
STOCHASTIC PROCESSES AND CONTROL FOR
JUMP-DIFFUSIONS∗

FLOYD B. HANSON†

Abstract. An applied compact introductory survey of Markov stochastic processes and control
in continuous time is presented. The presentation is in tutorial stages, beginning with determinis-
tic dynamical systems for contrast and continuing on to perturbing the deterministic model with
diffusions using Wiener processes. Then jump perturbations are added using simple Poisson pro-
cesses constructing the theory of simple jump-diffusions. Next, marked-jump-diffusions are treated
using compound Poisson processes to include random marked jump-amplitudes in parallel with the
equivalent Poisson random measure formulation. Otherwise, the approach is quite applied, using
basic principles with no abstractions beyond Poisson random measure. This treatment is suitable for
those in classical applied mathematics, physical sciences, quantitative finance and engineering, but
have trouble getting started with the abstract measure-theoretic literature. The approach here builds
upon the treatment of continuous functions in the regular calculus and associated ordinary differential
equations by adding non-smooth and jump discontinuities to the model. Finally, the stochastic op-
timal control of marked-jump-diffusions is developed, emphasizing the underlying assumptions. The
survey concludes with applications in biology and finance, some of which are canonical, dimension
reducible problems and others are genuine nonlinear problems.

Key words. Jump-diffusions, Wiener processes, Poisson processes, random jump amplitudes,
stochastic differential equations, stochastic chain rules, stochastic optimal control

AMS subject classifications. 60G20, 93E20, 93E03

1. Introduction. There are many important applications of stochastic processes
and control in such areas as finance, biology and manufacturing. In various financial
markets, for instance, the statistical evidence of jumps is given by Ball and Torous [9]
for call option prices, Jarrow and Rosenfeld [38] for the capital asset pricing model,
and Jorion [39] for foreign exchange as well as in the stock market. Lately, there
has been improved development of nonparametric methods of testing for jumps re-
lated to quadratic variation and one example is the bipower variation method of
Barndorff-Nielsen and Shephard [10]. In addition, Andersen, Benzoni and Lund [2],
and Bates [11] similarly demonstrate that the most reasonable model of stock prices
would include both stochastic-volatility and jump-diffusion.

While the financial markets are often modeled by the log-normal distribution
using the diffusion process only, a more realistic model would have jumps in price, the
distribution usually would be skewed negatively compared to the skewless normal and
would have fatter tails than the exponentially smaller tails of the normal. Along with
fatter tails the distribution consequently has higher peaks, so that the distribution is
leptokurtic, meaning that the coefficient of kurtosis (the scaled fourth central moment)
is greater than the normal value of three [25]. Another feature often missing in many
models is the time-dependence of the parameters [28] and then there is the important
special case of stochastic-volatility, often using the mean-reverting, square-root noise
model of Heston [31] (see also [11, 35, 66, 29]).

There are many fine texts available that almost exclusively treat diffusion pro-
cesses, such as Arnold [7], Schuss [57], Øksendal [51], Mikosch [50] and Steele [62].

∗This work is supported in part by the National Science Foundation under DMS-02-07081 and
predecessor grants. Any conclusions or recommendations expressed in this material are those of the
author and do not necessarily reflect the views of the National Science Foundation.

† Department of Mathematics, Statistics, and Computer Science University of Illinois at Chicago,
851 S Morgan St.; m/c 249, Chicago, IL 60607–7045, USA (hanson@math.uic.edu).

1

2 F. B. HANSON

The texts of Çinlar [17], and Snyder and Miller [61] are very useful primarily for jump
processes, among other topics. The seminal work of K. Itô [36] is well-known for the
foundations of the analysis and treatment of diffusion processes such that the term Itô
processes refers solely to diffusion processes, but it is not so well-known that this work
also includes jumps of Poisson processes making it an early work on jump-diffusions.
Kushner and Dupuis’s book [44] is nominally about numerical methods for stochastic
control, but has substantial information about jump-diffusions, some of it found in
the earlier works of Kushner [42, 43]. Although the books of Cont and Tankov [18]
and Øksendal and Sulem [52] have the term jump-diffusion in the titles, the books
emphasize more general and abstract types of processes called Lévy processes, that
include jump-diffusions which can have finite jump-rates as discussed here, but also
those which have infinite jump-rates. The approach is generally through measure the-
ory, martingales and other abstractions. This seems to be necessary from the point
of view of the practitioners for advanced analysis, transformations and the proving
of theorems for stochastic problems. There are books that are even more abstract-
oriented than those mentioned, such as the well-respected works of Applebaum [5],
Gihman and Skorohod [20, 21], Jacod and Shiryaev [37], and Protter [53].

Colleagues and graduate students in many areas of the applied sciences find these
abstract approaches to stochastic problems inaccessible or at least formidable, having
been trained in classical analysis based upon regular and advanced calculus. Part of
the difficultly lies in the current treatment of the calculus with an almost exclusive
emphasis on functions that are too nice, e.g., continuous, smooth and deterministic
functions, in a world where things can be discontinuous, non-smooth and random.
Here, we take stochastic and random to mean the same thing, signifying a degree
of uncertainty and involving probabilities. A process merely means some function of
time and a stochastic or random process means a time-dependent random function or
random trajectory.

The purpose of this survey is to build an applied stochastic calculus of stochastic
processes based upon first principles, using modifications of the usual regular calculus
to allow for jump-discontinuities, non-smoothness and randomness. One underlying
goal is to be able to treat jump-diffusion processes and another goal is to control the
dynamics of jump-diffusion processes for useful purposes. The difficulty of such an
endeavor is that many of the needed applied results are difficult to find or missing in
the existing literature, so have to be supplied new [25].

On the other hand, many of the recent results have come from the abstract ap-
proaches and some of these results can be found in the jump-diffusion texts listed
above [18, 52] and other references, for example Runggaldier [55] or the applied to ab-
stract bridge, last chapter of the author’s forthcoming book [25, Chapter 13]. The ap-
plied and abstract approaches complement each other, in that the applied approaches
supply physical intuition about the underlying stochastic problems and the abstract
approaches provide the formalism for rigorous proofs.

In Section 2, the deterministic vector ordinary differential equation (ODE) model
is considered as a base reference model against which to compare the stochastic differ-
ential equation (SDE), technically stochastic ODE, models by treating the determin-
istic model in a similar way. In Section 3, the vector diffusion process is introduced
by way of the mathematical Wiener process and is used to perturb the deterministic
model with continuous stochastic noise. Also, the more fundamental stochastic inte-
gral equation is formulated, since it is more useful for the discretization of dynamic
models along with defining mean square convergence conditions. The stochastic dif-

STOCHASTIC PROCESSES AND CONTROL FOR JUMP-DIFFUSIONS 3

fusion chain rule is derived from a second order Taylor approximation. In addition,
a formally exact solution for a scalar, linear diffusion SDE is found and a method
for simulating the solution is given along with a sample code. In Section 4, a simple
Poisson process is used to introduce jumps into the diffusion SDE forming a simple
jump-diffusion SDE, preserving the Markov property of the model. The instanta-
neous property of the jumps allows the jump-diffusion change rule to be decomposed
into continuous and jump components, while the calculation of the jump change is
simplified by the zero-one jump law of the infinitesimal Poisson process. A corre-
sponding scalar, linear example problem is formally solved and a simulations program
is developed for it. In Section 5, the simple Poisson process is replaced by a com-
pound or marked Poisson process allowing for random jump-amplitudes in place of
non-random coefficients. The Poisson random measure formulation is also introduced
as an equivalent alternative to the compound Poisson process since it is more con-
venient in many calculations. Several basic jump-amplitude distributions are given
for modeling the underlying independent identically-distributed underlying random
variables called marks. Again, a simple problem is formally solved and simulated.
In the 6th section, the stochastic optimal control problem is transformed to a func-
tional generalization of a partial differential equation (PDE), called the Bellman’s
PDE of stochastic dynamic programming is formally derived in some detail to reveal
the assumptions for later modifications. The curse of dimensionality, which arises
for large-scale discretization in dynamic programming, is shown to have exponential
complexity. In the 7th section, two classical canonical problems are presented that
avoid the curse of dimensionality by reducing the dynamic programming problem to
ODEs in time with a special template form for the state or spatial variables. These
methods are the linear-quadratic, jump-diffusion problem and the optimal portfolio
and consumption problem with power-law utilities. In addition, two non-canonical
problems are introduced as examples of general, nonlinear models: optimal natural re-
source harvesting with price dynamics in a jump-diffusion environment and European
option pricing in a nonlinear stochastic volatility, jump-diffusion environment.

2. Deterministic Differential Equation (DetDE). We start at a very basic
level to exhibit the foundations in the regular calculus so at each incremental level
it should be clear what modifications are needed. Let X(t) = [Xi(t)]nx×1 be the
vector state of a deterministic dynamical system of dimension nx, where f(X(t), t) =
[fi(X(t), t)]nx×1 is the vector plant function that determines the rate of growth of the
system given by the following ODE or DetDE,

dX(t) = f(X(t), t)dt, 0 ≤ t ≤ tf , X(0) = x0 ∈ Dx ⊂ Rnx . (2.1)

The plant function f(X(t), t) is assumed to be an integrable function in t when the
state trajectory X(t) is continuous.

Since the system is deterministic, the conditional infinitesimal expectation or
mean and variance are trivially denoted by

E[dX(t) |X(t) = x] = f(x, t)dt,

Var[dX(t) |X(t) = x] = 0nx×nx ,

i.e., there is no variance. In addition, the jump in the state is

Jump[X](t) ≡ [X](t) ≡ x
(
t+
)
− x

(
t−
)

= 0nx×1 ,

i.e., none.

4 F. B. HANSON

2.1. Deterministic Integral Equation. A better and alternative form of the
model DetDE (2.1) is the corresponding deterministic integral equation (DetIE),

X(t) = x0 +
∫ t

0

f(X(s), s)ds , (2.2)

for both analytical and numerical purposes, in particular for higher order approxima-
tions. For instance, using the very simple forward integration or Euler approximation,

X(t)
fwd' x0 +

n∑
j=0

f(Xj , tj)∆tj , (2.3)

where Xj = X(tj), tj+1 = tj + ∆tj , ∆tj > 0, t0 ≡ 0, tn+1 = t and the mesh δtn =
maxj=0:n[∆tj]→ 0+ as n→∞, guaranteeing convergence (here j = 0 : n = 0, 1, . . . , n
is a MATLABTM sequence construct). The crude approximation in (2.3) is also called
the left-endpoint rectangular rule or the tangent-line approximation when deduced
from the DetDE (2.1). There are many more accurate approximation rules that could
be used, since any point t∗j in [tj , tj + ∆tj] could be used as an approximation point
according to the integration theory of Riemann. However, the forward integration
approximation is consistent with the notion of the Markov processes considered in
the next section where the dependence is on the present events and not future events
that need to be estimated along with the uncertainty involved.

2.2. Change of Variables and Deterministic Chain Rule. Often in solving
differential or their corresponding integral equations, a change of variables may be
useful. In changing the original state variable X(t) to a new variable Y(t), consider
for generality the composite function form Y(t) = F(X(t), t) or Yi(t) = Fi(X(t), t)
for i = 1 : nx components. The corresponding chain rule becomes

dY(t) = Ft(X(t), t)dt +
(
X>(t)∇x

)
[F](X(t), t)

=
(
Ft +

(
f>∇x

)
[F]
)
(X(t), t)dt ,

(2.4)

or by components,

dYi(t) =

Fi,t +
nx∑
j=1

fjFi,xj

 (X(t), t)dt ,

for i = 1 : nx, where Fi,t = ∂Fi/∂t and Fi,xj
= ∂Fi/∂xj are partial derivatives while

f> denotes the transpose of a column vector into a row vector. For later reference,
(2.4) represents the dt-precision of changes in the system.

2.3. Scalar, Linear DetDE Example. As an illustration of using a change
of variables that transforms the differential equation to a form that can be readily
integrated to obtain the solution, consider the nx = 1 scalar, linear model,

dX(t) = A(t)X(t)dt, X(0) = x0 > 0 , (2.5)

when A(t) is a given integrable scalar function. Let

Y (t) = F (X(t), t) = ln(X(t))

STOCHASTIC PROCESSES AND CONTROL FOR JUMP-DIFFUSIONS 5

be a logarithmic state transformation, with partial derivatives Ft(x, t) = 0 and
Fx(x, t) = 1/x, assuming x > 0. Then, the transformed ODE by the chain rule (2.4)
becomes state-independent,

dY (t) = ln(X(t) + dX(t))− ln(X(t)) = A(t)dt ,

so that immediate integration yields

Y (t) = Y (0) +
∫ t

0

A(s)ds .

Using the initial condition Y (0) = ln(x0) and the inverse of the natural logarithm,
our solution to the given initial value problem (2.5) is

X(t) = x0 exp
(∫ t

0

A(s)ds

)
, (2.6)

consistent with the exponential form of the solution expected for deterministic, linear
ODEs. Note that the initial assumption that x0 > 0 implies the solution positivity,
X(t) > 0 for all t ≥ 0.

Although the detail may seem overdone for this simple ODE problem, it is needed
for reference later to show how much or how little the jump-diffusion adds to this
reference deterministic solution (2.6).

3. Diffusion Stochastic Differential Equation (SDE). In order to include
stochastic diffusion into the differential equation model, the mathematical representa-
tion of a diffusion random process called the Wiener process is introduced. A process
merely denotes a function of time. The nx-dimensional vector Wiener process,

W(t) ∈ Dx ⊂ Rnw ,

and its differential expressed as an increment,

dW(t) = W(t + dt)−W(t) , (3.1)

are normally distributed random processes, with infinitesimal expectation

E[dW(t)] = 0nw×1 ,

infinitesimal component variance,

Var[dWi(t)] = dt

for i = 1 : nw and the infinitesimal covariance, as related to the Wiener correlation
matrix, R(w)(t),

Cov
[
dW(t), dW>(t)

]
=Corr

[
dW(t), dW>(t)

]
dt

≡R(w)(t)dt =
[
ρ
(w)
i,j (t)dt

]
nw×nw

,
(3.2)

where the diagonal part of the correlation coefficient satisfies ρ
(w)
i,i (t) ≡ 1 from the

component variance. If there is no correlation between distinct components then
R(w)(t) = Inw

, the identity of order nw.

6 F. B. HANSON

The Wiener process is continuous, so the jump is Jump[dW](t) = 0nw×1, and
by convention W(0) ≡ 0nw×1 with probability one. The W(t) are Markov processes
with no memory of the non-immediate past, i.e., the conditional probability is

Prob[Wi(t + ∆t) |Wi(s), 0 ≤ s ≤ t] = Prob[Wi(t + ∆t) |Wi(t)] ,

for i = 1 : nw. Although Wi(t) is continuous, it is not smooth, which can be motivated
by noting that Var[dWi(t)] = dt, formally implying

Var[dWi(t)/dt] = 1/dt→ +∞

as dt→ 0+ (see Hanson [25, Chapter 1] for an applied proper version or Mikosch [50,
Chapter 1] for a stronger form of this condition or Steele [62, Chapter 5] for an even
more precise condition.)

Let the resulting stochastic differential equation (SDE) for the diffusion process
be

dX(t) = f(X(t), t)dt + g(X(t), t)dW(t) ,

0 ≤ t ≤ tf , X(0) = x0 ∈ Dx ⊂ Rnx ,
(3.3)

where the state-dependent Wiener process coefficient is the array

g(X(t), t) = [gi,j(X(t), t)]nx×nw
,

representing the magnitude of the random environmental or parameter perturbations.
The conditional infinitesimal expectation of the state differential process is

E[dX(t) |X(t) = x] = f(x, t)dt (3.4)

from (3.1) and conditional infinitesimal covariance is

Cov
[
dX(t), dX>(t) |X(t) = x

]
=
(
gR(w)(t)g>

)
(x, t)dt (3.5)

from from (3.2).
These infinitesimal moments (3.4-3.5) basically define the stochastic diffusion pro-

cess. The conditional infinitesimal state dX(t) is formally a multi-dimensional Gaus-
sian distributed process with mean f(x, t)dt and covariance

(
gR(w)(t)g>

)
(x, t)dt.

3.1. Diffusion Stochastic Integral Equation (SIE). Since the diffusion SDE
serves more as a symbolic representation of the state stochastic process and the in-
tegral form is more amenable to approximations, the diffusion stochastic integral
equation (SIE) is used,

X(t) = x0 +
∫ t

0

f(X(s), s)ds +
∫ t

0

g(X(s), s)dW(s) , (3.6)

where the first integral is similar to the usual Riemann integral with a deterministic
and continuous time element of integration ds although the first argument of the
integrand depends on the stochastic state process. However, the second integral in
decidedly not like a Riemann integral but has a nonsmooth element of integration
dW(s) and is a more Stieltjes-like random integral.

