

completing the proofs for moments m = 1:4.
Also, as used throughout, the expectations of odd powers of ∆W (t), the single

powers of (Qi −µj) and the single powers of (∆P (t; Q)−λ(t)∆t) were immediately
set to zero. In addition, the evaluation of the mark deviation sums of the form
E[
∑k

i=1(Qi − µj)m] for m = 1 : 4 is based upon general formulas of Lemma 5.15.
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Remarks 5.18.

• Recall that the third and fourth moments are measures of skewness and peaked-
ness (kurtosis), respectively. The normalized representations in the current
notation are the coefficient of skewness,

η3[∆Y (t)] ≡ M (3)
ljd (t)/σ3

ljd(t), (5.67)

from (B.11), and the coefficient of kurtosis,

η4[∆Y (t)] ≡ M (4)
ljd (t)/σ4

ljd(t), (5.68)

from (B.12).

• For example, if the marks are normally or uniformly distributed, then

M (3)
j = 0,

since the normal and uniform distributions are both symmetric about the mean,
so they lack skew and thus we have

η3[∆Y (t)] =
µj

(
3σ2

j + µ2
j

)
λ(t)∆t

σ3
ljd(t)

=
µj

(
3σ2

j + µ2
j

)
λ(t)

(
σ2

d(t) +
(
σ2

j + µ2
j

)
λ(t)
)3

(∆t)2
,

using σljd(t) given by (5.64). For the uniform distribution, the mean µj is
given explicitly in terms of the uniform interval [a, b] by (B.15) and the vari-
ance σ2

j by (B.16), while for the normal distribution, µj and σ2
j are the normal

model parameters. In general, the normal and unform distribution versions of
the log-jump-diffusion process will have skew, although the component incre-
mental diffusion and mark processes are skewless.

In the normal and uniform mark cases, the fourth moment of the jump marks
are

M (4)
j /σ4

j =

{
3, normal Qi

1.8, uniform Qi

}
,

which are in fact the coefficients of kurtosis for the normal and uniform dis-
tributions, respectively, so

η4[∆Y (t)] =

({
3, normal Qi

1.8, uniform Qi

}
σ4

j + 6µ2
jσ

2
j + µ4

j

)
λ(t)∆t/σ4

ljd(t)

+ 3
(
σ2

d(t) +
(
σ2

j + µ2
j

)
λ(t)
)2

(∆t)2/σ4
ljd(t).

• The moment formulas for the differential log-jump-diffusion process dY (t) fol-
low immediately from Theorem 5.17 by dropping terms O((∆t)2) and replacing
∆t by dt.
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Distribution of Increment Log-Process

Theorem 5.19. Distribution of the State Increment Logarithm Process
for Linear Mark-Jump-Diffusion SDE.
Let the logarithm-transform jump-amplitude be ln(1 + ν(t, q)) = q. Then the incre-
ment of the logarithm process Y (t) = ln(X(t)), assuming X(t0) = x0 > 0 and the
jump-count increment, approximately satisfies

∆Y (t) , µld(t)∆t + σd(t)∆W (t) +

∆P (t;Q)∑

j

Q̂j (5.69)

for sufficiently small ∆t, where µld(t) ≡ µd(t) − σ2
d(t)/2 is the log-diffusion drift,

σd > 0 and the Q̂j are pairwise IID jump marks for P (s; Q) for s ∈ (t, t + ∆t],
counting only jumps associated with ∆P (t; Q) given P (t; Q), with common density
φQ(q). The Q̂j are independent of both ∆P (t; Q) and ∆W (t).

Then the distribution of the log-process Y (t) is the Poisson sum of nested
convolutions

Φ∆Y (t)(x) ,
∞∑

k=1

pk(λ(t)∆t)
(
Φ∆G(t) (∗φQ)k

)
(x), (5.70)

where ∆G(t) ≡ µld(t)∆t + σd(t)∆W (t) is the infinitesimal Gaussian process and
(Φ∆G(t)(∗φQ)k)(x) denotes a convolution of one distribution with k identical densi-
ties φQ. The corresponding log-process density is

φ∆Y (t)(x) ,
∞∑

k=1

pk(λ(t)∆t)
(
φ∆G(t) (∗φQ)k

)
(x). (5.71)

Proof. By the law of total probability (B.92), the distribution of the log-jump-

diffusion ∆Y (t) , ∆G(t) +
∑∆P (t;Q)

j Q̂j is

Φ∆Y (t)(x) = Prob[∆Y (t) ≤ x] = Prob



∆G(t) +

∆P (t;Q)∑

j=1

Q̂j ≤ x





=
∞∑

k=0

Prob



∆G(t) +

∆P (t;Q)∑

j=1

Q̂j ≤ x|∆P (t; Q) = k



Prob[∆P (t; Q) = k]