In his 1951 AMS seminal memoir [36], Kiyoshi Itô, following the compatibility
with the Markov memory properties of the Wiener process, suggests that the forward

STOCHASTIC PROCESSES AND CONTROL FOR JUMP-DIFFUSIONS 7

integration rule be used to approximate that second integral. Also, for consistency in
numerical approximation, we will also use the same approximation for the first, almost
deterministic-like integral. See Higham’s compact review of SDE simulations [32] for
more accurate numerical approximations. Hence, letting t0 = 0, tn = t, W0 = 0,
tj+1 = tj + ∆tj , δtn = max

j=0:n
[∆tj] and ∆Wj = Wj+1 −Wj for j = 0 : n forward

steps,

Xn+1
fwd' x0 +

n∑
j=0

(fj∆tj + gj∆Wj) , (3.7)

where fj ≡ f(Xj , tj), gj ≡ g(Xj , tj), Xj = X(tj) and Wj = W(tj).
However, the computational form (3.7) is insufficient for defining convergence as

the mesh size δtn → 0+ as n → +∞ since differing random simulations of the Wj

may not lead to the same answer. Further, the Itô mean square (IMS) convergence is
introduced for well-posed convergence, i.e.,

X(t) ims= Z(t) ⇐⇒ lim
n→∞
δtn→0

E
[
|Xn+1 − Zn+1|2

]
= 0 , (3.8)

plus some technical conditions (e.g., mean square integrability), tn+1 = t fixed, the
important independent increment property,

Cov[∆Wi,j ,∆Wi,k] = E[∆Wi,j∆Wi,k] = δk,j , (3.9)

where ∆Wi,j = ∆Wi(tj) ≡Wi(tj + ∆tj)−Wi(tj), ∆tj > 0, and the diagonal decom-
position

n∑
j=0

n∑
k=0

aj,k∆Wi,j∆Wi,k =
n∑

j=0

aj,j(∆Wi,j)2 +
n∑

k 6=j

∆Wi,j∆Wi,k

 .

Here, δi,j is the Kronecker delta, which is zero if i 6= j and one if i = j.

3.2. Fundamental IMS Convergence Examples. The most fundamental ex-
ample of Wiener integrals is∫ t

0

(dWi)2(s)
ims= t ⇒ (dWi)2(t)

dt= dt ; (3.10)

the mean square convergence of the former form is shown in detail by Hanson [25,
Chapter 2] or Arnold [7, Chapter 3] and the latter form being a symbolic represen-
tation of that result. This result should be compared to the deterministic Riemann
model where

(dt)2 dt= 0

applying the Riemann sum rules for
∫ t

0
(ds)2 in keeping only terms of order δtn. Also

in the direct forward approximation sense that∫ t

0

(ds)2
fwd'

n∑
j=0

(∆tj)2 ≤ δtn ·
n∑

j=0

∆tj = t · δtn → 0

8 F. B. HANSON

as n→∞ and δtn → 0+ with t fixed or trivially in the Itô mean square convergence,

E

 n∑

j=0

(∆tj)2 − 0

2
 =

 n∑
j=0

(∆tj)2

2

≤

δtn ·
n∑

j=0

(∆tj)

2

= (t · δtn)2 → 0 .

Similarly, in symbolic SDE form,

dWi(t) · dWj(t)
dt= ρ

(w)
i,j (t)dt or dW(t)dW>(t) dt= R(w)(t)dt ;

dWi(t) · dt
dt= 0 ;

(dWi)k(t) dt= 0 if k > 2 .

3.3. Change of Variables and Stochastic Diffusion Chain Rule. For the
analysis of changes of variables it is convenient to use dt-precision on increment (inc)
definitions, e.g., let

X(t + dt) inc= X(t) + dX(t) ⇐⇒ dX(t) inc= X(t + dt)−X(t) .

Let Y(t) = F(X(t), t) be a change of state variables, so the stochastic diffusion
chain rule is

dY(t) inc= Y(t + dt)−Y(t) = F(X(t + dt), t + dt)− F(X(t), t)
inc= F(X(t) + dX(t), t + dt)− F(X(t), t)

taylor
= Ft(X(t), t)dt +

(
X>(t)∇x

)
[F](X(t), t)

+ 1
2dX>(t)∇x [∇x[F]] (X(t), t)dX(t) + . . .

=
(
Ftdt +

(
(fdt + gdW(t))>∇x

)
[F]
)
(X(t), t)

+ 1
2 (gdW)>∇x [∇x[F]] gdW(t) + . . .

dt=
(
Ft + f>∇x[F] + 1

2

(
gR(w)g>

)
:∇x [∇x[F]]

)
dt +∇>x [F]gdW(t) ,

(3.11)

where the double-dot product is defined here as the trace

A :B ≡ Trace[AB] =
nx∑
j=1

nx∑
k=1

Aj,kBk,j .

In components,

dYi(t)
dt=

Fi,t +
nx∑
j=1

fjFi,xj
+

1
2

nx∑
j=1

nx∑
k=1

nw∑
`=1

nw∑
m=1

gj,`ρ
(w)
`,mgk,mFi,xj ,xk

dt

+
nx∑
j=1

nw∑
k=1

gj,kFi,xj dWk(t) ,

for i = 1:nx.

STOCHASTIC PROCESSES AND CONTROL FOR JUMP-DIFFUSIONS 9

Although the transformed first order stochastic diffusion term ∇>x [F]gdW(t)
in (3.11) is expected from the appearance of similar transformed first order deter-
ministic term f>∇x[F]dt in (2.4), the really new term is the second order diffusion
term

1
2

(
gR(w)g>

)
:∇x[∇x[F]]dt .

This diffusion term implies that stochastic diffusions lead to the same type of second
order parabolic PDEs as do physical diffusions, although arising from different under-
lying models. For stochastic diffusions, this term arises due the fact that the quadratic
of the Wiener process is linear in dt from Eq. (3.10), i.e., (dWi)2(t)

dt= dt, which is a
fundamental and surprising deterministic result since the square of a stochastic process
can be deterministic.

3.4. Scalar, Linear, Diffusion SDE Example. Again, consider the nx = 1
and nw = 1 scalar, linear model, so the diffusion SDE takes the form,

dX(t) = X(t) · (A(t)dt + B(t)dW (t)), X(0) = x0 > 0 , (3.12)

where A(t) and B(t) are given integrable functions. Again let

Y (t) = F (X(t), t) = ln(X(t))

be the logarithmic state transformation, with partial derivatives

Ft(x, t) = 0 , Fx(x, t) = 1/x , Fx,x(x, t) = −1/x2 ,

assuming x > 0. Then, the transformed diffusion SDE by the chain rule (3.11)
becomes state-independent,

dY (t) dt= ln(X(t) + dX(t))− ln(X(t)) dt=
(
A(t)−B2(t)/2

)
dt + B(t)dW (t) ,

to dt-precision, so that immediate integration yields

Y (t) ims= Y (0) +
∫ t

0

(
A(s)−B2(s)/2

)
ds +

∫ t

0

B(s)dW (s) , (3.13)

the sum of a Riemann integral and a Wiener integral. The term B2(t)/2 is the Itô
correction or diffusion coefficient. Inverting the logarithmic transformation yields

X(t) = x0 exp
(∫ t

0

((
A(s)−B2(s)/2

)
ds + B(s)dW (s)

))
, (3.14)

preserving the initial positivity such that x0 > 0 implies X(t) > 0 for all t ≥ 0 as
in the deterministic case. The solution (3.14) is formally closed if the integrals are
known, else the forward integration approximation can be used along with random
simulation of the Wiener process W (t).

3.4.1. Random Simulated Diffusion Solution. For numerical simulation
purposes, it is helpful to find a recursive form of the solutions (3.14), but it is numer-
ically preferable to do this for the exponent in (3.13). Hence, using the forward ap-
proximation on (3.13) with time steps ∆tj for j = 0 : nt−1 on for t ∈ [0, tf] = [t0, tnt

]
with corresponding Wiener increments of ∆Wj ,

Yj+1
fwd' ln(x0) +

∑j
k=0

(
(Aj −B2

j /2)∆tk + Bk∆Wk

)
= Yj + (Aj −B2

j /2)∆tj + Bj∆Wj ,

10 F. B. HANSON

so

Xj+1
fwd' exp (Yj+1) .

There are no truly random simulations, thus, technically speaking, we need to find
pseudo-random simulations of the Wiener model of stochastic diffusions. Since the
Wiener differential process dW (t) is normally distributed with mean zero, E[dW (t)] =
0, and dt variance, Var[dW (t)] = dt, the distribution has the form

ΦdW (t)(w) =
∫ w

−∞
φdW (t)(v)dv ,

where the density of dW (t) is

φdW (t)(w) = exp
(
−w2/(2dt)

)
/
√

2πdt .

However, theoretical normal pseudo-random number generators are usually available
for the standard, zero-mean and unit-variance, normal with density,

φZ(z) = exp
(
−z2/2

)
/
√

2π,

where Z is a standard normal variate. A simple change of variables u = v/
√

dt can
change the distribution of dW (t) into that for the standard Z variate as follows,

ΦdW (t)(w) =
∫ w

−∞

exp
(
−v2/(2dt)

)
√

2πdt
=
∫ w/

√
dt

−∞

exp
(
−u2/2

)
√

2dt
= ΦZ

(
w√
dt

)
.

Thus, we have shown in distribution,

dW (t) dist=
√

dtZ . (3.15)

A corresponding simplified sample code in MATLABTM (although it could also
be coded in MapleTM, MathematicaTM or other computing system) follows for a single
sample path with comments marked by the symbol “%” sign:
function diffusionpaths
% Sample Diffusion SDE Test Code
% Scalar, Linear Model:
% dX(t) = X(t)*(A(T)*dt+B(t)*dW(t)); X(0)=x0; 0<t<tf;
nt = 1000; t0 = 0; tf = 2.0; dt = (tf-t0)/nt; %sample input: fixed dt;
x0 = 1; % initial state;
t = 0:dt:tf; % set time vector in unit base: t(1)=0; t(nt+1)=tf;
sqrtdt = sqrt(dt); % Wiener scaling;
a = A(t); b = B(t); % assumes vector subfunctions for coefficients;
y = zeros(nt+1); % predeclare for efficiency;
y(1) = log(x0)% log = ln; unit not zero index base;
dw = sqrtdt*randn(nt); % Wiener (0,dt)-normal step matrix;
for j = 1:nt % exponent update:

y(j+1) = y(j) + (a(j)-b(j)^2/2)*dt+b(j)*dw(j);
end
x = exp(y); % vector state;
%

STOCHASTIC PROCESSES AND CONTROL FOR JUMP-DIFFUSIONS 11

% Plot:
plot(t,x),’k-’,’linewidth’,3)
title(’Diffusion Simulated Sample Path’);
ylabel(’X(t),State’); xlabel(’t, Time’);
%
function av = A(t) % must be vector subfunction, e.g., dot-division;
av = 0.3*t./(1+t); % sample, fill-in for each problem;
%End A
function bv = B(t) % must be vector subfunction, e.g., dot-division;
bv = 0.5*sqrt(t)./(1+t); % sample, fill-in for each problem;
%End B
%
%%End diffusionpaths.m
%

A sample illustration using a more complicated MATLABTM code with four sample
paths using different random states (seeds) is given in Figure 3.1.

0 0.5 1 1.5 2

0.8

1

1.2

1.4

1.6

1.8

2
Diffusion Simulated Sample Paths

X(
t),

St
at

e

t, Time

1st State
2nd State
3rd State
4th State

Fig. 3.1. Diffusion paths for a scalar, linear SDE (3.12) are simulated using MATLABTM with
nt = 1000 sample points, four randn states and maximum time tf = 2.0 starting at x0 = 1.0.

4. Simple Jump-Diffusion Stochastic Differential Equation. Although
the continuous models of the deterministic and stochastic diffusion models discussed
in the prior two sections are suitable for many applications, many other applications
exhibit large random fluctuations where diffusions alone would not be suitable. Some
applications for which discontinuous components are needed are financial market mod-
els having sudden crashes or rallies. Other examples are ecological populations subject
to sudden disasters due to such phenomena as earthquakes, related tsunamis, intense
storms, sudden temperature changes, predation and disease. Ecological bonanzas are
also possible due to a sudden influx or encounter of nutrients and a discovery of many
prey. Other examples of problems that can be approximated by discontinuous pro-
cesses are found in manufacturing, such as machine changes, part changes, repair,

12 F. B. HANSON

maintenance and strikes. Some manufacturing changes can involve both negative and
positive jumps as with stoppages and resumptions of production.

For Markov jump-diffusions, Poisson processes fill the role of the jump part of
the jump-diffusions due to their facility in modeling rare events and preserving the
Markov property. Let P(t) = [Pi(t)]np×1 be an np-dimensional Poisson vector process
with differential component dPi(t) having a common mean and variance,

E[dPi(t)] = λi(t)dt, Var[dPi(t)] = λi(t)dt , (4.1)

for i = 1 : np, where λi(t) > 0 is the ith jump-rate or jump-intensity and λi(t)dt is
the mean jump count of the ith Poisson process in (t, t + dt]. Along with the Markov
property of Poisson processes, they have independent increments in time,

Cov[dPi(tj), dPi(tk)] = E[(dPi(tj)− λi(tj)dt)(dPi(tk)− λi(tk)dt)]

=Var[dPi(tj)] δk,j = λi(tj)dt δk,j ,
(4.2)

where δk,j is the Kronecker delta, or if s and t are continuous arguments,

Cov[dPi(t), dPi(s)] = λi(t)dtδ(s− t)ds , (4.3)

where δ(x) is the Dirac delta function, i.e., the covariance only has a point concen-
trated value if s = t represented by δ(s− t)ds such that

∫ t

0
δ(s− t)ds = 1.

By convention, P(0) = 0np×1 with probability one. The Pi(t) are right-continuous
with left-limits (RCLL) and have unit jumps such that

Jump[Pi](Ti,j) ≡ [Pi](Ti,j) = Pi

(
T+

i,j

)
− Pi

(
T−i,j
)
≡ 1 ,

where Ti,j is the jth jump of the ith Poisson component process, T−i,j is the pre-jump
time and the post-jump is T+

i,j = Ti,j by right-continuity. Thus, Poisson jumps are
instantaneous, i.e., dt ≡ 0 during a jump and hence there is no time for continuous
changes. See Çinlar [17] or Snyder and Miller [61] for more concise definitions of
Poisson processes.

The Poisson component process Pi(t) is found by the fundamental integration
theorem of calculus,

Pi(t) =
∫ t

0

dPi(s)

and since time is deterministic, the expectation is

E[Pi(t)] =
∫ t

0

E[dPi(s)] =
∫ t

0

λi(s)ds ≡ Λi(t) ,

but in the simpler stationary case when λi(t) = λ0 is a constant, then E[Pi(t)] = λ0t.
Similarly, the Poisson increment, ∆Pi(t) = Pi(t + ∆t)− Pi(t), has the expectation

E[∆Pi(t)] =
∫ t+∆t

t

λi(s)ds ≡ ∆Λi(t) .

From the independent increment, covariance result (4.3) and the definition of

STOCHASTIC PROCESSES AND CONTROL FOR JUMP-DIFFUSIONS 13

Pi(t) in terms of dPi(t),

Var[Pi(t)] = E

[(∫ t

0

dPi(s)− Λi(t)
)2
]

= E

[(∫ t

0

(dPi(s)− λi(s)ds)
)2
]

=
∫ t

0

∫ t

0

E [(dPi(s)− λi(s)ds) (dPi(r)− λi(s)ds)]

=
∫ t

0

∫ t

0

Cov[dPi(s)dPi(r)] =
∫ t

0

∫ t

0

λi(s)δ(r − s)drds = Λi(t) ,

preserving the expectation-variance symmetry of Poisson processes.
The correlation coefficients of the component processes when s = t are related to

the covariance by the definition

Corr[dPi(t), dPj(t)] ≡
Cov[dPi(t), dPj(t)]√

λi(t)λj(t) dt
.

Due to the jump-rate
√

λi(t)λj(t) in the normalization, for simplicity the covariance
will be used instead of the correlation coefficients to define the simplified dependence

ρ
(p)
i,j (t)dt ≡ Cov[dPi(t), dPj(t)] ,

where R(p)(t) = [ρ(p)
i,j (t)]np×np is the Poisson covariance matrix, so R(p)(t) is closer

to the Wiener correlation matrix R(w)(t). If there is no correlation between distinct
Poisson components, then the Poisson covariance matrix is diagonal, i.e., R(p)(t) =
[λi(t)δi,j]np×np

.
Hence, along with assuming independent increments over distinct times, this leads

to the result that for distinct components over the same time t,

Cov[Pi(t), Pj(t)] = E
[∫ t

0

∫ t

0

(dPi(s)− λi(s)ds) (dPj(r)− λj(r)dr)
]

=
∫ t

0

∫ t

0

E [(dPi(s)− λi(s)ds) (dPj(r)− λj(r)dr)]

=
∫ t

0

Cov[dPi(s), dPj(s)] =
∫ t

0

ρ
(p)
i,j (s)ds

and consequently for the Poisson vector processes at time t,

Cov
[
P(t),P>(t)

]
=
∫ t

0

[Cov[dPi(s), dPj(s)]]np×np
=
∫ t

0

R(p)(s)ds .

Similar formulas hold for the increments ∆Pi(t) and ∆Pj(t).
The Poisson processes Pi(t), ∆Pi(t) and ∆Pi(t) all are Poisson-distributed, i.e.,

in symbolic array notation,

Prob

 Pi(t)
∆Pi(t)
dPi(t)

 = k

 = exp

−
 Λi(t)

∆Λi(t)
λi(t)dt

 ·
 Λi(t)

∆Λi(t)
λi(t)dt

k/
k! . (4.4)

The Poisson distribution can be simplified for the differential dPi(t) using dt-precision,

Prob[dPi(t) = k] dt= (1− λi(t)dt)δk,0 + λi(t)dtδk,1 (4.5)

14 F. B. HANSON

which specifies the Zero-One Law (ZOL) for jumps of dPi(t). In this special case the
Poisson distribution reduces to a Bernoulli distribution, i.e., having just two possible
events, here zero or one jump. It follows from ZOL (4.5), the Poisson form of dt-
precision, that

E [(dPi)m(t)] dt=
zol

(1− λi(t)dt) · 0m + λi(t)dt · 1m = λi(t)dt ,

if the integer m > 0. So the powers of the Poisson process do not truncate to a finite
number, unlike the Wiener process differentials which truncate at the second order so
contributing only derivatives up to second order. In contrast, the Poisson differential
can contribute derivatives of all orders, usually represented as functional integrals, or
delayed as well as advanced arguments causing global dependence rather than local
dependence of partial derivatives of finite order.

Let the resulting stochastic differential equation (SDE) for the jump-diffusion
process be

dX(t) = f(X(t), t)dt + g(X(t), t)dW(t) + h(X(t), t)dP(t) ,

0 ≤ t ≤ tf , X(0) = x0 ∈ Dx ⊂ Rnx ,
(4.6)

where the Poisson process coefficient or jump-amplitude is the array

h(x, t) = [hi,j(x, t)]nx×np
,

representing the very large or discontinuous random environmental or parameter per-
turbations. The element hi,j(x, t) is the jump-amplitude of ith state Xi(t) and the
jth Poisson component Pj(t). The conditional infinitesimal expectation of the state
differential process is

E[dX(t) |X(t) = x] = (f(x, t) + h(x, t)λ(t))dt ,

where λ(t) = [λi(t)]np×1 is a jump-rate vector, and conditional infinitesimal covariance
is

Cov
[
dX(t), dX>(t) |X(t) = x

]
=
(
gR(w)(t)g>+ hR(p)(t)h>

)
(x, t)dt .

Both conditional infinitesimal moments do not completely define the jump-diffusion
process, since in addition the jump size must be specified, i.e., for the kth jump of
the jth Poisson process,

Jump[X](Tj,k) =
[
hi,j

(
X
(
T−j,k

)
, T−j,k

)]
nx×1

. (4.7)

Note that Poisson processes model rare events, so as a more general consequence of
the zero-one jump law, it is unlikely that there would be more than one jump among
all the Poisson components at a given time. Thus, there is no sum involved in (4.7).
The Poisson process evaluates the time for the jump-amplitude array at the pre-jump
time T−j,k, otherwise the Markov short memory property would be violated using the
near-future time T+

j,k = Tj,k, the equality stemming from the right-continuity property.
The corresponding stochastic integral equation follows from the formal integration

of the jump-diffusion SDE (4.6),

X(t) = x0 +
∫ t

0

(f(X(s), s)ds + g(X(s), s)dW(s) + h(X(s), s)dP(s)) , (4.8)

STOCHASTIC PROCESSES AND CONTROL FOR JUMP-DIFFUSIONS 15

where an alternate form of the jump part of the integral in (4.8) is given by

∫ t

0

h(X(s), s)dP(s) =
np∑

j=1

Pj(t)∑
kj=1

h
(
X
(
T−j,kj

)
, Tj,kj

)
, (4.9)

since the jump change in the state must be the sum of all the jumps in the Poisson
vector process P(s) for s ∈ (0, t]. By convention, there is a reverse-sum rule that

0∑
k=1

ak ≡ 0 ,

since if Pj(t) = 0, then there are no jumps of the jth process and Pj(s) = 0 on
[0, t]. Note that the alternate sum form in (4.9) is useful for motivation purposes, but
requires extra effort in computing moments due to an extra step required to handle
the pre-jump times T−j,kj

in iterated expectations [25, Chapter 3].
The complication occurs because the distribution of the Poisson counting distri-

bution for Pj(t) and the Poisson jump-time distribution for Tj,k are closely related.
Consider the less complicated case of a stationary Poisson process where the jump-
rate is constant, i.e., λj(t) = λ0. The basic idea [25] is that the probability of the
time between jumps ∆Tj,k = Tj,k+1 − Tk,j less than ∆t > 0, conditioned on the prior
jump time Tj,k, is the same as the probability that there be at least one jump in the
time interval, which is the same as one minus the probability that there are no jumps
in the time interval, i.e.,

Prob[∆Tj,k ≤ ∆t |Tj,k] = 1− Prob[∆Tj,k > ∆t |Tj,k]

= 1− Prob[∆P (Tj,k) = 0 |Tj,k]

= 1− Prob[P (∆t)− P (0) = 0]

= 1− Prob[P (∆t) = 0] = 1− e−λ0∆t ,

where the stationary property of the simple Poisson process P (t), with λ0 constant,
has been used. Also used are the facts that the probability of the difference depends
on the difference in time ∆Tj,k and that P (0) = 0 with probability. The jump-time
increments distribution is the exponential distribution

Φ∆Tj,k
(∆t) = 1− e−λ0∆t

with mean 1/λ0. For the more general case of nonstationary Poisson process, λ = λ(t),
see Çinlar [17, Chapter 4], who uses a change of time variable that makes this case
more amenable.

4.1. Change of Variables and Simple Jump-Diffusion Chain Rule. Since
Poisson jumps are discontinuous in time and thus instantaneous, there is no time for
any continuous changes, leading to the very basic decomposition of the jump-diffusion
state process,

dX(t) = dcontX(t) + djumpX(t) , (4.10)

where

dcontX(t) = f(X(t), t)dt + g(X(t), t)dW(t)

16 F. B. HANSON

is the Gaussian part and

djumpX(t) = h(X(t), t)dP(t)

is the Poisson part. The continuous and jump parts can be calculated independently
due to the instantaneous nature of the jumps. Taking the Poisson differential dP(t)
as the condition for a jump, the jump of the state can be generally written at any
time t,

Jump[X](t) = X(t+)−X(t−) = h(X(t−), t−)dP(t) . (4.11)

The two t−’s on the far right could just as well be plain t’s, since it is the Poisson
process that picks out the pre-jump time. Also, usually the explicit time argument of
the jump-amplitude is continuous, so h(X(t−), t) can also be used in (4.11).

Let Y(t) = F(X(t), t) be a state transformation, then

Jump[Y](t) =Y(t+)−Y(t−) = F(X(t+), t)− F(X(t−), t)

=F(X(t) + Jump[X](t), t)− F(X(t−), t)

=F(X(t−) + h(X(t−), t)dP(t), t)− F(X(t−), t)

zol=
np∑

j=1

(
F
(
X(t−) +

[
hi,j(X(t−), t)

]
nx×1

, t
)
− F(X(t−), t)

)
dPj(t) ,

(4.12)

where the strong, vector version of the zero-one jump law has been used, while the pure
time arguments of both F(x, t) and h(x, t) have lost their one-sided limit notations,
since both are usually continuous in the explicit t argument.

Combining the jump change of variable (4.12) with the stochastic diffusion chain
rule (3.11) yields the jump-diffusion chain rule for simple Poisson jumps,

dY(t) inc= F(X(t) + dcontX(t), t + dt)− F(X(t), t) + Jump[Y](t)
dt=
zol

(
Ft + f>∇x[F] + 1

2

(
gR(w)g>

)
:∇x [∇x[F]]

)
dt +∇>x [F]gdW(t)

+
np∑

j=1

(
F
(
X(t) + [hi,j(X(t), t)]nx×1 , t

)
− F(X(t), t)

)
dPj(t) ,

(4.13)

where it is understood that the Poisson jump process Pj(t) picks out the pre-jump
time T−j,k of the state process X(t) if there is the kth jump at time Tj,k of the jth
Poisson process. The added complexity from adding simple Poisson jumps to the
stochastic diffusion model under a change of variables is that jumps introduce differ-
ences rather than partial derivatives into the transformed SDE. For finite, nontrivial
jump-amplitude coefficients h(x, t) that means there is state global dependence at fixed
t and points x+[hi,j(x, t)]nx×1 from the jumps and not just state local dependence on
the present state x at fixed t due to the partial derivatives arising from the stochastic
diffusion.

4.2. Scalar, Linear, Simple Jump-Diffusion SDE Example. Consider the
scalar, linear simple jump-diffusion model with nx = 1, nw = 1 and np = 1,

dX(t) = X(t) · (A(t)dt + B(t)dW (t) + C(t)dP (t)), X(0) = x0 > 0 , (4.14)

STOCHASTIC PROCESSES AND CONTROL FOR JUMP-DIFFUSIONS 17

where A(t), B(t) and C(t) are given integrable functions. One further essential con-
dition is needed that

C(t) > −1 ,

since otherwise if C(t) ≤ −1 with X(t) > 0, then the first jump would take the state
out of positive values, i.e., the new post-jump state would be X(t) + Jump[X](t) =
(1 + C(t))X(t) ≤ 0.

Again let

Y (t) = F (X(t), t) = ln(X(t))

be the logarithmic state transformation, with partial derivatives

Ft(x, t) = 0 , Fx(x, t) = 1/x , Fx,x(x, t) = −1/x2 ,

assuming x > 0, but now with the conditional jump,

Jump[Y](t) = (ln(X(t) + C(t)X(t))− ln(X(t))) dP (t) = ln(1 + C(t))dP (t) ,

provided X(t) > 0 and C(t) > −1. Then, the transformed jump-diffusion SDE by
the chain rule (4.13) becomes state-independent, by adding the jump-change to the
continuous diffusion-changes, and finally results in

dY (t) dt=
zol

(
A(t)−B2(t)/2

)
dt + B(t)dW (t) + ln(1 + C(t))dP (t) ,

to dt-precision and the zero-one jump law. Immediate integration yields

Y (t) ims= Y (0) +
∫ t

0

((
A(s)−B2(s)/2

)
ds+B(s)dW (s)+ln(1+C(s))dP (s)

)
, (4.15)

the sum of a Riemann integral, a Wiener integral and a Poisson jump integral. Log-
arithmic inversion leads to

X(t) =x0 exp
(∫ t

0

((
A(s)−B2(s)/2

)
ds+B(s)dW (s)+ln(1+C(s))dP (s)

))

=x0 exp
(∫ t

0

((
A(s)−B2(s)/2

)
ds+B(s)dW (s)

))P (t)∏
k=1

(
1 + C

(
T−k
))

,

(4.16)

where T−k is the kth pre-jump time and the last factor comes from conversion of the
alternate sum form exp

(∑
k ln

(
1 + C(T−k)

))
to the product form (see the alternate

form in (4.9)). Here, the minus superscript in T−k would be unnecessary if C were a
continuous function of t. The positivity property of the state is preserved as it is in
the deterministic and stochastic diffusion cases.

4.2.1. Random Simulated Simple Jump-Diffusion Solution. Applying the
forward approximation to the jump-diffusion exponent solution (4.15) with time steps
∆tj for j = 0 : nt− 1, t on [t0, tnt

] = [0, tf], with corresponding Wiener increments of
∆Wj and Poisson increments ∆Pj yields the following recursion for Yj ,

Yj+1
fwd' Yj + (Aj −B2

j /2)∆tj + Bj∆Wj + Cj∆Pj ,

18 F. B. HANSON

so again

Xj+1
fwd' exp (Yj+1) .

The diffusion part can be simulated as in the previous section. Assuming that
λj∆tj is sufficiently small, then the zero-one Poisson jump law can be used to calculate
the Poisson increments ∆Pj given a uniform random number generator like rand of
MATLABTM. A simple method would be that if the jth uniform sampled variate uj

were such that uj ≥ 1 − λj ·∆tj then ∆Pj = 1 is set, else ∆Pj = 0 for the zero one
law, approximating the probability of a jump of 1− (1− λj ·∆tj) = λj ·∆tj .

However, for very small λj∆tj this is not a good example of numerically well-
conditioning due to a bias experienced at the beginning and ending points of the
uniform distribution. Further, while the theoretical standard uniform distribution
is assumed to be on [0, 1], the computer standard uniform distributions are on the
interval [ε, 1− ε], where ε is the machine epsilon. The machine epsilon is the smallest
positive number such that the floating-point representation of 1 + ε is greater than
one, e.g., for MATLABTM with double-precision default, ε = 2−53. Hence, a better
implementation of the zero-one Poisson jump law would be to set ∆Pj = 1 when the
uniform sample point is near the center of the distribution, say on [(1−λj ·∆tj)/2, (1+
λj ·∆tj)/2]; otherwise set ∆Pj = 0.

In the case that the scaled increment λj∆tj is not sufficiently small compared
to unity, then the Poisson inverse method, described by Glasserman [22, Chapter 3],
might be used.

A corresponding simplified sample code in MATLABTM follows for a single sample
trajectory, although this could also be coded in MapleTM, MathematicaTM or other
computing system:
function jumpdiffusionpaths
% Sample Jump-Diffusion SDE Test Code
% Scalar, Linear Model:
% dX(t) = X(t)*(A(T)*dt+B(t)*dW(t)+C(t)dP(t));
% X(0)=x0; 0<t<tf; C(t)>-1;
global A0 A1 B0 B1 C0 C1 lam0 lam1
nt = 1000; t0 = 0; tf = 2.0; dt = (tf-t0)/nt; %sample input: fixed dt;
x0 = 1; % initial state;
lam0 = 4.0; lam1 = 1.0; % jump rate parms.;
A0 = 0; A1 = +0.3; % plant function coefficient parms.;
B0 = 0; B1 = +0.5; % diffusion coefficient parms.;
C0 = -0.5; C1 = +0.5; % jump-amplitude coefficient parms.;
t = 0:dt:tf; % set time vector in unit base: t(1)=0; t(nt+1)=tf;
sqrtdt = sqrt(dt); % Wiener scaling;
Av = A(t); Bv = B(t); Cv = C(t);% assumes vector subfunctions;
ldt = 0.5*dt*Lam(t); % time-dependent jump-rate;
y = zeros(nt+1); % predeclare for efficiency;
y(1) = log(x0)% log = ln; unit not zero index base;
dw = sqrtdt*randn(nt); % Wiener (0,dt)-normal step matrix;
du = rand(nt); % Poisson zero-one jump law matrix;
dp = zeros(nt); % pre-declare as zero;
for j = 1:nt % Zero-one jump law and exponent update:

if (du(j)>=(1-ldt(j))/2) && (du(j)<=(1+ldt(j))/2)
dp(j) = 1;

STOCHASTIC PROCESSES AND CONTROL FOR JUMP-DIFFUSIONS 19

end
y(j+1,ks) = y(j,ks) + (a(j)-b(j)^2/2)*dt+b(j)*dw(j)...

+log(1+c(j))*dp(j);
end
x = exp(y); % vector state;
%
% Plot:
plot(t,x),’k-’,’linewidth’,3)
title(’Jump-Diffusion Simulated Sample Path’);
ylabel(’X(t),State’); xlabel(’t, Time’);
%
function Av = A(t) % must be vector subfunction, e.g., dot-division;
global A0 A1
Av = A0+A1*t./(1+t); % sample, fill-in for each problem;
%End A
function Bv = B(t) % must be vector subfunction, e.g., dot-division;
global B0 B1
Bv = B0+B1*sqrt(t)./(1+t); % sample, fill-in for each problem;
%End B
function Cv = C(t) % must be vector subfunction, e.g., dot-division;
global C0 C1
Cv = C0+C1*sqrt(t)./(1+t); % sample, fill-in for each problem;
%End C
function lv = Lam(t) % must be vector subfunction, e.g., dot-division;
global lam0 lam1
lv = lam0+lam1*sin(pi*t); % sample, fill-in for each problem;
%End Lam
%
%%End jumpdiffusionpaths.m
%

A sample illustration using a more complicated MATLABTM code with four sample
paths using different random states (seeds) for each of four trajectories is given in
Figure 4.1.

The simple jump-diffusion with simple Poisson processes with only state and time-
dependent jump-amplitudes is just too simple. Hence, in the next section a jump-
diffusion is considered with an additional random argument in the jump-amplitude
coefficient.

5. Marked Jump-Diffusion Stochastic Differential Equation. When the
jump-amplitudes of the Poisson process are randomly distributed, then the process is
called a marked-jump process or compound Poisson process, where the independent,
identically distributed (IID) underlying random variables

Q = [Qi]np×1

are called the marks and here they are taken to be mark vectors. Along with the kth
random jump-times T−j,k of the jth Poisson process, the random mark realizations Qj,k

are selected by the jth jumping process Pj(t;Qj) for the kth instance of jth-process
jumps; hence an extra mark argument is given to the Poisson process. It is assumed
that the jth Poisson process depends only on the jth random mark component Qj

upon relying on the rareness assumption that only one jump is likely as a vector

20 F. B. HANSON

! !"# $ $"# %
!

!"%

!"&

!"'

!"(

$

$"%

$"&

$"'

$"(

)*+,!-.//*0.1234.+*56789346+,583:67;0

<
=7
>?
4
76
78

7?3@.+8

$07347678

%29347678

AB9347678

&7;347678

Fig. 4.1. Simple-jump-diffusion paths for a scalar, linear SDE (4.14) are simulated using
MATLABTM with nt = 1000 sample points, four randn normal states for diffusion, four rand uniform
states for the zero-one Poisson jump law and maximum time tf = 2.0 starting at x0 = 1.0.

generalization of the zero-one law; so

P(t;Q) = [Pi(t;Qi)]np×1

and the jump-amplitude coefficient also includes the mark vector, but with only one
mark component per Poisson component, i.e.,

h(X(t), t,Q) = [hi,j(X(t), t, Qj)]nx×np .