=
∞∑

k=0

pk(λ(t)∆t)Φ(k)(x), (5.72)

where pk(λ(t)∆t) is the Poisson distribution with parameter λ(t)∆t and

Φ(k)(x) ≡ Prob



∆G(t) +
k∑

j=1

Q̂j ≤ x



 .
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For each discrete condition ∆P (t; Q) = k, ∆Y (t) is the sum of k + 1 terms,
the normally distributed Gaussian diffusion part ∆G(t) = µld(t)∆t + σd(t)∆W (t)

and the Poisson counting sum
∑k

j=1 Q̂j , where the marks Q̂j are assumed to be IID
but otherwise distributed with density φQ(q), while independent of the diffusion
and the Poisson counting differential process ∆P (t; Q). Using the fact that ∆W (t)
is normally distributed with zero-mean and ∆t-variance,

Φ∆G(t)(x) = Prob[∆G(t) ≤ x] = Prob[µld(t)∆t + σd(t)∆W (t) ≤ x]

= Prob[∆W (t) ≤ (x − µld(t)∆t)/σd(t)] = Φ∆W (t)((x − µld(t)∆t)/σd(t))

= Φn((x − µld(t)∆t)/σd(t); 0, ∆t) = Φn(x; µld(t)∆t, σ2
d(t)∆t),

provided σd(t) > 0, while also using identities for normal distributions, where
Φn(x; µ, σ2) denotes the normal distribution with mean µ and variance σ2.

Since Φ(k) is the distribution for the sum of k+1 independent random variables,
with one normally distributed random variable and k IID jump marks Q̂j for each
k, Φ(k) will be the nested convolutions as given in (B.100). Upon expanding in
convolutions starting from the distribution for the random variable ∆G(t) and the
kth Poisson counting sum

Jk ≡
k∑

j=1

Q̂j,

we get

Φ(k)(x) =
(
Φ∆G(t) ∗ φJk

)
(x) =

(

Φ∆G(t)

k∏

i=1

(∗φQi)

)

(x) =
(
Φ∆G(t) (∗φQ)k

)
(x),

using the identically distributed property of the Qi’s and the compact convolution
operator notation
(

Φ∆G(t)

k∏

i=1

(∗φQi)

)

(x) = ((· · · ((Φ∆G(t) ∗ φQ1) ∗ φQ2) · · · ∗ φQk−1) ∗ φQk
)(x),

which collapses to the operator power form for IID marks since
∏k

i=1 c = ck for
some constant c. Substituting the distribution into the law of total probability
form (5.72), the desired result is (5.70), which when differentiated with respect to
x yields the kth density φ∆Y (t)(x) in (5.71).

Remark 5.20. Several specialized variations of this theorem are found in Hanson
and Westman [124, 126], but corrections to these papers are made here.

Corollary 5.21. Density of Linear Jump-Diffusion with Log-Normally
Distributed Jump-Amplitudes.
Let X(t) be a linear jump-diffusion satisfying SDE (5.69) and let the jump-amplitude
mark Q be normally distributed such that

φQ(x; t) = φn(x; µj(t), σ
2
j (t)) (5.73)
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with jump mean µj(t) = E[Q] and jump variance σ2
j (t) = Var[Q]. Then the jump-

diffusion density of the log-process Y (t) is

φ∆Y (t)(x) =
∞∑

k=1

pk(λ(t)∆t)φn(x; µld(t)∆t + kµj(t), σ
2
d(t)∆t + kσ2

j (t)). (5.74)

Proof. By (B.101) the convolution of two normal densities is a normal distribution
with a mean that is the sum of the means and a variance that is the sum of the
variances. Similarly, by the induction exercise result in (B.196), the pairwise convo-
lution of one normally distributed diffusion process ∆G(t) = µld(t)∆t+σd(t)∆W (t)
density and k random mark Qi densities φQ for i = 1 : k will be a normal density
whose mean is the sum of the k + 1 means and whose variance is the sum of the
k + 1 variances. Thus starting with the result (5.72) and then applying (B.196),

φ∆Y (t)(x) =
∞∑

k=1

pk(λ(t)∆t)
(
φ∆G(t) (∗φQ)k

)
(x)

=
∞∑

k=1

pk(λ(t)∆t)φn

(

x; µld(t)∆t +
k∑

i=1

µj(t), σ
2
d(t)∆t +

k∑

i=1

σ2
j (t)

)

=
∞∑

k=1

pk(λ(t)∆t)φn(x; µld(t)∆t + kµj(t), σ
2
d(t)∆t + kσ2

j (t)).

Remark 5.22. The normal jump-amplitude jump-diffusion distribution has been
used in financial applications, initially by Merton [202] and then by others such as
Düvelmeyer [76], Andersen et al. [6] and Hanson and Westman [124].

Corollary 5.23. Density of Linear Jump-Diffusion with Log-Uniformly
Distributed Jump-Amplitudes.
Let X(t) be a linear jump-diffusion satisfying SDE (5.69), and let the jump-amplitude
mark Q be uniformly distributed as in (5.28), i.e.,

φQ(q) =
1

b − a
U(q; a, b),

where U(q; a, b) is the unit step function on [a, b] with a < b. The jump-mean is
µj(t) = (b + a)/2 and jump-variance is σ2

j (t) = (b − a)2/12.
Then the jump-diffusion density of the increment log-process ∆Y (t) satisfies

the general convolution form (5.71), i.e.,

φ∆Y (t)(x) =
∞∑

k=1

pk(λ(t)∆t)
(
φ∆G(t) (∗φQ)k

)
(x) =

∞∑

k=1

pk(λ(t)∆t)φ(k)
ujd(x), (5.75)

where pk(λ(t)∆t) is the Poisson distribution with parameter λ(t). The ∆G(t) =
µld(t)∆t + σd(t)∆W (t) is the diffusion term and Q is the uniformly distributed
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jump-amplitude mark. The first few coefficients of pk(λ(t)∆t) for the uniform jump-
distribution (ujd) are

φ(0)
ujd(x) = φ∆G(t)(x) = φn(x; µld(t)∆t, σ2

d(t)∆t), (5.76)

where φn(x; µld(t)∆t, σ2
d(t)∆t) denotes the normal density with mean µld(t) and

variance σd(t)∆t,

φ(1)
ujd(x) =

(
φ∆G(t) ∗ φQ

)
(x) = φsn(x − b, x − a; µld(t)∆t, σ2

d(t)∆t), (5.77)

where φsn is the secant-normal density

φsn(x1, x2; µ, σ2) ≡ 1

(x2 − x1)
Φn(x1, x2; µ, σ2) (5.78)

≡ Φn(x2; µ, σ2) − Φn(x1; µ, σ2)

x2 − x1

with normal distribution Φn(x1, x2; µ, σ2) such that

Φn(xi; µ, σ2) ≡ Φn(−∞, xi; µ, σ2)

for i = 1 : 2, and

φ(2)
ujd(x) =

(
φ∆G(t)(∗φQ)2

)
(x) (5.79)

=
2b − x + µld(t)∆t

b − a
φsn(x − 2b, x − a − b; µld(t)∆t, σ2(t)∆t)

+
x − 2a − µld(t)∆t

b − a
φsn(x − a − b, x − 2a; µld(t)∆t, σ2

d(t)∆t)

+
σ2

d(t)∆t

(b − a)2
(
φn(x − 2b; µld(t)∆t, σ2

d(t)∆t)

− 2φn(x − a − b; µld(t)∆t, σ2
d(t)∆t) + φn(x − 2a; µld(t)∆t, σ2

d(t)∆t)
)
.

Proof. First the finite range of the jump-amplitude uniform density is used to
truncate the convolution integrals for each k using existing results for the mark

convolutions, such as φ(2)
uq (x) = (φQ ∗ φQ)(x) = φQ1+Q2(x) for IID marks when

k = 2.
The case for k = 0 is trivial since it is given in the theorem equations (5.76).
For a k = 1 jump,

φ(1)
ujd(x) = (φ∆G(t) ∗ φQ)(x) =

∫ +∞

−∞
φ∆G(t)(x − y)φQ(y)dy

=
1

b − a

∫ b

a
φn(x − y; µld(t)∆t, σ2

d(t)∆t)dy

=
1

b − a

∫ x−a

x−b
φn(z; µld(t)∆t, σ2

d(t)∆t)dz

=
1

b − a
Φn(x − b, x − a; µld(t)∆t, σ2

d(t)∆t)

= φsn(x − b, x − a; µld(t)∆t, σ2
d(t)∆t),
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160 Chapter 5. Stochastic Calculus for General Markov SDEs

where −∞ < x < +∞, upon change of variables and use of identities.
For k = 2 jumps, the triangular distribution exercise result (B.197) is

φ(2)
uq (x) = (φQ ∗ φQ)(x) =

1

(b − a)2






x − 2a, 2a ≤ x < a + b
2b − x, a + b ≤ x ≤ 2b
0, otherwise





. (5.80)