The compound process combination, hi,j(X(t), t, Qj)Pj(t;Qj), is also called a doubly-
stochastic process or a marked Poisson process or a marked point process for each i
and j [61].

The basic infinitesimal moments of the Poisson process remain the same,

E[P(t;Q)] = λ(t)dt = [λi(t)dt]np×1

and

Var[Pj(t;Qj)] = λi(t)dt for j = 1 : np ,

while

Jump[Pj](Tj,k;Qj) = 1 for j = 1 : np, any integer k > 1 .

For different representations, the marked Poisson term can have different forms,
some more convenient than others. One representation is the compound Poisson form
which in differential form is

h(X(t), t,Q)dP(t;Q) =
np∑

j=1

Pj(t;Qj)+dPj(t;Qj)∑
k=Pj(t;Qj)+1

[
hi,j

(
X
(
T−j,k

)
, Tj,k, Qj,k

)]
nx×1

, (5.1)

STOCHASTIC PROCESSES AND CONTROL FOR JUMP-DIFFUSIONS 21

where
∑Pj

k=Pj+1 ai,j,k ≡ 0 in the reversed sum convention so zero jumps can be in-
cluded, adding up the jump-amplitudes on (t, T + dt] over all j Poisson components,
but the extra jump-time dependence is not too convenient. However, the integral
form is a little bit simpler in the jump count sum as follows,∫ t

0

h(X(t), t,Q)dP(t;Q) =
np∑

j=1

Pj(t;Qj)∑
k=1

[
hi,j

(
X
(
T−j,k

)
, Tj,k, Qj,k

)]
nx×1

; (5.2)

∑0
k=1 ai,j,k ≡ 0 is understood.

Another representation uses Poisson random measure (PRM),

P(dt,dq) = [Pi(dt,dqi)]np×1 ,

where dt = (t, t + dt] is the time measure, dqi = (qi, qi + dqi] is the ith mark measure
and dq = [dqi]np×1 is the vector mark measure, such that the marked Poisson term
(5.1) has the form

h(X(t), t,Q)dP(t;Q) zol=
∫
Q

h(X(t), t,q)P(dt,dq) , (5.3)

where Q is the mark-space set, noting that P(dt,dq) is a random measure so the
integral is also random. This form has the advantage that the jump-time does not
appear and the mark-argument of the jump-amplitude h(x, t,q) is a deterministic
sample value of the mark. The expectation of the PRM jth component is

E[Pj(dt,dqj)] = λj(t)dtΦQj (dqj)
gen
= λj(t)dtφQj (qj)dqj ,

where ΦQj
(qj) is the mark distribution and φQj

(qj) is the mark density, which is
always assumed to exist, here, even in the generalized sense as indicated by the sym-
bol

{
gen
=
}

, e.g., a discrete distribution. The PRM is connected to the marked Poisson
differential process by the equivalence,∫

Q
P(dt,dq) ≡ dP(t;Q) .

The conditional expectation of the infinitesimal Poisson jump-term is

E[h(X(t), t,Q)dP (t;q) |X(t) = x] IID=
np∑

j=1

∫
Qj

[hi,j(x, t, qj)]nx×1φQj
(qj)dqjλj(t)dt

≡
np∑

j=1

EQj
[hi,j(x, t, Qj)]nx×1λj(t)dt ,

using the IID property of the marks.
Thus the marked-jump-diffusion SDE can be written in the two alternative forms,

dX(t) = f(X(t), t)dt + g(X(t), t)dW(t) + h(X(t), t,Q)dP(t;Q)

= f(X(t), t)dt + g(X(t), t)dW(t) +
∫
Q

h(X(t), t,q)P(dt,dq) ,

0 ≤ t ≤ tf , X(0) = x0 ∈ Dx ⊂ Rnx .

(5.4)

The corresponding stochastic integral equation (SIE) in the PRM form is

X(t) = x0 +
∫ t

0

(
f(X(s), s)ds+g(X(s), s)dW(s)+

∫
Q

h(X(s), s,q)P(ds,dq)
)

. (5.5)

22 F. B. HANSON

5.1. Mark Distribution Examples. The distributions of the marks Q are
the underlying distributions for the jump-amplitudes h(x, t,Q) which can be quite
complex compared to the simpler mark distributions, especially if h depends on the
random solution trajectory X(t).

5.1.1. Uniform Mark Distribution. The use of the uniform mark distribution
has been emphasized by Hanson et al. [27, 28, 25, 66, 29] for modeling heavy tailed
distributions in financial applications. In the scalar case, the time-dependent uniform
density on [a(t), b(t)], a(t) < b(t), is

φQ(q; t) =
1

b(t)− a(t)

{
1, a(t) ≤ q ≤ b(t)
0, else

}
, (5.6)

with mean µj(t) = (b(t) − a(t))/2 and variance σ2
j (t) = (b(t) − a(t))2/12. In finance

with linear models, so often the logarithm of the state is considered. Hence, it would
be the log-uniform distribution which is used. In financial applications and when
a(t) < 0 < b(t), a(t) represents the most extreme market crash while b(t) represents
the most extreme rally or buying frenzy. The log-uniform distribution results in the
fattest tails, since it can be thought of as all tail. In optimal portfolio and consumption
problems using jump-diffusions, the uniform has a big advantage due to finite support
implying greater trader flexibility for borrowing and short selling as shown by Zhu
and Hanson [68].

5.1.2. Normal Mark Distribution. In his pioneering jump-diffusion options
paper, Merton [48] used the normal distribution for the marks modeling the stock
log-returns underlying the corresponding options that needed pricing. The log-normal
jump-amplitude distribution has also been used by Andersen, Benzoni and Lund [2] in
their statistical studies of fitting financial return models. The time-dependent normal
density has the form,

φQ(q; t) =
e−(q − µj(t))2/(2σ2

j (t))√
2πσj(t)

, (5.7)

where q ∈ R, µj(t) is the specified jump-mark mean and σ2
j (t) is the specified variance.

The normal mark variables give a reasonable approximation of the fat tails in finance
problems when used for the log-returns, but the infinite range of the mark distribution
results in severe restrictions on flexibility of the trader’s stock fraction in the optimal
portfolio and consumption problem [68]. No such restrictions appear to occur in the
option pricing problem.

5.1.3. Double-Exponential Mark Distribution. In option pricing, Kuo [40]
and Kuo and Wang [41] have used the double-exponential distribution such that one
exponential density is used for positive values and a mirror image of an exponential
density is used for the negative values, but with different parameters. Here, time-
dependent exponential density is

φQ(q; t) =

− p1(t)

µ1(t)
e−q/µ1(t), q < 0, µ1(t) < 0

+ p2(t)
µ2(t)

e−q/µ2(t), q ≥ 0, µ2(t) > 0

 , (5.8)

where q ∈ R, the one-sided means µ1(t) and µ2(t) are specified, while the one-sided
probabilities satisfy p1(t)+p2(t) = 1, so the composite density is properly normalized.

STOCHASTIC PROCESSES AND CONTROL FOR JUMP-DIFFUSIONS 23

Earlier, Ramzani and Zeng [54] applied the maximum likelihood method to fit a
jump-diffusion model with double-exponential log-jump-amplitudes for security prices.
The double-exponential distribution has qualitatively similar properties as its fellow
Laplace distribution, i.e., the normal distribution, including being restrictive in a
trader’s flexibility due to the infinite range of the distribution in the optimal portfolio
problem; no such restrictions appear to occur in the option pricing application, as
long as the option is not part of an optimal portfolio problem.

5.1.4. Double-Uniform Mark Distribution. In analogy with the use of the
double-exponential mark distribution in finance, Zhu [67] for option pricing and Zhu
and Hanson [68] for optimal portfolio problems created the double-uniform mark
distribution. Since crashes and rallies seem to result from different psychological
behaviors, it is a good idea to separate the negative and positive jumps. The time-
dependent double-uniform distribution is given by

φQ(q; t) =

p1(t)
|a|(t) , a(t) < q < 0, a(t) < 0

p2(t)
b(t) , 0 ≤ q ≤ b(t), b(t) > 0

0, else

 , (5.9)

where the one-sided means |a|(t)/2 and b(t)/2 are specified, while the one-sided prob-
abilities satisfy p1(t)+p2(t) = 1. This mark distribution with its finite support allows
flexibility in short-selling and borrowing in the optimal portfolio and consumption
problem, unlike the case of unbounded support for the normal and double-exponential
mark distributions [68]. The finite range jump-amplitude distribution also makes sense
since the New York Stock Exchange instituted a series of market circuit breakers [6]
in 1988 to slow down and completely stop trading in stages to avoid a market crash
like the one in 1987.

5.2. Change of Variables and Marked Jump-Diffusion Chain Rule. Let-
ting Y(t) = F(X(t), t) again be the change of variables. Then following the decom-
position into continuous and jump parts in the simple jump case (4.13), the marked
jump case follows in two alternative forms,

dY(t) dt=
zol

(
Ft+f>∇x[F]+ 1

2

(
gR(w)g>

)
:∇x [∇x[F]]

)
dt+∇>x [F]gdW(t)

+
np∑

j=1

(
F
(
X(t)+[hi,j(X(t), t, Qj)]nx×1, t

)
− F(X(t), t)

)
dPj(t;Qj)

=
(
Ft+f>∇x[F]+ 1

2

(
gR(w)g>

)
:∇x [∇x[F]]

)
dt+∇>x [F]gdW(t)

+
np∑

j=1

∫
Qj

(
F
(
X(t)+[hi,j(X(t), t, qj)]nx×1, t

)
−F(X(t), t)

)
Pj(dt,dqj) ,

(5.10)

where again it is understood that the Poisson jump process Pj(t) picks out the pre-
jump time T−j,k of the state process X(t) if there is the kth jump at time Tj,k of the
jth Poisson process. Note that the last line of (5.10) can also be written

Jump[Y](t) =
np∑

j=1

Jumpj [F](X(t), t),

24 F. B. HANSON

in compact form, where

Jumpj [F](X(t), t) ≡
∫
Qj

(
F
(
X(t) + ĥj(X(t), t, qj), t

)
− F(X(t)t)

)
Pj(dt,dqj)

and

ĥj(x, t, qj) ≡ [hi,j(x, t, qj)]nx×1 .

5.3. Scalar, Linear, Marked Jump-Diffusion SDE Example. Consider the
scalar, linear marked-jump-diffusion model with nx = 1, nw = 1 and np = 1, using
the two Poisson forms,

dX(t) = X(t) · (A(t)dt + B(t)dW (t) + C(t;Q)dP (t;Q))

= X(t) ·
(
A(t)dt + B(t)dW (t) +

∫
Q

C(t; q)P(dt,dq)
)

,
(5.11)

with X(0) = x0 > 0, where A(t), B(t) and C(t;Q) are given integrable functions.
Again, the essential state positivity condition is that

C(t;Q) > −1 ,

since otherwise the first jump would take the state out of positive values. In the case
of one jump when dP (t;Q) = 1 and C(t;Q) > −1, the new jump is

X(t) + Jump[X](t) = X(t)(1 + C(t;Q)) > 0 ,

given jump values for (t;Q). Again, let

Y (t) = F (X(t), t) = ln(X(t))

be the logarithmic state transformation, with partial derivatives

Ft(x, t) = 0 , Fx(x, t) = 1/x , Fx,x(x, t) = −1/x2 ,

assuming x > 0 and with the conditional jump,

Jump[Y](t) = (ln(X(t) + C(t;Q)X(t))− ln(X(t))) dP (t;Q)

= ln(1 + C(t;Q))dP (t;Q) ,

provided X(t) > 0 and C(t;Q) > −1 while the zero-one law is in effect. Then, the
transformed jump-diffusion SDE by the chain rule (5.10) becomes state-independent
by adding the jump-change to the continuous diffusion-changes,

dY (t) dt=
zol

(
A(t)−B2(t)/2

)
dt + B(t)dW (t) + ln(1 + C(t;Q))dP (t;Q) ,

to dt-precision plus the zero-one jump law, so that immediate integration yields

Y (t) ims= Y (0)+
∫ t

0

((
A(s)−B2(s)/2

)
ds+B(s)dW (s)+ln(1+C(s;Q))dP (s;Q)

)
=Y (0)+

∫ t

0

((
A(s)−B2(s)/2

)
ds+B(s)dW (s)

+
∫
Q

ln(1+C(s; q))P(ds,dq)
)

,

(5.12)

STOCHASTIC PROCESSES AND CONTROL FOR JUMP-DIFFUSIONS 25

the sum of a Riemann integral, a Wiener integral and a Marked Poisson jump integral.
Switching notation and logarithmic inversion lead to

X(t) =x0 exp
(∫ t

0

((
A(s)−B2(s)/2

)
ds+B(s)dW (s)+ln(1+C(s;Q))dP (s;Q)

))

=x0 exp
(∫ t

0

((
A(s)−B2(s)/2

)
ds+B(s)dW (s)

))P (t;Q)∏
k=1

(
1 + C

(
T−k ;Qk

))
,

(5.13)

where T−k is the kth pre-jump time and Qk is the random jump-amplitude mark.
The last factor comes from the law of exponentials of logarithmic exponents using the
conversion

exp

P (t;Q)∑
k=1

ln
(
1 + C(T−k , Qk)

) =
P (t;Q)∏

k=1

(
1 + C

(
T−k ;Qk

))
.

The positivity property of the state is preserved as it is in the prior cases.
Using the Itô forward integration expansion and mean square convergence, Han-

son [25, Chapter 5] shows the following theorem on jump-diffusion exponential expec-
tations, here reformulated:

Theorem 5.1. Exponential Expectations:

E
[
exp
(∫ t

0

(B(s)dW (s)− 1
2
B2(s)ds)

)]
= 1 (5.14)

and

E
[
exp
(∫ t

0

∫
Q

ln(1 + C(s; q))P(dt,dq)
)]

= exp
(∫ t

0

∫
Q

C(s; q)φQ(q)dqλ(s)ds

)
.

(5.15)

Thus,

E[X(t)] = x0 exp
(∫ t

0

(A(t) + λ(s)EQ[C(s;Q)]) ds

)
=x0 exp

(∫ t

0

E[dX(s)/X(s) |X(s)]
)

,

(5.16)

where

EQ[C(t;Q)] =
∫
Q

C(t; q)φQ(q)dq .

Similarly,

Var[X(t)] dt= E2[X(t)]
(
exp
(∫ t

0

Var[dX(s)/X(s) |X(s)]
)
− 1
)

. (5.17)

26 F. B. HANSON

5.3.1. Random Simulated Mark Jump-Diffusion Solution. Using the ex-
ponent solution (5.12), the forward, discrete, recursive form of this solution is

Yj+1
fwd' Yj +

(
Aj−B2

j /2
)
∆t + Bj∆Wj + ln(1+Cj)∆Pj , (5.18)

where Cj = C(tj ;Qj) and the state solution is given by Xj+1 = exp(Yj+1) as before.
Since the marks, Q, are the underlying jump-amplitude random variables and it is

difficult if not impossible to separate the outlier jumps from a background of normal
fluctuations [1], it is best to keep the selection of Q simple. So let

Q = ln(1 + C(t;Q)) or C(t;Q) = exp(Q)− 1 , (5.19)

and the discrete form (5.18) becomes

Yj+1
fwd' Yj +

(
Aj−B2

j /2
)
∆t + Bj∆Wj + Qj∆Pj . (5.20)

This may seem to overly restrict the mark-jump-amplitude relation to a time-inde-
pendent one, but the distribution of the marks still can be time-dependent, such as
the use of time-dependent parameters in the mark-distribution examples of Subsec-
tion 5.1. Further, the simplest selection of a mark distribution for the logarithm of
the state is the uniform distribution (5.6) with Q ∈ [a(t), b(t)], although the other
listed example distributions could be used if desired. For instance, with constants a
and b in MATLABTM,

Q = a + (b− a) ∗ rand(1, n);

provided a jump has occurred, is used for uniform random simulations on (a, b), where
rand is the uniform random number generator on (0, 1), approximately.