Hence,

φ(2)
ujd(x) = (φ∆G(t) ∗ (φQ ∗ φQ))(x) =

∫ +∞

−∞
φ∆G(t)(x − y)(φQ ∗ φQ)(y)dy

=
1

(b − a)2

(∫ a+b

2a
(y − 2a)φ∆G(t)(x − y)dy +

∫ 2b

a+b
(2b − y)φ∆G(t)(x − y)dy

)

=
1

(b − a)2

(∫ x−2a

x−a−b
(x − z − 2a)φ∆G(t)(z)dz

+

∫ x−a−b

x−2b
(2b − x + z)φ∆G(t)(z)dz

)

=
2b − x + µld(t)∆t

b − a
φsn(x − 2b, x − a − b; µld(t)∆t, σ2

d(t)∆t)

+
x − 2a − µld(t)∆t

b − a
φsn(x − a − b, x − 2a; µld(t)∆t, σ2

d(t)∆t)

+
σ2

d(t)∆t

(b − a)2
(
φn(x − 2b; µld(t)∆t, σ2

d(t)∆t)

− 2φn(x − a − b; µld(t)∆t, σ2
d(t)∆t) + φn(x − 2a; µld(t)∆t, σ2

d(t)∆t)
)
,

where the exact integral for the normal density has been used .

Remarks 5.24.

• This density form φsn in (5.78) is called a secant-normal density since the
numerator is an increment of the normal distribution and the denominator is
the corresponding increment in its state arguments, i.e., a secant approxima-
tion, which here has the form ∆Φn/∆x.

• The uniform jump-amplitude jump-diffusion distribution has been used in fi-
nancial applications, initially by the authors in [126] as a simple, but appro-
priate, representation of a jump component of market distributions, and some
errors have been corrected here.

Example 5.25. Linear SDE Simulator for Log-Uniformly Distributed
Jump-Amplitudes.
The linear SDE jump-diffusion simulator MATLAB code C.14 in Online Appendix C
can be converted from the simple discrete jump process to the distributed jump pro-
cess here. The primary change is the generation of another set of random numbers
for the mark process Q, e.g.,

Q = a + (b − a) ∗ rand(1, n + 1)
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for a set of n + 1 uniformly distributed marks on (a, b) so that the jump-amplitudes
of X(t) are log-uniformly distributed.

An example is demonstrated in Figure 5.1 for uniformly distributed marks Q
on (a, b) = (−2, +1) and time-dependent coefficients {µd(t), σd(t), λ(t)}. The MAT-
LAB linear mark-jump-diffusion code C.15, called linmarkjumpdiff06fig1.m in
Online Appendix C, is a modification of the linear jump-diffusion SDE simula-
tor code C.14 illustrated in Figure 4.3 for constant coefficients and discrete mark-
independent jumps. The state exponent Y (t) is simulated as

Y S(i + 1) = Y S(i) + (µd(i) − σ2
d(i)/2) ∗ ∆t + σd(i) ∗ DW (i) + Q(i) ∗ DP (i)

with t(i + 1) = t0 + i ∗ ∆t for i = 0 : n with n = 1, 000, t0 = 0, 0 ≤ t(i) ≤ 2.
The incremental Poisson jump term ∆P (i) = P (ti + ∆t) − P (ti) is simulated by a
uniform random number generator on (0, 1) using the acceptance-rejection technique
[230, 97] to implement the zero-one jump law to obtain the probability of λ(i)∆t that
a jump is accepted there. The same random state is used to obtain the simulations
of uniformly distributed Q on (a, b) conditional on a jump event.

0 0.5 1 1.5 2
0

0.5
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1.5
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Linear Mark!Jump!Diffusion Simulations
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X(t), State 1

X(t), State 5

X(t), State 9

X(t), State 10

XM(t), th. Mean=E[X(t)]

XSM(t), Sample Mean

Figure 5.1. Four linear mark-jump-diffusion sample paths for time-
dependent coefficients are simulated using MATLAB [210] with N = 1, 000 time-
steps, maximum time T = 2.0 and four randn and four rand states. Initially,
x0 = 1.0. Parameter values are given in vectorized functions using vector functions
and dot-element operations, µd(t) = 0.1 ∗ sin(t), σd(t) = 1.5 ∗ exp(−0.01 ∗ t) and
λ = 3.0 ∗ exp(−t. ∗ t). The marks are uniformly distributed on [−2.0, +1.0]. In
addition to the four simulated states, the expected state E[X(t)] is presented us-
ing the quasi-deterministic equivalence (5.54) of Hanson and Ryan [115], but also
presented are the sample mean of the four sample paths.
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5.3 Multidimensional Markov SDE
The general, multidimensional Markov SDE is presented here, along with the cor-
responding chain rule, establishing proper matrix-vector notation, or extensions
where the standard linear algebra is inadequate, for what follows. In the case of the
vector1 state process X(t) = [Xi(t)]nx×1 on some nx-dimensional state space Dx,
the multidimensional SDE can be of the form