A corresponding simplified sample code in MATLABTM for a single sample path
follows:
function markjumpdiffusionpaths
% Sample Mark Jump-Diffusion SDE Test Code
% Scalar, Linear Model:
% dX(t) = X(t)*(A(T)*dt+B(t)*dW(t)+C(t;Q)*dP(t;Q));
% X(0)=x0; 0<t<tf; C(t;Q)=exp(Q)-1 > -1; a(t)<Q<b(t);
global A0 A1 B0 B1 a0 a1 b0 b1 lam0 lam1
nt = 1000; t0 = 0; tf = 2.0; dt = (tf-t0)/nt; %sample input;
x0 = 1; % initial state;
lam0 = 4.0; lam1 = 1.0; % jump rate parms.;
A0 = 0; A1 = +0.3; % plant function coefficient parms.;
B0 = 0; B1 = +0.5; % diffusion coefficient parms.;
a0 = -0.5; a1 = -0.25; b0 = +0.5; b1 = +0.20; % uniform dist. parms.;
t = 0:dt:tf; % set time vector in unit base: t(1)=0; t(nt+1)=tf;
sqrtdt = sqrt(dt); % Wiener scaling;
Av = A(t); Bv = B(t); Cv = C(t);% assumes vector subfunctions;
av = a(t); bv = b(t); % assumes vector subfunctions;
ldt = 0.5*dt*Lam(t); % time-dependent jump-rate;
y = zeros(nt+1); % predeclare for efficiency;
y(1) = log(x0)% log = ln; unit not zero index base;
dw = sqrtdt*randn(nt); % Wiener (0,dt)-normal step matrix;
du = rand(nt); % Poisson zero-one jump law matrix;

STOCHASTIC PROCESSES AND CONTROL FOR JUMP-DIFFUSIONS 27

dp = zeros(nt); % pre-declare as zero;
uq = rand(nt); % Could change ’state’, but disjoint from du;
q = zeros(nt);
for j = 1:nt % Zero-one jump law and exponent update:

q(j) = av(j)+(bv(j)-av(j))*uq(j);
if (du(j)>=(1-ldt(j))/2) && (du(j)<=(1+ldt(j))/2)
dp(j) = 1;

end
y(j+1,ks) = y(j,ks) + (a(j)-b(j)^2/2)*dt+b(j)*dw(j)...

+q(j)*dp(j);
end
x = exp(y); % vector state;
%
% Plot:
plot(t,x),’k-’,’linewidth’,3)
title(’Jump-Diffusion Simulated Sample Path’);
ylabel(’X(t),State’); xlabel(’t, Time’);
%
function Av = A(t) % must be vector subfunction, e.g., dot-division;
global A0 A1
Av = A0+A1*t./(1+t); % sample, fill-in for each problem;
%End A
function Bv = B(t) % must be vector subfunction;
global B0 B1
Bv = B0+B1*sqrt(t)./(1+t); % sample, fill-in for each problem;
%End B
function lv = Lam(t) % must be vector subfunction;
global lam0 lam1
lv = lam0+lam1*sin(pi*t); % sample, fill-in for each problem;
%End Lam
function av = a(t) % must be vector subfunction;
global a0 a1
av = a0+a1*sin(pi*t); % sample, fill-in for each problem;
%End a
function bv = b(t) % must be vector subfunction;
global b0 b1
bv = b0+ b1*sin(pi*t); % sample, fill-in for each problem;
%End b
%
%%End markjumpdiffusionpaths.m
%

A sample illustration using a more complicated MATLABTM code with four sample
paths using different random states (seeds) is given in Figure 5.1.

6. Stochastic Optimal Control for Mark Jump-Diffusions: Stochastic
Dynamic Programming. Studying stochastic dynamics is only half the problem;
the other half is controlling the dynamics. Almost all appliances and industrial ma-
chines have control systems: DVD-players, TVs, computers, hard-drives, satellites,
automobiles, airplanes, ships, trains, etc.

Let U(t) be the control vector in Du at time t and usually found in the plant or

28 F. B. HANSON

0 0.5 1 1.5 20.5

1

1.5

2

2.5

3

3.5
Mark Jump!Diffusion Simulated Paths

X(
t),

St
at

e

t, Time

1st State
2nd State
3rd State
4th State

Fig. 5.1. Mark-jump-diffusion paths for a scalar, linear SDE (5.11) are simulated using
MATLABTM with nt = 1000 sample points, four randn normal states for diffusion, four rand uniform
states of double length for the zero-one Poisson jump law as well as for the mark distribution, and
maximum time tf = 2.0 starting at x0 = 1.0.

deterministic function, so

f(X(t), t) −→ f(X(t),U(t), t) .

When possible, an optimal, feedback control is preferred, i.e.,

U∗(t) = Û(X(t), t) ,

where the asterik (∗) denotes an optimal solution and the dependence on X(t) means
state-control feedback, i.e., X←→ U.

Consider the control-dependent jump-diffusion SDE,

dX(t) = f(X(t),U(t), t)dt+g(X(t), t)dW(t)+
∫
Q
h(X(t), t,q)P(dt,dq) , (6.1)

as previously with X(0) = x0 and t ∈ [0, tf], but with the control vector U(t) in the
plant function. The control could also appear in the coefficients g(x, t) for diffusion or
h(x, t,q) for marked jumps, but that adds too much complexity for this introductory
survey and excludes certain important canonical problems such as linear-quadratic
problems.

Since the control has been introduced as another variable, another condition is
needed to determine it and that is called the objective of the optimization, which is
to minimize costs or maximize the utility of wealth or profit. Here we will focus on
the objective for minimization for definiteness since the difference with the maximum
is trivial, i.e., max[f(x)] = −min[−f(x)]. So consider the scalar objective,

V [X,U](t)=
∫ tf

t

C(X(s),U(s), s)ds + S(X(tf), tf) , (6.2)

STOCHASTIC PROCESSES AND CONTROL FOR JUMP-DIFFUSIONS 29

where V [X,U](t) ∈ R, t ∈ [0, tf], C(x(t),u(t), t) is the integrable instantaneous
or running costs and S(X(tf), tf) is the final or salvage costs. As t → tf then
V [X,U](tf) = S(X(tf), tf) for all X(tf) ∈ Rnx .

Direct optimization of the objective (6.2) is ill-posed since (6.2) is a stochastic
problem with too many local optima. This suggests the smoothing of the objective by
taking the expectation, so the following conditional expectation function is considered
as a practical substitute for (6.2) with some flexibility in state and control dependence,

V (x,u, t) = E
(W ,P)(t,tf]

[V [X,U](t) |X(t) = x,U(t) = u] , (6.3)

then finally taking the optimum of the expected objective (6.3),

V
∗
(x, t) = min

U(t,tf]

[
V (x,u, t)

]
, (6.4)

over the admissible set U(t, tf] = {U(s) | t < s ≤ tf}.

6.1. Bellman’s Principle of Optimality: Recursive Form. Stochastic dy-
namic programming according to Richard Bellman [12] depends on the ability to
optimize over disjoint time-increments in backward time. This backward decompo-
sition in time is valid for many problems, particularly deterministic problems. The
extension to stochastic problems holds for Markov processes due to the independent
increment property. In particular, the principle of optimality for stochastic processes
depends on the following analytical decompositions [25, Chapter 6]:

• Additive Decomposition of Cost Integrals: Let ∆t be a time-increment, such
that 0 < ∆t < tf − t and

V [X,U](t) =
∫ tf

t

C(X(s),U(s), s)ds+S(X(tf), tf)

=
∫ t+∆t

t

C(X(s),U(s), s)ds

+
∫ tf

t+∆t

C(X(s),U(s), s)ds+S(X(tf), tf)

=
∫ t+∆t

t

C(X(s),U(s), s)ds + V [X,U](t + ∆t) ,

(6.5)

yielding a preliminary recursion based upon the usual additive property of
integrals.
• Multiplicative Decomposition of Iterated Expectations: By applying iterated

expectations,

V (x,u, t) = E
(W ,P)(t,tf]

[V [X,U](t) | (X,U)(t)]

= E
(W ,P)(t,t+∆t]

[∫ t+∆t

t

C(X(s),U(s), s)ds + V (x,u, t + ∆t)∣∣∣∣ (X,U)(t)
]

,

(6.6)

giving the secondary recursion step.

30 F. B. HANSON

• Multiplicative Decomposition of minimum (or maximum): Assuming piece-
wise optimization over time, the principle of optimality is found:

V
∗
(x, t) = min

U(t,tf]

[
V (x,u, t)

]
= min

U(t,t+∆t]

[
E

(W ,P)(t,t+∆t]

[∫ t+∆t

t

C(X(s),U(s), s)ds

+V
∗
(x + ∆X(t), t + ∆t)

∣∣∣∣ (X,U)(t) = (x,u)
]]

,

(6.7)

where the last term is the shifted optimal, expected objective.
Remarks 6.1. When considering more general stochastic optimization problems,

knowledge of the details of this sequence facilitates the modification of the principle
of optimality (6.7) to the new problem. In addition, it must be emphasized that the
optimization decomposition (6.7) is an assumption of the principle, unlike the integral
(6.5) and expectation (6.6) decompositions. However, (6.7) holds in many cases, but
there are economic counter examples such as those found by Rust [56].

6.2. PDE of Stochastic Dynamic Programming. Application of the jump-
diffusion stochastic chain rule, the forward limit as the time-increment ∆t→ 0+ with
∆t → dt in dt-precision and Taylor approximations lead to a preliminary step in
deriving the Bellman’s PDE of stochastic dynamic programming,

V
∗
(x, t) dt=

zol
min
u(t)

[
E

(dW ,dP)(t)

[
C(x,u, t)dt + V

∗
(x, t) + V

∗
t (x, t)dt

+dcont

[
X>](t)∇x

[
V
∗]

(x, t) + 1
2 (gdW)>∇x

[
∇>x
[
V
∗]]

(x, t)(gdW)

+
np∑

j=1

∫
Qj

(
V
∗(

x + [hi,j(x, t, qj)]nx×1 , t
)
− V

∗
(x, t)

)
P
(
dt,dqj

)
∣∣∣∣ (X,U)(t) = (x,u)

]]
.

(6.8)

Upon taking the indicated expectations along with the definition of dcont

[
X>], can-

celing the V
∗
(x, t) on each side of the equation, canceling the remaining common dt,

letting v(x, t) = V
∗
(x, t) for simplicity and thus completing a quick derivation of the

PDE of stochastic dynamic programming (SDP) leads to

0 = vt(x, t) + 1
2 (gg>) :∇x

[
∇>x [v]

]
(x, t)

+
np∑

j=1

∫
Qj

(
v
(
x + [hi,j(x, t, qj)]nx×1 , t

)
− v(x, t)

)
φQj

(qj)

+min
u

[C(x,u, t) + f(x,u, t)∇x[v](x, t)] .

(6.9)

Consider the following properties of the PDE of SDP:
Properties 6.2.
• The PDE of SDP (6.9) is a backward, final value problem with final condition

as t→ t−f ,

v(x, tf) = S(x, tf)

for any x ∈ Dx.

STOCHASTIC PROCESSES AND CONTROL FOR JUMP-DIFFUSIONS 31

• The boundary and other conditions are state domain Dx and process depen-
dent, e.g., x ≥ 0 and 0 is reflecting.

• The PDE of SDP (6.9) is also called the HJBE or Hamilton-Jacobi-Bellman
equation, since it resembles the Hamilton-Jacobi equations of mechanics, i.e.,

0 = vt(x, t) + Fx[v](x, t) = vt(x, t) + min
u

[H(x,u, t)] ,

where H(x,u, t) is called the Hamiltonian or pseudo-Hamiltonian in control.
• For jump-diffusion control, the HJBE is a functional PDE (FPDE) and is also

called a partial integro-differential equation (PIDE) due to the jump integral
and the control optimization.
• The HJBE is a scalar-valued PIDE in 3D-space plus time, but the solution

set is a scalar optimal value v(x, t) plus a vector optimal control

u∗(x, t) = argmin
u

[H(x,u, t)] ,

called a feedback form of control. The solution is a mapping from the space-
time set {x, t} ∈ Rnx+1 to the optimal value-control set {v(x, t),u∗(x, t)} ∈
Rnu+1.
• The optimal control in absence of constraints is called the regular optimal

control or just regular control u(reg)(x, t). It is often used in part to find
the global optimal control in the presence of constraints by using the regular
control when the constraints are automatically satisfied and then calculating
the global optimal control with the active constraints to get u∗(x, t). Thus,
u∗(x, t) is the composite of the regular control and the constraints when they
are active or forced. In this case the HJBE is written

0 = vt(x, t) +H∗(x, t) ,

where

H∗(x, t) ≡ H(x,u∗(x, t), t) = max
u

[H(x,u, t)] ,

provided the minimum exists.
• The diffusion coefficient could also depend on the control, i.e., g = g(x,u, t),

and so could the jump-amplitude coefficient, i.e., h = h(x,u, t,q). However,
this kind of dependence introduces a great deal of complexity to the more sim-
ple stochastic optimal control problems, such as those in the next section.
Typically, it is the plant or deterministic function, f(x,u, t), that is control-
lable.

6.3. Computational Complexity: Bellman’s Curse of Dimensionality.
Computational methods for stochastic dynamic programming suffer from an expo-
nential order dimensional complexity that is very similar to that for parabolic PDEs
of physical diffusion problems when numerical procedures such as finite differences and
finite elements are used. Thus, the computational difficulties are associated with sec-
ond and higher order PDEs even for a moderate number of space dimensions. For the
computational dynamic programming problem, the extreme computational demands
are known as Bellman’s curse of dimensionality [13].

32 F. B. HANSON

For simplicity, only the finite difference with even step sizes version will be briefly
presented. Starting with the nx-dimensional spatial vector x = [xi]nx

, let the ith
component be represented by

Xi,ji = xi,0 + (ji − 1)∆Xi ,

for ji = 1 : Ni nodes in i = 1 : nx dimensions, where ∆Xi = (Xi,Ni −Xi,1)/(Ni − 1)
is the fixed ith step size. Let Xj = [Xi,ji

]nx×1 represent a single, local vector position
in space. Let j = [ji]nx×1 be the local index and J = [j1, j2, . . . , jnx

]N1×N2×···×Nnx
be

the N =
∏nx

i=1 Ni dimensional global index array. Let the time variable be discretized
as Tk = (k−1)∆T for k = 1 : Mt equally-spaced time nodes, where ∆T = tf/(Mt−1),
though k will not figure into the space dimensional complexity. Similarly, let the mark
variable be discretized as values q` for ` = 1 : Nq using values appropriate for the
mark density, such as the nodes of general Gaussian quadrature [63] developed for
jump integrals, but the ` will also be ignored in the count.

Using only central finite differences (CFDs) for the state or spatial variable with
the time index k and mark index ` fixed but with backward march in time appropriate
for the final value problem, the value terms have the following representation:

v(Xj, Tk)→ VJ,k ≡ [Vj1,j2,...,jnx ,k]N1×N2×···×Nnx
,

vt(Xj, Tk)→ (VJ,k+1−VJ,k)/(−∆T) ,

∇x[v](Xj, Tk)→ DVJ,k ≡ [DVi,j1,...,jnx ,k]nx×N1×···×Nnx

=
[(

Vj1+δi,1,...,jnx+δi,nx ,k

−Vj1−δi,1,...,jnx−δi,nx ,k

)
/∆Xi

]
nx×N1×···×Nnx

,

∇x

[
∇>x [v]

]
(Xj, Tk)→ DDVJ,k ≡ [DDVi,j,j1,...,jnx ,k]nx×nx×N1×···×Nnx

,

u(reg)(Xj, Tk)→ URJ,k ≡ [URi,j1,...,jnx ,k]nx×N1×···×Nnx
,

u∗(Xj, Tk)→ USJ,k ≡ [USi,j1,...,jnx ,k]nx×N1×···×Nnx

= [min(UMAXi,max(UMINi,

URi,j1,...,jnx ,k))]nx×N1×···×Nnx
,

v
(
Xj + ĥJ,k,`, Tk

)
→ VHJ,k,` ≡ [VHi,j1,...,jnx ,k,`]nx×N1×···×Nnx

(6.10)

where δi,j is the Kronecker delta and ĥJ,k,` = hJ,`(XJ , Tk, q`), while UMINi = U
(min)
i

and UMAXi = U
(max)
i are the assumed hypercube constraints on the control for

dimensions i = 1 : nx.

The diffusion Hessian array has the most complexity counting the number of

STOCHASTIC PROCESSES AND CONTROL FOR JUMP-DIFFUSIONS 33

elements and is generally nonsymmetric, so is given by

DDVJ,k ≡
[
DDVi,j,j1,...,jnx ,k

]
nx×nx×N1×···×Nnx

=
[(

Vj1+δi,1,...,jnx+δi,nx ,k−2Vj1,...,jnx ,k+Vj1−δi,1,...,jnx−δi,nx ,k

)
δi,j

/
∆X2

i

+0.25
(
Vj1+δi,1+δj,1,...,jnx+δi,nx+δj,nx ,k

−Vj1−δi,1+δj,1,...,jnx−δi,nx1+δj,nx ,k − Vj1+δi,1−δj,1,...,jnx+δi,nx−δj,nx ,k

+Vj1−δi,1−δj,1,...,jnx−δi,nx−δj,nx ,k

)
·(1− δi,j) /(∆Xi∆Xj)]nx×nx×N1×···×Nnx

,

(6.11)

to second order accuracy using central finite differences.
Since the Hessian array is the largest array that needs to be calculated in the

straight-forward finite difference method, ignoring the extra integration required for
the jump integral, the order of the computational complexity for stochastic dynamic
programming finite differences will be the same as the order of the number of elements
in the Hessian array, i.e.,

O (NDDV) = O

(
n2

x ·
nx∏
i=1

Ni

)
= O

(
n2

x ·Nnx
g

)
= O

(
n2

x · enx ln(Ng)
)

, (6.12)

where Ng ≡ (
∏nx

i=1 Ni)
(1/nx) is the geometric mean of the spatial node numbers over

all nx dimensions. Hence, the growth of computational complexity is exponential
with exponent nx ln(Ng), proportional to the logarithm of the geometric mean of the
spatial node size. The growth of the curse of dimensionality in the logarithm to the
base 2 scale is illustrated in Fig. 6.1 for the Hessian size in bytes, i.e., log2(8·B·NDDV).
Note the top scale in the figure is about 60 log(B) and 260B = 10246B is one terabyte
(1TB) or 10242GB (1GB = 240B is one gigabyte, while 1MB = 220B is one megabyte)
and that is well within the capabilities of our current largest scale computers.