dX(t)
sym
= f(X(t), t)dt + g(X(t), t)dW(t) + h(X(t), t,Q)dP(t; Q,X(t), t), (5.81)

where also
∫

Q
h(X(t), t,q)P(dt,dq;X(t), t)

dt
=
zol

h(X(t), t,Q)dP(t; Q,X(t), t) (5.82)

is the notation for the space-time Poisson terms, W(t) = [Wi(t)]nw×1 is an nw-
dimensional vector Wiener process, P(t; Q,X(t), t) = [Pi(t;X(t), t)]np×1 is an np-
dimensional vector state-dependent Poisson process, the coefficient f has the same
dimension as X, and the coefficients in the set {g, h} have dimensions commensurate
in multiplication with the set of vectors {W,P}, respectively. Here, P = [Pi]np×1

is a vector form of the Poisson random measure with mark random vector Q =
[Qi]np×1 and dq = [(qi, qi + dqi]]np×1 is the symbolic vector version of the mark
measure notation. The dP(t;X(t), t) jump-amplitude coefficient has the component
form

h(X(t), t;Q) = [hi,j(X(t), t; Qj)]nx×np ,

such that the jth Poisson component depends on only the jth mark Qj since simul-
taneous jumps are unlikely.

In component and jump counter form, the SDE is

dXi(t)
dt
= fi(X(t), t)dt +

nw∑

j=1

gi,j(X(t), t)dWj(t)

+

np∑

j=1

hi,j(X(t), t,Q)dPj(t; Q,X(t), t) (5.83)

for i = 1 : nx state components. The jump of the ith state due to the jth Poisson
process

[Xi](Tj,k) = hi,j(X(T−
j,k), T−

j,k, Qj,k),

where T−
j,k is the prejump-time and its k realization with jump-amplitude mark

Qj,k. The diffusion noise components have zero-mean,

E[dWi(t)] = 0 (5.84)

1Boldface variables or processes denote column vector variables or processes, respectively. The
subscript i usually denotes a row index in this notation, while j denotes a column index. For
example, X(t) = [Xi(t)]nx×1 denotes that Xi is the ith component for i = 1 : nx of the single-
column vector X(t).
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5.3. Multidimensional Markov SDE 163

for i = 1:nw, while correlations are allowed between components,

Cov[dWi(t), dWj(t)] = ρi,jdt = [δi,j + ρi,j(1 − δi,j)]dt, (5.85)

for i, j = 1:nx, where ρi,j is the correlation coefficient between i and j components.
The jump-noise components, conditioned on X(t) = x, are Poisson distributed

with P mean assumed to be of the form

E[Pj(dt,dqj ;X(t), t)|X(t) = x] = φ(j)
Qj

(qj ;x, t)dqjλj(t;x, t)dt, (5.86)

for each jump component j = 1:np with jth density φ(j)
Q (qj ;x, t) depending only on

qj assuming independence of the marks for different Poisson components but IID
for the same component, so that the Poisson mark integral is

E[dPj(t; Q,X(t), t)|X(t) = x] = E

[∫

Qj

Pj(dt,dqj;x(t), t)

]

=

∫

Qj

E
[
Pj(dt,dqj ;x(t), t)

]

=

∫

Qj

φ(j)
Q (qj ;x, t)dqiλj(t;x, t)dt

= λj(t;x, t)dt (5.87)

for i = 1 : np, while the components are assumed to be uncorrelated, with condi-
tioning X(t) = x preassumed for brevity,

Cov[Pj(dt,dqj ;x, t)Pk(dt,dqk;x, t)] = φ(j)
Q (qj ;x, t)δ(qk − qj)dqkdqjλj(t;x, t)dt,

(5.88)

generalizing the scalar form (5.15) to vector form, and

Cov[dPj(t; Qj,x, t), dPk(t; Qk,x, t)] =

∫

Qj

∫

Qk

Cov[Pj(dt,dqj ;x, t)Pk(dt,dqk;x, t)]

= λj(t;x, t)dt δj,k (5.89)

for j, k = 1 :np, there being enough complexity for most applications. In addition,
it is assumed that, as vectors, the diffusion noise dW, Poisson noise dP and mark
random variable Q are pairwise independent, but the mark random variable depends
on the existence of a jump.

This Poisson formulation is somewhat different from others, such as [95, Part
2, Chapter 2]. The linear combination form has been found to be convenient for
both jumps and diffusion when there are several sources of noise in the application.

5.3.1 Conditional Infinitesimal Moments in Multidimensions

The conditional infinitesimal moments for the vector state process X(t) are more
easily calculated by component first, using the noise infinitesimal moments (5.84)–
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(5.89). The conditional infinitesimal mean is

E[dXi(t)|X(t) = x] = fi(x, t)dt +
nw∑

j=1

gi,j(x, t)E[dWj(t)]

+

np∑

j=1

∫

Qj

hi,j(x, t, qj)E[Pj(dt,dqj ;x, t)]

= fi(x, t)dt +

np∑

j=1

∫

Qj

hi,j(x, t, qj)φ
(j)
Q (qj ;x, t)dqjλj(t;x, t)dt

=



fi(x, t) +

np∑

j=1

hi,j(x, t)λj(t;x, t)



 dt, (5.90)

where hi,j(x, t) ≡ EQ[hi,j(x, t, Qj)]. Thus, in vector form

E[dX(t)|X(t) = x] =
[
f(x, t)dt + h(x, t)λ(t;x, t)

]
dt, (5.91)

where λ(t;x, t) = [λi(t;x, t)]np×1.
For the conditional infinitesimal covariance, again with preassuming condi-

tioning on X(t) = x for brevity,

Cov[dXi(t), dXj(t)] =
nw∑

k=1

nw∑

!=1

gi,k(x, t)gj,!(x, t)Cov[dWk(t), dW!(t)]

+

np∑

k=1

np∑

!=1

∫

Qk

∫

Q!

hi,k(x, t; qk)hj,!(x, t; q!)

Cov[Pk(dt,dqk;x, t),P!(dt,dq!;x, t)]

=
nw∑

k=1

(

gi,k(x, t)gj,k(x, t) +
∑

! *=k

ρk,!gi,k(x, t)gj,!(x, t)



 dt

+

np∑

k=1

(hi,khj,k)(x, t)φ(k)
Q (qk;x, t)λk(t;x, t)dt

=
nw∑

k=1

(

gi,k(x, t)gj,k(x, t) +
∑

! *=k

ρk,!gi,k(x, t)gj,!(x, t)



 dt

+

np∑

k=1

(hi,khj,k)(x, t)λk(t;x, t)dt (5.92)

for i = 1 : nx and j = 1 : nx in precision-dt, where the infinitesimal jump-diffusion
covariance formulas (5.85) and (5.88) have been used. Hence, the matrix-vector
form of this covariance is

Cov[dX(t), dX+(t)|X(t) = x]
dt
=
[
g(x, t)R′g+(x, t) + hΛh+(x, t)

]
dt, (5.93)
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where

R′ ≡ [ρi,j ]nw×nw
= [δi,j + ρi,j(1 − δi,j)]nw×nw

, (5.94)

Λ = Λ(t;x, t) = [λi(t;x, t)δi,j ]np×np
. (5.95)

The jump in the ith component of the state at jump-time Tj,k in the underlying
jth component of the vector Poisson process is

[Xi](Tj,k) ≡ Xi(T
+
j,k) − Xi(T

−
j,k) = hi,j(X(T−

j,k), T−
j,k; Qj,k) (5.96)

for k = 1 : ∞ jumps and i = 1 : nx state components, now depending on the jth
mark’s kth realization Qj,k at the prejump-time T−

j,k at the kth jump of the jth
component Poisson process.

5.3.2 Stochastic Chain Rule in Multidimensions

The stochastic chain rule for a scalar function Y(t) = F(X(t), t), twice continuously
differentiable in x and once in t, comes from the expansion

dY(t) = dF(X(t), t) = F(X(t) + dX(t), t + dt) − F(X(t), t) (5.97)

= Ft(X(t), t) +
nx∑

i=1

∂F

∂xi
(X(t), t)

(

fi(X(t), t)dt +
nw∑

k=1

gi,k(X(t), t)dWk(t)

)

+
1

2

nx∑

i=1

nx∑

j=1

nw∑

k=1

nw∑

!=1

(
∂2F

∂xi∂xj
gi,kgj,!

)
(X(t), t)dWk(t)dW!(t)

+

np∑

j=1

∫

Q

(
F
(
X(t) + ĥj(X(t), t, qj), t

)
− F(X(t), t)

)

·Pj(dt,dqj ;X(t), t),

dt
=
(
Ft(X(t), t) + f+(X(t), t)∇x[F](X(t), t)

)
dt

+
1

2

nx∑

i=1

nx∑

j=1

∂2F

∂xi∂xj

nw∑

k=1



gi,kgj,k +
nw∑

! *=k

ρk,!gi,kgj,!