For parallel processing techniques in computational stochastic dynamic program-
ming refer to Hanson’s 1996 chapter [23] and more recent paper [24] for more general
supercomputing techniques and methods for solving jump-diffusion problems. For
other methods, see the Markov chain approximation method, for instance, that is
described in Kushner and Dupuis’ book [44].

7. Jump-Diffusion Applications. In order to avoid the curse of dimensional-
ity, sometimes, depending on the application, a canonical problem can be found that
does not have the computational demands in the state as with stochastic dynamic pro-
gramming. This means using an algorithm rather than high performance computing
hardware to avoid or alleviate large computational demands due to dimensionality.

However, some problems do not fit the canonical dimensional reduction models
and a fuller stochastic model and control problem is necessary. For instance, biological
dynamical models usually have nonlinear terms due to saturation or other interac-
tion effects. Although, many financial problems are linear, problems with stochastic
volatility are usually nonlinear in an essential way. Two examples of these nonlinear
problems are given in this section along with the two canonical examples.

7.1. LQJD Canonical Problem: Linear Jump-Diffusion-Dynamics and
Quadratic Costs. The linear-quadratic jump-diffusion (LQJD) problem is a canon-
ical optimal control problem with jump-diffusion (JD) dynamics that are linear (L)
and costs that are quadratic (Q) in both state and control. Thus, starting from

34 F. B. HANSON

0
2

4
6

2
4

6
8

10

10

20

30

40

50

60

log2(Ng) = log2(Nodes)

Curse of Dimensionality: NDDV = log2(8*nx
2 exp(nx ln(Ng)))

 nx, State Dimensions

lo
g 2(N

DD
V) =

 L
og

2(
Pr

ob
le

m
Si

ze
)

Fig. 6.1. Estimate of the logarithm to the base 2 of the order of the growth of memory and
computing demands using 8 byte words to illustrate the curse of dimensionality in the Hessian case
for nx = 1:10 dimensions and Ng = 1:64 = 1 :26 geometric mean nodes per dimension. Note that
1KB or one kilobyte has a base 2 exponent of 10 = log2(210), while the base 2 exponent is 20 for
1MB, 40 for 1GB and is 60 for 1TB.

the marked-jump-diffusion control problem dynamics in (6.1), consider the following
simplified coefficients,

f(x,u, t) = f0(t) + f1(t)x + f2(t)u ; (7.1)

g(x, t) = g0(t) ; (7.2)

h(x, t,q) = h0(t,q) , (7.3)

where all time-dependent plant coefficients are commensurate in multiplication, i.e.,
f0(t) = [f0,i(t)]nx×1, f1(t) = [f1,i,j(t)]nx×nx

and f2(t) = [f2,i,j(t)]nx×nu
, while there

are similar forms for g0(t) and h0(t,q). Note that the stochastic noise coefficients are
in terms already linear in the noise.

Similarly, the quadratic cost coefficients of the optimal objective (6.2) are given
as a general second degree polynomial in state and control variables,

C(x,u, t) = C0(t) + C>
1(t)x + C>

2(t)u + 1
2x

>C1,1(t)x + x>C1,2(t)u

+ 1
2u

>C2,2(t)u ;
(7.4)

S(x, t) = S0(t) + S>1(t)x +
1
2
x>S1,1(t)x , (7.5)

where the quadratic control running costs coefficient is positive-definite,

C2,2(t) = [C2,2,i,j]nu×nu
> 0 ,

STOCHASTIC PROCESSES AND CONTROL FOR JUMP-DIFFUSIONS 35

but can also be taken to be symmetric without loss of generality [4], since the pure
quadratic form (u>Au) has a zero contribution from the antisymmetric part of the ma-
trix (A). Similarly, the other quadratic running costs and final costs time-dependent
coefficients will be taken as symmetric. Often C1,1(t) is taken to be positive-definite
too, but can be relaxed in most applications.

The usual solution assumption is that the optimal expected value is quadratic in
the state,

v(x, t) = v0(t) + v>1 (t)x +
1
2
x>v1,1(t)x , (7.6)

for all x ∈ Dx ⊂ Rnx , like the final cost assumption (7.5) and can be justified heuris-
tically or rigorously with much more effort [4]. Since x is an independent variable
for the state, only the three time-dependent coefficients, v0(t), v1 and v1,1(t) need
be found. Once found, the quadratic template (7.6) can be formed and represents
a large reduction in computational demands to find the full state-time solution oth-
erwise. The optimal state v(x, t) satisfies the final condition v(x, tf) = S(x, tf) for
any x ∈ Dx and by the arbitrariness of the state vector x and independence of the
polynomial terms, the final conditions for the coefficients are

v0(tf) = S0(tf), v1(tf) = S1(tf), v1,1(tf) = S1,1(tf) . (7.7)

By vector calculus, the optimal value solution has the following derivatives and
jump-difference,

vt(x, t) = v0(t) + (v′1)
>(t)x + 1

2x
>v′1,1(t)x ,

∇x[v](x, t) = v1(t) + v1,1(t)x ,

∇x

[
∇>x[v]

]
(x, t) = v1,1(t) ,

v
(
x + ĥ0,j(t, qj), t

)
− v(x, t) = v>1 (t)ĥ0,j(t, qj) + ĥ>0,j(t, qj)v1,1(t)x

+ 1
2 ĥ

>
0,j(t, qj)v1,1(t)ĥ0,j(t, qj), t) ,

(7.8)

where v1,1(t) is taken to be symmetric since it appears in a pure quadratic form and
where

ĥ>0,j(t, qj) ≡ [h0,i,j(t, qj)]nx×1

for j = 1 : np.
Assembling all the parts, the Hamiltonian has the same form as the running cost,

H(x,u, t) = H0(t) + H>
1(t)x + H>

2(t)u + 1
2x

>H1,1(t)x + x>H1,2(t)u

+ 1
2u

>H2,2(t)u .
(7.9)

In absence of control constraints, the regular or critical points with respect to the
control vector are given by

∇u[H](x,u, t) = H2(t) +H>1,2(t)x +H2,2(t)u

= C2(t) + C1,2(t)>x + f>2 (t) (v1(t) + v1,1(t)x) + C2,2(t)u

= 0nu×1 ,

(7.10)

36 F. B. HANSON

where the inherited symmetry of H2,2(t) has been used. Hence, the regular control
vector is obtained in the form of linear feedback control,

u(reg)(x, t) = −C−1
2,2(t)

(
C2(t) + C1,2(t)>x + f>2 (t) (v1(t) + v1,1(t)x)

)
,

≡ (reg)
0 (t) + u

(reg)
1 (t)x ,

(7.11)

using the invertibility of the positive definite C2,2(t). In the case of constrained
control, e.g., hypercube constraints,

u
(min)
i (x, t) ≤ u∗i (x, t) ≤ u

(max)
i (x, t)

for i = 1 : nu and u(x, t) ∈ Du given the u
(min)
i (x, t) and u

(max)
i (x, t), so the optimal

control vector components have the continuous composite form,

u∗i (x, t) =

u

(min)
i (x, t), u

(reg)
i (x, t) ≤ u

(min)
i (x, t)

u
(reg)
i (x, t), u

(min)
i (x, t) ≤ u

(reg)
i (x, t) ≤ u

(max)
i (x, t)

u
(max)
i (x, t), u

(max)
i (x, t) ≤ u

(reg)
i (x, t)

 . (7.12)

The time-dependent coefficients follow from substituting into the HJBE, 0 =
vt(x, t) + H(x,u∗(x, t), t), and collecting the different orders of the state vector |x|k
for k = 2 : −1 : 0, resulting in a unidirectionally coupled system of matrix differential
equations subject to the final conditions (7.5). In the regular control region, terms
solely order of |x|2/2 yield a matrix Riccati equation (MRE) of the form

0nx×nx
= v′1,1(t)− v>1,1(t)C

−1
2,2(t)v1,1(t) + F2,1(t)v1,1(t) + F2,0(t) (7.13)

for residual functions F2,1(t) and F2,0(t) that can be determined after some algebra [25,
Chapter 6]. Given the solution for v1,1(t), terms solely order of x lead to a linear vector
ODE for v1(t),

0nx×1 = v′1(t) + F1,1(v1,1(t), t)v1(t) + F1,0(v1,1(t), t) , (7.14)

for residual functions F1,1 and F1,0, which can be found after some algebraic effort.
Finally, given the solution coefficients v1,1(t) and v1(t), terms order of one lead to a
pure integration problem,

0 = v′0(t) + F0(v1(t), v1,1(t), t) , (7.15)

for a residual function F0(v1(t), v1,1(t), t). See Hanson [25, Chapter 6] for a complete
description of the residual functions for this set of three matrix ODEs arising from a
LQJD optimal control problem. The set of equations, (7.13), (7.14) and (7.15), are
all backward equations and are solved in the top-down order presented. Since the
computational problem is for an ODE system problem in time alone, the curse of
dimensionality (6.12) formula has no meaning for the computation needed here.

See Westman and Hanson [64] for an application of the LQJD system to a mul-
tistage manufacturing system and Hanson [25, Chapter 6] for a more general devel-
opment of the LQJD problem and variants. The LQJD problem has also been called
the linear quadratic Gaussian-Poisson (LQJP), the jump linear quadratic Gaussian
(JLQG) problem and other names. The classical reference of Anderson and Moore [4]
has extensive treatments of the deterministic LQ problem, but also treats the filtering
of Gaussian noise for the linear quadratic Gaussian (LQG) problem.

STOCHASTIC PROCESSES AND CONTROL FOR JUMP-DIFFUSIONS 37

7.2. Optimal Portfolio and Consumption Canonical Problem with Con-
stant Relative Risk Aversion (CRRA) Utility. The optimal portfolio and con-
sumption problem was also pioneered by Merton [45, 46] for the scalar, pure diffusion
model (3.12), even before the Black-Scholes-Merton 1973 options paper [15, 47] and
before Merton’s pioneering 1976 jump-diffusion options paper [48]. For the jump-
diffusion optimal portfolio problem here, there is a financial portfolio which consists
of a risky asset usually called a stock at price S(t) that is assumed to satisfy the scalar
linear version of the marked-jump-diffusion Eq. (5.4),

dS(t) =S(t)
(

µ(t)dt + σ(t)dW (t) +
∫
Q

h0(q)P(dt,dq)
)

, (7.16)

where W (t) is the Wiener process and a riskless (no noise) asset usually designated
as a zero-coupon bond at price B(t) satisfying the deterministic exponential growth
equation,

dB(t) = r(t)B(t)dt , (7.17)

where r(t) > 0 is the riskless interest rate. Let U0(t) be the instantaneous portfolio
fraction of the bond and let U(t) be the instantaneous fraction of the stock in the
portfolio, such that U0(t) + U(t) = 1. For flexibility in trading, the fraction U(t) will
not necessarily be in [0, 1], since short selling of the stock could cause U to become
negative with the deposited proceeds in bonds increasing U0 to become greater than
one or borrowing from bonds to buy stocks could cause U0 to become negative and
U exceed one, if only instantaneously.

The wealth Z(t) of the portfolio with consumption follows from equating the
relative change in the wealth to the relative price changes in the bond plus the stock
less the consumption rate C(t) relative to the current wealth, so

dZ(t) = Z(t)

(
r(t)dt + U(t)

(
(µ(t)− r(t))dt

+σ(t)dW (t) +
∫
Q

ho(q)P(dt,dq)
))
− C(t)dt ,

(7.18)

where U0(t) = 1 − U(t) has been substituted to eliminate the bond fraction. The
wealth Z(t) is the state variable and it is assumed to be non-negative, Z(t) ≥ 0, to
exclude bankruptcy [60, 59]. Similarly, the consumption will be bounded by wealth,
i.e., 0 ≤ C(t) ≤ C(max)Z(t) where C(max) ≤ 1. The consumption C(t) and the
stock fraction U(t) are the control variables of the optimal portfolio problem. Also,
it will be assumed that the stock fraction U(t) will be bounded, U (min) ≤ U(t) ≤
U (max), to exclude extreme borrowing and short-selling as in the papers of Hanson et
al. [28, 68]. It turns out that, in the jump-diffusion optimal portfolio problem, there is
an additional natural boundary condition resulting in restrictions on the stock fraction
control.

The portfolio objective of the investor is to maximize the conditional, expected
current value of the discounted utility U(Z(tf)) of final wealth at the end of the invest-
ment horizon at tf and the discounted utility of the running consumption preferences

38 F. B. HANSON

U(c), using the same utility function, i.e., the optimal value of the portfolio satisfies

v(z, t) = max
{u, c}(t, tf]

[
E
[
e−β(t,tf)U(Z(tf))

+
∫ tf

t

e−β(t,s)U(C(s)) ds

∣∣∣∣ Z(t) = z, U(t) = u, C(t) = c

]]
,

(7.19)

conditioned on the state-control set and β(t, s) is the cumulative time-discount over
time in (t, s) with β(t, t) = 0 and discount rate β(t) ≡ βs(t, t) at time t. The utility
function U(c) is continuous, increasing (U ′(c) > 0) and convex (U ′′(c) < 0, simply
stated) for c > 0. The optimal value must satisfy the final time conditions v(z, tf) =
U(z) for all z > 0. In order to avoid Merton’s [46] difficulties with power utility
functions, U ′(c) → +∞ as c → 0+ will be assumed for the utility of consumption.
The optimal value function must satisfy an absorbing boundary condition at zero
wealth [60, 59, 49, 68], so

v(0+, t) = U(0)e−β(t,tf) + U(0)
∫ tf

t

e−β(t,s)ds , (7.20)

since consumption must vanish with wealth and U is continuous.
Application of the Itô stochastic chain rule to the principal of optimality corrected

for t-dependent discounting factors [25, Chapter 10] (note that the usual running cost
function has the form C(X(s),U(s), s) in (6.2), but (7.19) has an extra t-dependence
of the form Ĉ(X(s),U(s), s, t), but the t-dependence can be separated out), the PIDE
of stochastic dynamic programming becomes

0 = vt(z, t)−β(t)v(z, t) + U(c∗) + [(r(t)+(µ(t)− r(t))u∗)z − c∗] vz(z, t)

+ 1
2σ2(t)(u)2z2vzz(z, t)+

∫
Q

(v(α(u∗, q)z, z)−v(z, t))φQ(q)dq ,
(7.21)

where u∗ = u∗(z, t) ∈ [U (min), U (max)] and c∗ = c∗(z, t) ∈ [0, C(max)z] are the optimal
controls if they exist, while vz(z, t) and vzz(z, t) are the partial derivatives with respect
to wealth z when 0 ≤ t < tf . The wealth changes with a jump by a factor

α(u, q) ≡ 1 + (eq − 1) u ,

after taking h0(q) = exp(q) − 1 as in (5.19) so that the log-change in the jump-
amplitude is the mark q, in the post-jump wealth argument of (7.21).

However, since α(u, q)z is a post-jump wealth argument of the optimal value
v(z, t), then it must satisfy the non-negativity condition of the wealth, so α(u, q) ≥ 0
as well. This fact leads to the following control bounds as shown in the marked-jump-
diffusion lemma of Zhu and Hanson [68]:

Lemma 7.1 (Bounds on Optimal Stock Fraction due to Non-Neqativity of Wealth
Jump Argument). If the support of φQ(q) is the finite interval q ∈ [a(t), b(t)] with
a(t) < 0 < b(t), then u∗(z, t) is restricted by (7.21) to

−1(
eb(t) − 1

) ≤ u∗(z, t) ≤ 1(
1− ea(t)

) , (7.22)

but if the support of φQ(q) is fully infinite, i.e., q ∈ (−∞,+∞), then u∗(z, t) is
restricted by (7.21) to

0 ≤ u∗(z, t) ≤ 1 . (7.23)

STOCHASTIC PROCESSES AND CONTROL FOR JUMP-DIFFUSIONS 39

Other cases, such as semi-infinite cases, follow from a combination of (7.22) and
(7.23).

In absence of control constraints and optimization with respect to the consump-
tion and stock fraction control variables in (7.21), respectively, the regular controls
are given implicitly by

U ′
(
c(reg)(z, t)

)
= vz(z, t) , (7.24)

and

σ2(t)z2vzz(z, t)u(reg)(z, t) = −(µ(t)−r(t))zvz(z, t)

−λ(t)z
∫
Q

(eq − 1)vz

(
α
(
u(reg)(z, t), q

)
z, t
)

φQ(q)dq .
(7.25)

Let the common utility of final wealth and running consumption be a power-type
called constant relative risk aversion (CRRA) utility (Merton [45, 46, 49]),

U(x) = xγ/γ , x ≥ 0 , 0 < γ < 1 , (7.26)

where the relative risk aversion is the negative ratio of the second derivative to the
average change of the first derivative,

RRA = −U ′′(x)/(U ′(x)/x) = 1− γ > 0

where U ′(x) is called the marginal utility. Logarithmic utility (γ = 0, using the power
utility limit of U(x) − 1/γ as γ → 0 for x > 0) and extreme aversion power utilities
(γ < 0) are considered elsewhere with a compilation by Sethi [59]. The risk-seeking or
risk-loving power utilities, γ > 1, do not satisfy the prior stated convexity condition.
The CRRA utilities are related to the more general hyperbolic absolute risk aversion
(HARA) utilities.