 (X(t), t)dt

+

np∑

j=1

∫

Qj

∆j [F]Pj

=

[
Ft + f+∇x[F] +

1

2

(
gR′g+

)
: ∇x

[
∇+

x [F]
]]

(X(t), t)dt

+

∫

Q
∆+[F]P

to precision-dt. Here, the

∇x[F] ≡
[

∂F

∂xi
(x, t)

]

nx×1
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is the state space gradient (a column nx-vector),

∇+
x [F] ≡

[
∂F

∂xj
(x, t)

]

1×nx

is the transpose of the state space gradient (a row nx-vector),

∇x

[
∇+

x [F]
]
≡
[

∂2F

∂xi∂xj
(x, t)

]

nx×nx

is the Hessian matrix for F, R′ is a correlation matrix defined in (5.94),

A : B ≡
n∑

i=1

n∑

j=1

Ai,jBi,j = Trace[AB+] (5.98)

is the double-dot product of two n × n matrices, related to the trace,

ĥj(x, t, qj) ≡ [hi,j(x, t, qj)]nx×1 (5.99)

is the jth jump-amplitude vector corresponding to the jth Poisson process,

∆+[F] = [∆j [F](X(t), t, qj)]1×np

≡
[
F(X(t) + ĥj(X(t), t, qj), t) − F(X(t), t)

]

1×np

(5.100)

is the general jump-amplitude change vector for any t and

P = [Pi(dt,dqi;X(t), t)]np×1

is the Poisson random measure vector condition. The corresponding jump in Y(t)
due to the jth Poisson component and its kth realization is

[Y]
(
T−

j,k

)
= F
(
X
(
T−

j,k

)
+ ĥj

(
X
(
T−

j,k

)
, T−

j,k, Qj,k

)
, T−

j,k

)
− F
(
X
(
T−

j,k

)
, T−

j,k

)
.

Example 5.26. Merton’s Analysis of the Black–Scholes Option Pricing
Model.
A good application of multidimensional SDEs in finance is the survey of Merton’s
[201], [203, Chapter 8] analysis of the Black–Scholes [34] financial options pricing
model in Section 10.2 of Chapter 10. This treatment will serve as motivation for
the study of SDEs and contains details not in Merton’s paper.

5.4 Distributed Jump SDE Models Exactly
Transformable

Here, exactly transformable distributed jump-diffusion SDE models are listed, in
the scalar and the vector cases, where conditions are applicable.
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5.4.1 Distributed Jump SDE Models Exactly Transformable

• Distributed scalar jump SDE:

dX(t) = f(X(t), t)dt + g(X(t), t)dW (t) +

∫

Q
h(X(t), t, q)P(dt,dq).

• Transformed scalar process: Y (t) = F (X(t), t).

• Transformed scalar SDE:

dY (t) =

(
Ft + Fxf +

1

2
Fxxg2

)
dt + FxgdW (t)

+

∫

Q
(F (X(t) + h(X(t), t, q), t) − F (X(t), t))P(dt,dq).

• Target explicit scalar SDE:

dY (t) = C1(t)dt + C2(t)dW (t) +

∫

Q
C3(t, q)P(dt,dq).

5.4.2 Vector Distributed Jump SDE Models Exactly
Transformable

• Vector distributed jump SDE:

dX(t) = f(X(t), t)dt + g(X(t), t)dW(t) +

∫

Q
h(X(t), t,q)P(dt,dq).

• Vector transformed process: Y(t) = F(X(t), t).

• Transformed component SDE:

dYi(t) =



Fi,t +
∑

j

Fi,jfj +
1

2

∑

j

∑

k

∑

l

Fi,jkgjlgkl



 dt

+
∑

j

Fi,j

∑

l

gjldWl(t)

+
∑

!

∫

Q
(yi(X + h!, t) − Fi(X, t))P!(dt,dq!),

h!(x, t,q!) ≡ [hi,!(x, t, q!)]m×1.

• Transformed vector SDE:

dY(t) =

(
Ft + (fT∇x)F +

1

2
(ggT : ∇x∇x)F

)
dt +
(
(gdW(t))T∇x

)
F

+
∑

!

∫

Q
(F(X + h!, t) − F(X, t))P!(dt,dq!).
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• Vector target explicit SDE:

dY(t) = C1(t)dt + C2(t)dW(t) +
∑

!

∫

Q
C3,!(t, q!)P!(dt,dq!).