The CRRA utilities (7.26) lead to a canonical dimensional computational reduc-
tion form,

v(z, t) = U(z)v0(t) , (7.27)

where only the time-dependent function v0(t) of the template solution (7.27) need be
found.

Consequently, the regular optimal consumption (7.24) simplifies to an explicit
form linear in wealth,

c(reg)(z, t) ≡ zc
(reg)
0 (t) = z/v

1/(1−γ)
0 (t) , (7.28)

and the formula (7.25) for the regular stock fraction simplifies to a wealth-independent
implicit form,

u(reg)(z, t) = u
(reg)
0 (t) ≡ 1

(1− γ)σ2(t)

[
µ(t)− r(t) + λ(t)I1

(
u

(reg)
0 (t)

)]
, (7.29)

where

I1(u) =
∫
Q

(eq − 1)αγ−1(u, q)φQ(q)dq . (7.30)

40 F. B. HANSON

The constrained optimal controls are given by

c∗(z, t)/z = c∗0(t) ≡ max
[
min

[
c
(reg)
0 (t), C(max)

0

]
, 0
]
,

provided z > 0, and

u∗(z, t) = u∗0(t) ≡ max
[
min

[
u

(reg)
0 (t), U (max)

0

]
U

(min)
0

]
is independent of z as with u

(reg)
0 (t). With these optimal controls, the PIDE of

stochastic dynamic programming reduces to an implicitly defined Bernoulli equation
in v0(t),

0 = v′0(t) + (1− γ)
(
g1(t, u∗0(t))v0(t) + g2(t)v

γ
γ−1
0 (t)

)
, (7.31)

where the control and time-dependent coefficients g1(t, u) and g2(t) are given in [68]
and in [25, Chapter 10] for uniform mark distributions. No explicit solution can be
found, but a reasonable amount of iteration can be used to compute solutions of the
weakly implicit formulation as shown in the two cited references.

7.3. Coupled Inflationary Price and Nonlinear Renewable Resource
Dynamics Control Problem. While many natural resource problems use constant
prices, price inflation, depending on the magnitude, can have a significant effect on
the optimal production as predicted by the law of supply and demand. Let X1(t) be
the harvested mass of a renewable resource, such as that in an open access ocean or
lake fishery, at time t. Assume that the resource, in absence of harvesting and noise,
grows logistically with linear intrinsic growth rate r1 and with carrying-capacity K1.
Let the resource be harvested at a rate H(t) in mass per unit time. The resource is
perturbed by Gaussian noise W1(t) and simple Poisson jump noise P1(t). Thus,

dX1(t) = (r1X1(t)(1−X1(t)/K1)−H(t)) dt

+σ1X1(t) dW1(t) + X1(t)a1 dP1(t) ,
(7.32)

where X1(0) = x1,0 with E[dW1(t)] = 0, Var[dW1(t)] = dt, E[dP1(t)] = λ1dt,
Var[dP1(t)] = λ1dt and Cov[dW1(t), dP1(t)] = 0. Let the control U1(t) be the har-
vest rate per unit resource mass or harvesting effort corrected by a given efficiency
coefficient q, .i.e, H(t) = qU1(t)X(t).

Let p(t) be the price of harvested mass unit that satisfies the empirical nonlinear,
inflationary harvesting supply-demand model relation of Hanson and Ryan [26],

p(t)H(t) = (p0 + p1H(t))X2(t) , (7.33)

where p(t) ·H(t) is the gross return rate on the harvest, p0 is a constant gross return
rate coefficient, p1 is a linear price coefficient and X2(t) is a fluctuating inflationary
factor satisfying the linear SDE

dX2(t) = X2(t) (r2dt + σ2dW2(t) + a2dP2(t)) , (7.34)

where r2 is the annual mean rate of inflation, a2 is the jump-amplitude coefficient,
σ2 is the inflationary volatility and λ2 is the inflationary jump rate. The background
Gaussian noise W2(t) and the Poisson noise P2(t) satisfy similar first and second mo-
ments as those of the resource mass X1(t) plus pairwise independence of the resource
mass and the inflationary factor noise.

STOCHASTIC PROCESSES AND CONTROL FOR JUMP-DIFFUSIONS 41

Consider a quadratic performance criterion, such that the maximal, expected
current value of future returns is

v(x1, x2, t) = max
{U1}

[
E
[∫ tf

t

e−β0(s−t)((p0+p1qU1(s)X1(s))X2(s)−c(U1(s))) ds∣∣∣∣X1(t)=x1, X2(t)=x2, U1(t)=u1

]]
,

(7.35)

where β0 is the constant nominal discount rate (i.e., not adjusted for inflation, since
inflation is being separately modeled) and

c(u1) = c1u1 +
1
2
c2u

2
1

is the quadratic cost function with c2 > 0 to insure minimum costs and a maximum
return. Then, the corresponding PIDE of stochastic dynamic programming with
correction for the extra t dependence of the discount factor, as in (7.21), is

0 = vt(x1, x2, t)− β0v(x1, x2, t) + r1x1(1− x1/K1)vx1(x1, x2, t)

+σ2
1x2

1
2 vx1,x1 + λ1 (v ((1 + a1)x1, x2, t)− v(x1, x2, t))

+r2x2vx2 + σ2
2x2

2
2 vx2,x2 + λ2 (v(x1, (1 + a2)x2, t)− v(x1, x2, t))

+max
u1

[S(x1, x2, u1, t)] ,

(7.36)

where the control switching term from the net running return in (7.35) is

S(x1, x2, u1, t) = p0x2 + (p1x2 − vx(x1, x2, t)) qu1x1 − c1u1 −
1
2
c2u

2
1 , (7.37)

and the final condition is v(x1, x2, tf) = 0 for all of the positive state space, in absence
of any salvage value. In addition, there must be an absorbing natural boundary
condition at extinction,

v(x1, 0, t) = −

(
c1 + 1

2c2U
(min)
1

)
U

(min)
1

β0

(
1− e−β0(tf−t)

)
, (7.38)

for x1 ≥ 0, in the case of hypercube control constraints, U
(min)
1 ≤ u1 ≤ U

(max)
1 , and

assuming that x2 = 0 when x1 = 0 from (7.34). From examining the critical points of
(7.37) with respect to the control variable u1, the regular optimal control, in absence
of constraints, is found:

u
(reg)
1 (x1, x2, t) =

(p1x2 − vx(x1, x2, t))qx1 − c1

c2
, (7.39)

where recall c2 > 0, and with hypercube constraints, the optimal constrained control
is the composite function,

u∗1(x1, x2, t) =

U

(max)
1 , U

(max)
1 ≤ u

(reg)
1 (x1, x2, t)

u
(reg)
1 (x1, x2, t), U

(min)
1 ≤ u

(reg)
1 (x1, x2, t) ≤ U

(max)
1

U
(min)
1 , u

(reg)
1 (x1, x2, t) ≤ U

(min)
1

 . (7.40)

42 F. B. HANSON

For computational PDE procedures to solve this applied optimal stochastic con-
trol problem and further references, see Hanson et al. [23, 26]. See also Kushner and
Dupuis [44] for the treatment of stochastic boundary conditions and the numerical
Markov chain approximation method for solving stochastic control problems, relying
more on probability. Andersen and Sutinen [3] review the general field of stochastic
bioeconomics, i.e., the optimal control of renewable resources.

7.4. European Option Pricing with Stochastic-Volatility, Jump-Diffu-
sions (SVJD). Andersen, Benzoni and Lund [2], Bakshi et al. [8] and Bates [11] sim-
ilarly demonstrate that the most reasonable model of stock prices would include both
stochastic-volatility and jump-diffusion (SVJD). Stochastic volatility or just volatility
in finance is the standard deviation σ of the stock or other financial instrument per
year. It is also the square root of the annual variance rate σ2 of the return. According
to Hull [34], a European option is an option that can only be exercised at the terminal
time tf = T at strike price K. A call option is an option to buy the option underlying
asset, usually a stock, while the put option is the option to sell. The gross payoff for
the call option is max[S(T) −K, 0] and the stock price is S(T) at time T , while the
payoff for the put option is max[K − S(T), 0], but a rational option holder will only
exercise the option if the payoff is positive, else will walk away from the option. The
net payoff is the gross payoff minus the price or premium paid for the option.

7.4.1. SVJD Call Option Model. Unlike the classical Black-Scholes-Merton
option pricing model [15, 47] with only one source of stock noise, a diffusion, to hedge
away, the jump-diffusion has infinite sources of noise just due to the unbounded jump
count of the Poisson counting process, without considering the random marks. Mer-
ton, in his pioneering jump-diffusion for options paper [48], specified an approximate
option hedge for jump-diffusion called risk-neutral pricing in which the underlying
stock price of the option is transformed so that the conditional mean rate of return
for the transformed stock price SDE is the risk-less rate r, i.e., under the risk-neutral
(rn) conditional expectation,

E(rn)[dS(t) |S(t)] = rS(t)dt .

A simple transformation can be made by way of an ODE integrating factor that shifts
the mean drift rate to r rather than eliminating this mean rate. See Hull [34] for an
applied finance explanation or Bingham and Kiesel [14] for an abstract explanation
concerning the existence of a risk-neutral measure and an equivalent martingale mea-
sure. Thus, using the effective equivalent of the risk-neutral drift r − λE[exp(q)− 1]
for µ(t), λ being a constant jump rate, using exp(q)− 1 for h0(q) and

√
V (t)dWs(t)

for σ(t)dW (t) in (7.16) yields

dS(t) = S(t)
((

r − λE
[
eQ − 1

])
dt+

√
V (t)dWs(t)+

∫
Q

(eq − 1)P(dt,dq)
)

. (7.41)

The risky asset S(t) SDE is coupled through the volatility
√

V (t) using Heston’s [31]
stochastic volatility model formulated in terms of an SDE for the variance rate V (t),

dV (t) = γv (θv − V (t)) dt + σv

√
V (t)dWv(t) , (7.42)

with a mean-reverting drift and square root noise term, where Wv(t) is a Wiener
process with correlation

Corr[Ws(t),Wv(t)] = ρ(t)

STOCHASTIC PROCESSES AND CONTROL FOR JUMP-DIFFUSIONS 43

and the {γv, θv, σv} are constants; γv is the mean-reversion scaling rate, θv is the
mean-reversion value and σv is the volatility of the volatility. Eqs. (7.41) and (7.42)
comprise the SVJD model. Note that the SVJD model (7.41-7.42) is highly nonlinear
in V (t).

Although Heston [31] proposed a stochastic volatility model for a pure diffu-
sion model (without jumps), Bates [11] and Scott [58] proposed SVJD models for
currency options and European options with stochastic interest rates, respectively.
The stochastic volatility model (7.42) was originally proposed by Cox, Ingersoll and
Ross [19] just for interest rates, so (7.42) is also called the CIR model.

In finding the present value of the price of a European call option at time t it is
necessary to use the discounted value of the risk-neutral conditionally expected payoff
since the payoff is a final value, therefore

C(S(t), V (t), t;K, T) = e−r(T−t)E(rn)[max[S(T)−K, 0] |S(t), V (t)] , (7.43)

where exp(−r(T − t)) is the discount-factor at the risk-neutral rate. Following Hes-
ton’s [31] analogy with the Black-Scholes [15] decomposition of the pure diffusion call
option price into S(t) and K terms, and also Scott [58] for the SVJD model, then

C(S(t), V (t), t;K, T) = S(t)Φ(rn)
1 (S(t), V (t), t;K, T)

−Ke−r(T−t)Φ(rn)
2 (S(t), V (t), t;K, T) ,

(7.44)

where

Φ(rn)
1 (s, v, t;K, T) = e−r(T−t) E(rn)

[
S(T)1{S(T)≥K}

∣∣ S(t) = s, V (t) = v
]/

s

and

Φ(rn)
2 (s, v, t;K, T) = E(rn)

[
1{S(T)≥K}

∣∣ S(t) = s, V (t) = v
]

are conditional risk-neutral tail probability distributions in the variable K and 1{S} is
an indicator function for the set S (see Yan and Hanson [66], for instance). The Φ(rn)

2

is a straight-forward probability distribution, while Φ(rn)
1 is shifted by the relative size

of the final asset price S(T).
It is convenient for application purposes to pose and solve this option problem by

a brief formulation of a backward Kolmogorov PDE (here PIDE or partial integro-
differential equation for the marked-jump-diffusion process) using Dynkin’s integral
formula introduced in the next subsubsection.

7.4.2. Kolmogorov PIDEs and Dynkin’s Formula for Marked Jump-
Diffusions. Dynkin’s formula for marked-jump-diffusons in one state dimension can
be written in terms of a conditional expectation which can be expanded by Itô’s
formula (see Hanson [25, Chapter 7] for details, justifications and further references)
as follows: Let X(t) be a marked-jump-diffusion,

dX(t) = f(X(t), t)dt + g(X(t), t)dW (t) +
∫
Q

h(X(t), t, q)P(dt,dq) , (7.45)

with continuous coefficients. Let v(x, t) be twice continuously differentiable in x and
once in t, then Dynkin’s formula can be written

û(x0, t0) = E[v(X(t), t) |X(t0)=x0]

= v(x0, t0)+E
[∫ t

t0

(
∂v

∂t
(X(s), s)+Bx[v](X(s), s)

)
ds

∣∣∣∣X(t0)=x0

]
,

(7.46)

44 F. B. HANSON

suppressing the forward t dependence of û(x0, t0) = u(x0, t0; t) to emphasize its back-
ward nature. Also, the backward operator or generator for this marked-jump-diffusion
is defined as

Bx0 [v](x0, t0) ≡ f(x0, t0) ∂v
∂x0

(x0, t0) + 1
2g2(x0, t0)∂2v

∂x2
0

(x0, t0)

+λ̂(x0, t0)
∫
Q

∆h[v](x0, t0, q)φQ(q)dq ,
(7.47)

where the forward time t is suppressed in λ̂(x0, t0) ≡ λ(x0, t0; t) and the jump-
difference is

∆h[v](x0, t0, q) ≡ v(x0 + h(x0, t0, q), t)− v(x0, t0) . (7.48)

For the backward Kolmogorov equation (BKE), let v = v(x) be independent of t
and û(x0, t0) = E[v(X(t)) |X(t0) = x0]. Then, upon taking limits of Dynkin’s formula
(7.46) results in the backward Kolmogorov equation,

0 =
∂û

∂x0
(x0, t0) + Bx0 [û] (x0, t0) , (7.49)

with final condition u(x0, t
−) = v(x0).

An important application is the marked-jump-diffusion transition density

φ̂(x0, t0) ≡ φX(t)(x, t;x0, t0)

with distribution ΦX(t)(x, t;x0, t0) ≡ Prob[X(t) < x |X(t0) = x0] and backward
equation,

0 =
∂φ̂

∂x0
(x0, t0) + Bx0

[
φ̂
]
(x0, t0) , (7.50)

with Dirac delta function final condition φ̂(x0, t
−) = δ(x0 − x), by writing the expec-

tation of Dynkin’s formula as

û(x0, t0) =
∫ ∞

−∞
v(ξ)φX(t)(ξ, t;x0, t0)dξ ,

setting v(ξ) = δ(ξ − x) and using (7.49).

7.4.3. Tail Probability PIDEs. Taking advantage of the geometric property of
S(t) in the SDE (7.41), a logarithmic change of variables is made with L(t) = ln(S(t))
and κ = ln(K), so

C(S(t), V (t), t;K, T) = Ĉ(L(t), V (t), t;κ, T)

as a process, but

Ĉ(`, v, t;κ, T) = C(exp(`), v, t; exp(κ), T)

for PIDE representation where the logarithm of the stock price ` and the squared
volatility v are now independent variables rather than processes as functions of time
as in the SDE representation.

STOCHASTIC PROCESSES AND CONTROL FOR JUMP-DIFFUSIONS 45

Application of the two state dimension form of Dynkin’s formula and resulting
backward Eq. (7.49) leads to the backward PIDE with backward operator B`,v with
respect to the variable set {`, v},

0 = ∂Ĉ
∂t

+B`,v

[
Ĉ
]
(`, v, t;κ, T)≡ ∂Ĉ

∂t
+
(
r−λE [eq − 1]− 1

2v
)∂Ĉ

∂`

+αv(θv−v)∂Ĉ
∂v

+ 1
2v ∂2Ĉ

∂`2
+ρσvv ∂2Ĉ

∂`∂v
+ 1

2σ2
vv ∂2Ĉ

∂v2

−rĈ+λ

∫ ∞

−∞

(
Ĉ(` + q, v, t;κ, T)−Ĉ(`, v, t;κ, T)

)
φQ(q)dq ,

(7.51)

subject to the final condition that the final payoff Ĉ(`, v, T ;κ, T) = max[` − κ, 0],
which is assumed to be nonnegative for all variables concerned. Decomposing (7.51)
into the corresponding tail probabilities in the current notation produces, for Φ(rn)

1 =
Φ̂(rn)

1 (`, v, t;κ, T),

0 = ∂Φ̂(rn)
1

∂t
+B(1)

`,v

[
Φ̂(rn)

1

]
(`, v, t;κ, T) ≡ ∂Φ̂(rn)

1
∂t

+ B`,v

[
Φ̂(rn)

1

]
+ v

∂Φ̂(rn)
1

∂`
+ ρσvv

∂Φ̂(rn)
1

∂v

+(r − λE [eq − 1]) Φ̂(rn)
1 + λ

∫ ∞

−∞
(eq − 1) Φ̂(rn)

1 (` + q, v, t;κ, T)φQ(q)dq,

(7.52)

with indicator function final condition Φ̂(rn)
1 (`, v, T ;κ, T) = 1{`>κ}, i.e., in-the-money

(ITM) or S(t) > K for the call, and for the probability Φ(rn)
2 = Φ̂(rn)

2 (`, v, t;κ, T),

0 =
∂Φ̂(rn)

2

∂t
+ B(2)

`,v

[
Φ̂(rn)

2

]
(`, v, t;κ, T) ≡ ∂Φ̂(rn)

2

∂t
+ B`,v

[
Φ̂(rn)

2

]
+ rΦ̂(rn)

2 , (7.53)

with the same final condition Φ̂(rn)
2 (`, v, T ;κ, T) = 1{`>κ}.

7.4.4. Fourier Transform Approach to Solving PIDEs. The PIDEs, (7.52)
and (7.53), can be transformed to more useful forms by Fourier transforms, but
in probability and finance they are called characteristic functions. Here they are
relative to the density of the logarithms of the strike price, φ

(rn)
j (κ; s, v, t, T) =

∂Φ̂(rn)
j (`, v, t;κ, T)/∂κ,

fj(`, v, t; y, T) ≡ −
∫ ∞

−∞
eiyκφ

(rn)
j (κ; s, v, t, T)dκ , (7.54)

for j = 1 : 2, the minus sign accounting for the fact that the distributions are com-
plementary distributions. Due to the form of (7.54), these characteristic functions
satisfy the same PIDEs as the Φ̂(rn)

j (`, v, t;κ, T),

∂fj

∂t
(`, v, t;κ, T) + B(j)

`,v [fj](`, v, t;κ, T) = 0 , (7.55)

but satisfy the transformed final conditions fj(`, v, T ; y, T) = + exp(iy`), respectively
for j = 1 : 2. A solution form that works was guessed by Heston [31], which in the
marked-jump-diffusion case is an exponential with an affine exponent in terms of the
time-to-go τ ≡ T − t,

fj(`, v, t; y, t + τ) = exp(gj(τ)+hj(τ)v+βj(τ)+iy`) , (7.56)

46 F. B. HANSON

where gj(0) = 0 = hj(0) and βj(τ) = rτδj,2 for j = 1 : 2. With much effort,
the coefficient functions can be found; see Yan and Hanson [66] for the details. Upon
transforming the complex contour to an equivalent contour on the real line, the inverse
transform for the original risk-neutral tail probabilities is

Φ(rn)
j (s, v, t;K, T) =

1
2

+
1
π

∫ +∞

0+
Re
[
e−iy ln(K)fj(ln(s), v, t; y, T)

iy

]
dy , (7.57)

for j = 1 : 2, yielding a residue of 1/2 and a principal value integral from combining
the real segment contributions such that the integrand is bounded in the limit to the
apparent singularity as y → 0+.

Once the European call option prices are calculated, the put-call parity,

P (S(t), V (t), t;K, T) = C(S(t), V (t), t;K, T) + Ke−r(T−t) − S(t) , (7.58)

can be used to easily compute the European put option price P (S(t), V (t), t;K, T).
Hull [34, Chapter 7] and Higham [33] explain how the European put-call parity follows
from the maximum function property and the common value, max[S(T),K], of both
options.

Again, see Yan [65] and Yan and Hanson [66] for the details of these numerical
procedures. For further background see Heston [31], Bates [11], Scott [58], Carr
and Madan [16] and Hull and White [35]. American options are very different from
European options, since American options can be exercised any time in the period
[0, T] leading to an interesting but complicated free boundary problem. Yan [65]
and Hanson and Yan [29] studied American options in an SVJD environment by two
different computational methods and further references can be found there.

8. Conclusions. It is possible to understand the basic mathematics of jump-
diffusion processes and control based upon the first principles of applied mathematics
by supplementing the continuity concepts of classic analysis or calculus with the prop-
erties of jump-discontinuities and nonsmoothness of Markov processes. The result is
an applied stochastic calculus. This works for many jump-diffusion applications in
finance, biology, manufacturing and other stochastic research areas. Otherwise, some
scientists and financial analysts would find the areas inaccessible due to the many
layers of theorems and results in the more abstract approaches.

However, first understanding the applied side of these areas should help to develop
the motivation and intuition to further understand the theorems and results on the
abstract side. For instance, the complete market theorem of Harrison and Pliska [30]
for continuous processes, i.e., diffusions, relies heavily on martingale theory, so would
be very difficult to justify by the applied approach used here, but the result does not
hold for jump-diffusion or SVJD. Hence, there are still many applications of jump-
diffusions and SVJD in the literature and there are a good number of open problems
in this currently very active area. Only a few have been mentioned in this compact
survey.

Acknowledgements. This survey grew out of a compact course Stochastic Pro-
cesses and Control of Jump Diffusions, with Applications that the author gave at the
Department of Mathematics at the Indian Institute of Science (IISc) in Bangalore,
India for the month of February 2007 as part of the Stochastic Processes and Appli-
cations 2006-2007 theme of the IISc Mathematics Initiative. The author is grateful
to Mrinal K. Ghosh and the Department of Mathematics for the generous invitation,
as well as local support and joint travel support with the University of Illinois.

STOCHASTIC PROCESSES AND CONTROL FOR JUMP-DIFFUSIONS 47

REFERENCES

[1] Y. Äıt-Sahalia, Disentangling Diffusion from Jumps, J. Fin. Economics, 74 (2004), pp. 487-
528.

[2] T. G. Andersen, L. Benzoni and J. Lund, An Empirical Investigation of Continuous-Time
Equity Return Models, J. Finance, 57 (2002), pp. 1239-1284.

[3] P. Andersen and J. G. Sutinen, Stochastic Bioeconomics: A Review of Basic Methods and
Results, Marine Resource Economics, 1 (1982), pp. 1-10.

[4] B. D. O. Anderson and J. B. Moore, Optimal Control: Linear Quadratic Methods, Prentice-
Hall, Englewood Cliffs, NJ, 1990.

[5] D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge University Press, Cam-
bridge, UK, 2003.

[6] C. A. Aourir, D. Okuyama, C. Lott and C. Eglinton, Exchanges - Circuit Breakers,
Curbs, and Other Trading Restrictions, 2002, URL:http://invest-faq.com/articles/

exch-circuit-brkr.html .
[7] L. Arnold, Stochastic Equations: Theory and Applications, John Wiley, New York, NY, 1974.
[8] G. Bakshi, C. Cao and Z. Chen, Empirical Performance of Alternative Option Pricing Mod-

els, J. Finance, 52 (1997), pp. 2003-2049.
[9] C. A. Ball and W. N. Torous, On Jumps in Common Stock Prices and Their Impact on

Call Option Prices, J. Finance, 40 (1985), pp. 155-173.
[10] O.E. Barndorff-Nielsen and N. Shephard, Econometrics of Testing for Jumps in Financial

Economics Using Bipower Variation, J. Fin. Econometrics, 9 (2006), pp. 1-30.
[11] D. Bates, Jump and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark

Options, Rev. Fin. Studies, 9 (1996), pp. 69-107.
[12] R. E. Bellman, Dynamic Programming, Princeton University Press, Princeton, NJ, 1957.
[13] R. E. Bellman, Adaptive Control Processes: A Guided Tour, Princeton University Press,

Princeton, NJ, 1961.
[14] N. H. Bingham and R. Kiesel, Risk-Neutral Valuation: Pricing and Hedging of Financial

Derivatives, Springer-Verlag, New York, NY, 2004.
[15] F. Black and M. Scholes, The Pricing of Options and Corporate Liabilities, J. Political

Economy, 81 (Spring 1973), pp. 637-659.
[16] P. Carr and D. B. Madan, Option Valuation Using the Fast Fourier Transform, J. Comp.

Finance, 2 (1999), pp. 61-73.
[17] E. Çinlar, Introduction to Stochastic Processes, Prentice-Hall, Englewood Cliffs, NJ, 1975.
[18] R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall/CRC,

Boca Raton, FL, 2004.
[19] J. C. Cox, J. E. Ingersoll and S. A. Ross, A Theory of the Term Structure of Interest Rates,

Econometrica, 53 (1985), pp. 385-408.
[20] I. I. Gihman and A. V. Skorohod, Stochastic Differential Equations, Springer-Verlag, New

York, NY, 1972.
[21] I. I. Gihman and A. V. Skorohod, Controlled Stochastic Processes, Springer-Verlag, New

York, NY, 1979.
[22] P. Glasserman, Monte Carlo Methods in Financial Engineering, Springer-NY, New York,

NY, 2003.
[23] F. B. Hanson, Computational Stochastic Dynamic Programming, in Stochastic Digital Control

System Techniques, C. T. Leondes, ed., Control and Dynamic Systems: Advances in Theory
and Applications, Vol. 76, Academic Press, New York, NY, 1996, pp. 103-162.

[24] F. B. Hanson, Local Supercomputing Training in the Computational Sciences Using Remote
National Centers, Future Generation Computer Systems: Special Issue on Education in
the Computational Sciences, 19 (2003), pp. 1335-1347.

[25] F. B. Hanson, Applied Stochastic Processes and Control for Jump-Diffusions: Modeling, Anal-
ysis and Computation, SIAM Books, Philadelphia, PA, to be released September 2007.

[26] F. B. Hanson and D. Ryan, Optimal Harvesting with Both Population and Price Dynamics,
Math. Biosciences, 148 (1998), pp. 129-146.

[27] F. B. Hanson and J. J. Westman, Jump-Diffusion Stock Return Models in Finance: Stochas-
tic Process Density with Uniform-Jump Amplitude, Proc. 15th Int. Sympos. Math. Theory
of Networks and Systems, (2002), pp. 1-7.

[28] F. B. Hanson and J. J. Westman, Portfolio Optimization with Jump–Diffusions: Estimation
of Time-Dependent Parameters and Application, Proc. 41st Conf. on Decision and Control,
(2002), pp. 377-382.

[29] F. B. Hanson and G. Yan, American Put Option Pricing for Stochastic-Volatility, Jump-
Diffusion Models, in Proc. Amer. Control Conf., (2007), 6 pages, invited paper to appear

48 F. B. HANSON

July 11, 2007.
[30] J. M. Harrison and S. R. Pliska, Martingales and Stochastic Integrals in the Theory of

Continuous Trading, Stochastic Processes & Appl., 11 (1981), pp. 215-260.
[31] S. L. Heston, A Closed-form Solution for Options with Stochastic Volatility with Applications

to Bond and Currency Options, Rev. Fin. Studies, 6 (1993), pp. 327-343.
[32] D. J. Higham, An Algorithmic Introduction to Numerical Simulation of Stochastic Differential

Equations, SIAM Review, 43 (2001), pp. 525-546.
[33] D. J. Higham, An Introduction to Financial Option Valuation: Mathematics, Stochastics and

Computation, Cambridge University Press, Cambridge, UK, 2004.
[34] J. C. Hull, Options, Futures, & Other Derivatives, 4th Edition, Prentice-Hall, Englewood

Cliffs, NJ, 2000.
[35] J. Hull and A. White, The Pricing of Options with Stochastic Volatilities, J. Finance, 42

(1987), pp. 281-300.
[36] K. Itô, On Stochastic Differential Equations, Mem. Amer. Math. Soc., no. 4 (1951), pp. 1-51.
[37] J. Jacod and A. Shiryaev, Limit Theorems for Stochastic Processes, Springer-Verlag, New

York, NY, 1987.
[38] R. A. Jarrow and E. R. Rosenfeld, Jump Risks and the Intertemporal Capital Asset Pricing

Model, J. Business, 57 (1984), pp. 337-351.
[39] P. Jorion, On Jump Processes in the Foreign Exchange and Stock Markets, Rev. Fin. Studies,

88 (1989), pp. 427-445.
[40] S. G. Kou, A Jump Diffusion Model for Option Pricing, Management Science, 48 (2002, pp.

1086-1101.
[41] S. G. Kou and H. Wang, Option Pricing Under a Double Exponential Jump Diffusion Model,

Management Science, 50 (2004), pp. 1178-1192.
[42] H. J. Kushner, Stochastic Stability and Control, Academic Press, New York, NY, 1967.
[43] H. J. Kushner, Jump-Diffusions with Controlled Jumps: Existence and Numerical Methods,

J. Math. Anal. Applic., 249 (2000), pp. 179-198.
[44] H. J. Kushner and P. G. Dupuis, Numerical Methods for Stochastic Control Problems in

Continuous Time, 2nd Edition, Springer-Verlag, New York, NY, 2001.
[45] R. C. Merton, Lifetime Portfolio Selection Under Uncertainty: The Continuous-Time Case,

Rev. Economics and Statistics, 51 (1969), pp. 247-257.
[46] R. C. Merton, Optimum Consumption and Portfolio Rules in a Continuous-Time Model, J.

Econ. Theory, 3 (1971), pp. 373-413. (Reprinted in Merton [49, Chapter 5].)
[47] R. C. Merton, Theory of Rational Option Pricing, Bell J. Econ. Mgmt. Science, 4 (Spring

1973), pp.141-183. (Reprinted in Merton [49, Chapter 8].)
[48] R. C. Merton, Option Pricing When Underlying Stock Returns are Discontinuous, J. Financial

Economics, 3 (1976), pp. 125-144. (Reprinted in Merton [49, Chapter 9].)
[49] R. C. Merton, Continuous Time Finance, Blackwell Publishers, Cambridge, MA, 1992.
[50] T. Mikosch, Elementary Stochastic Calculus: with Finance in View, World Scientific, Singa-

pore, 1998.
[51] B. Øksendal, Stochastic Differential Equations: An Introduction with Applications, Fifth ed.,

Springer-Verlag, New York, NY, 1998.
[52] B. Øksendal and A. Sulem, Applied Stochastic Control of Jump Diffusions, Springer-Verlag,

Berlin, 2005.
[53] P. Protter, Stochastic Integration and Differential Equations: A New Approach, Springer-

Verlag, Berlin, 2004.
[54] C. A. Ramzani and Y. Zeng, Maximum Likelihood Estimation of Asymmetric Jump-Diffusion

Processes: Application to Security Prices, Social Science Research Network, http://ssrn.
com/abstract=606361, 1998, pp. 1-32.

[55] W. J. Runggaldier, Jump-Diffusion Models, in Handbook of Heavy Tailed Distributions in
Finance, S. T. Rachev, ed., Handbooks in Finance, Elsevier/North-Holland, New York,
NY, 2003, pp. 169-209.

[56] J. Rust, Do People Behave According to Bellman’s Principle of Optimality?, Hoover Institution
Working Paper E-92-10, 1994, 65 pages.

[57] Z. Schuss, Theory and Applications of Stochastic Differential Equations, John Wiley, New
York, NY, 1980.

[58] L. O. Scott, Pricing Stock Options in a Jump-Diffusion Model with Stochastic Volatility and
Interest Rates: Applications of Fourier Inversion Methods, Math. Finance, 7 (1997), pp.
413-424.

[59] S. P. Sethi, Optimal Consumption and Investment with Bankruptcy, Kluwer Academic Pub-
lishers, Boston, MA, 1997.

[60] S. P. Sethi and M. Taksar, A Note on Merton’s “Optimum Consumption and Portfolio Rules

STOCHASTIC PROCESSES AND CONTROL FOR JUMP-DIFFUSIONS 49

in a Continuous-Time Model”, J. Econ. Theory, 46 (1988), pp. 395-401.
[61] D. L. Snyder and M. I. Miller, Random Point Processes in Time and Space, Second ed.,

Springer-Verlag, New York, NY, 1991.
[62] J. M. Steele, Stochastic Calculus and Financial Applications, Springer, New York, NY, 2001.
[63] J. J. Westman and F. B. Hanson, Nonlinear State Dynamics: Computational Methods and

Manufacturing Example, Int. J. Control, 73 (2000), pp. 464-480.
[64] J. J. Westman and F. B. Hanson, The LQGP Problem: A Manufacturing Application, in

Proc. Amer. Control Conf., (1997), pp. 566-570.
[65] G. Yan, Option Pricing for a Stochastic-Volatility Jump-Diffusion Model, Ph.D. Thesis in

Mathematics, Univ. Illinois at Chicago, Chicago, IL, 23 June 2006, 128 pages.
[66] G. Yan and F. B. Hanson, Option Pricing for a Stochastic-Volatility Jump-Diffusion Model

with Log-Uniform Jump-Amplitudes, in Proc. Amer. Control Conf., (2006), pp. 2989-2994.
[67] Z. Zhu, Option Pricing and Jump-Diffusion Models, Ph.D. Thesis in Mathematics, Univ.

Illinois at Chicago, Chicago, IL, 17 October 2005, 165 pages.
[68] Z. Zhu and F. B. Hanson, Optimal Portfolio Application with Double-Uniform Jump Model

in Control Theory Applications in Financial Engineering and Manufacturing, H. Yan, G.
Yin, Q. Zhang eds., International Series in Operations Research and Management Sciences,
Vol. 94 Springer/Kluwer, New York, NY, 2006, pp. 331-358, invited chapter.