• Original coefficients:

f(x, t) =
(
∇xF

T
)−T

(C1(t) − yt

−1

2
(∇xF

T )−T C2C
T
2 (∇xF

T )−1 : ∇x∇T
x F

)
;

g(x, t) = (∇xF
T )−T C2(t),

F(x + h!, t) = F(x, t) + C3,!(t, q!). (Note: left in implicit form.)

• Vector affine transformation example:

F = A(t)x + B(t),

Ft = A′x + B′,

(∇xF
T )T = A,

f(x, t) = A−1(C1(t) − A′x − B′),

g(x, t) = A−1C2(t),

h!(x, t, q!) = A−1C3,!(t, q!).

5.5 Exercises
1. Simulate X(t) for the log-normally distributed jump-amplitude case with

mean µj = E[Q] = 0.28 and variance σ2
j = Var[Q] = 0.15 for the lin-

ear jump-diffusion SDE model (5.42) using µd(t) = 0.82 sin(2πt − 0.75π),
σd(t) = 0.88 − 0.44 sin(2πt − 0.75π) and λ(t) = 8.0 − 1.82 sin(2πt − 0.75π),
N = 10, 000 time-steps, t0 = 0, tf = 1.0, X(0) − x0, for k = 4 random
states, i.e., ν(t, Q) = ν0(Q) = exp(Q) − 1 with Q normally distributed. Plot
the k sample states Xj(ti) for j = 1 : k, along with theoretical mean state
path, E[X(ti)] from (5.49), and the sample mean state path, i.e., Mx(ti) =∑k

j=1 Xj(ti)/k, all for i = 1 : N + 1.

(Hint: Modify the linear mark-jump-diffusion SDE simulator of Example 5.25
with MATLAB code C.15 from Online Appendix C and Corollary 5.9 for the
discrete exponential expectation. )
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2. For the log-double-uniform jump distribution,

φQ(q; t) ≡






0, −∞ < q < a(t)
p1(t)/|a|(t), a(t) ≤ q < 0
p2(t)/b(t), 0 ≤ q ≤ b(t)
0, b(t) < q < +∞





, (5.101)

where p1(t) is the probability of a negative jump and p2(t) is the probability
of a positive jump on a(t) < 0 ≤ b(t), show that

(a) EQ[Q] = µj(t) = (p1(t)a(t) + p2(t)b(t))/2;

(b) VarQ[Q] = σ2
j (t) = (p1(t)a2(t) + p2(t)b2(t))/3 − µ2

j(t);

(c) EQ

[
(Q − µj(t))3

]
=(p1(t)a3(t)+p2(t)b3(t))/4 − µj(t)(3σ2

j (t)+µ2
j(t));

(d) E[ν(Q)] = E[exp(Q) − 1], where the answer needs to be derived.

3. Show that the Itô mean square limit for the integral of the product of two
correlated mean-zero, dt-variance, differential diffusion processes, dW1(t) and
dW2(t), symbolically satisfy the SDE,

dW1(t)dW2(t)
dt
= ρ(t)dt, (5.102)

where
Cov[∆W1(ti), ∆W2(ti)] , ρ(ti)∆ti

for sufficiently small ∆ti. Are any modified considerations required if ρ = 0 or
ρ = ±1? You may use the bivariate normal density in (B.144), boundedness
Theorem B.59, Table B.1 of selected moments and other material in Online
Appendix B of preliminaries.

4. Finish the proof of Corollary 5.13 by showing the diffusion part using the
techniques of Theorem 5.11, (5.53).

5. Prove the corresponding corollary for the variance of X(t) from the solution
of the linear SDE:

Corollary 5.27. Variance of X(t) for Linear SDE.

Let X(t) be the solution (5.45) with ν2(t) ≡ E[ν2(t, Q)] of (5.42). Then

Var[dX(t)/X(t)]
dt
= σ2

d(t) + ν2(t)

and

Var[X(t)] = E2[X(t)]

(
exp

(∫ t

t0

Var[dX(s)/X(s)]ds

)
− 1

)
. (5.103)

Be sure to state what extra conditions on processes and precision are needed
that were not needed for proving Corollary 5.13 on E[X(t)].

6. Justify (5.93) for the covariance in multidimensions by giving the reasons for
each step in the derivation. See the proof for (5.27).
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• Itô, 1951 [150]

• Kushner and Dupuis, 2001 [179]

• Øksendal and Sulem, 2005 [223]

• Snyder and Miller, 1991 [252, Chapter 4 and 5]

• Westman and Hanson, 1999 [276]

• Westman and Hanson, 2000 [277]

• Zhu and Hanson, 2006 [293]


