
D
R

A
FT

“bk08compsdpfinal”
2007/1/4
page 1

i

i

i

i

i

i

i

i

Applied Stochastic Processes and Control for

Jump-Diffusions: Modeling, Analysis and

Computation

Floyd B. Hanson

University of Illinois

Chicago, Illinois, USA

Chapter 8 Computational Stochastic Control Methods

Copyright c© 2007 by the Society for Industrial and Applied Mathematics.

January 4, 2007

D
R

A
FT

“bk08compsdpfinal”
2007/1/4
page 223

i

i

i

i

i

i

i

i

Chapter 8

Computational Stochastic

Control Methods

God does not care about our mathematical difficulties.
He integrates empirically.
—Albert Einstein (1879-1955).

An idea which can be used once is a trick.
If it can be used more than once it becomes a method.
—George Polya and Gabor Szego.

“That’s when I realized that research was my true calling,
not software,” he says. Developing software so other people
could answer the big questions wasn’t for him. He wanted to
get back to answering them himself.
—Ajay Royyuruat , IBM Genographer, Dream Jobs, IEEE
Spectrum, vol. 43, no. 2, February 2006, pp. 40-41.

The use of stochastic models, on the other hand, can result
in gigantic increases in the complexity of data volume, stor-
age, manipulation, and retrieval requirements.
—Simulation-Based Engineering Science, Report of the Na-
tional Science Foundation Blue Ribbon Panel on Simulation-
Based Engineering Science, J. T. Oden, Chair, February
2006, 85 pages.

Stochastic dynamic programming is not easy since the PDE of stochastic
dynamic programming or the Hamilton-Jacobi equation given in (6.14-6.17)
of Chapter 6 is not a standard PDE (partial differential equation). In fact, it is
a functional PDE with just diffusion owing to the presence of a maximum with
respect to the control. Also, for the more general jump-diffusion, the additional
jump integrals make the PDE of stochastic dynamic programming a functional

223

D
R

A
FT

“bk08compsdpfinal”
2007/1/4
page 224

i

i

i

i

i

i

i

i

224 Chapter 8. Computational Stochastic Control Methods

partial integral differential equation or functional PIDE (partial integral differential
equation). The analytic complexity of this functional PIDE means that for the
usual finite difference or finite element methods, numerical convergence conditions
are unknown or not easily ascertainable.

This chapter discusses PDE-oriented finite difference methods developed by
the author and coworkers [106, 107, 108, 277, 110] for solving the PDE of stochastic
dynamic programming (SDP) (6.14-6.17), with special emphasis on techniques
and convergence conditions. The numerical foundations and complexity of compu-
tational stochastic control are discussed in [110].

An alternative method relies on using Markov chain probabilities to construct
convergent finite difference approximations that are rigorously convergent in the
weak sense and is called the Markov chain approximation (MCA) developed
by Kushner and coworkers [174, 175, 179].

Some methods use a canonical model formulation whose solution algorithm
results in significant reduction in the dimensional complexity, e.g., the linear-
quadratic (LQ) model for the optimal control of jump-diffusions (LQJD or
LQGP) [274] and the constant relative risk aversion (CRRA) utility model
for the optimal portfolios in finance [122, 123, 129, 291]. In addition, special inte-
gration methods for jump integrals and a least squares approximation for forming
simpler LQJD problems are also discussed [277]. The LQJD canonical model di-
mensional reduction algorithm is covered in Section 6.4 on page 182 in Chapter 6
while the deterministic LQ and variants are covered in Section A.3 on page A23 in
Chapter A.

Another canonical model dimensional reduction algorithm is treated in Sec-
tions 10.4 on page 326 and 10.5 on page 337 in Chapter 10 for two different optimal
portfolio and consumption applications.

For a more historical introduction to computational methods in control, see
Larson [182], Polak [227] and Dyer and McReynolds [76].

8.1 Finite Difference PDE Methods of SDP

A decade ago, the author contributed an invited chapter on Computational Stochas-
tic Dynamic Programming [108] in a Control and Dynamic Systems volume dis-
cussing the use of finite difference methods of solution. This section is based on his
past experience with large scale stochastic control applications using many of the
largest vector and parallel computers available academically from national centers
such as Argonne National Laboratory, Los Alamos National Laboratory, National
Center for Supercomputing Applications, San Diego Supercomputing Center and
the Pittsburgh Supercomputing Center. An updated version of the techniques in-
volved is given but simplified to one state dimension initially for convenience.

Consider the jump-diffusion SDE for state X(t) and control U(t),

dX(t)
sym
= f(X(t), U(t), t)dt + g(X(t), U(t), t)dW (t)

+h(X(t), U(t), t, Q)dP (t; Q, X(t), U(t), t) ,
(8.1)

where dP (t; Q, X(t), U(t), t) and dW (t) are the stochastic differentials of the jump-

D
R

A
FT

“bk08compsdpfinal”
2007/1/4
page 225

i

i

i

i

i

i

i

i

8.1. Finite Difference PDE Methods of SDP 225

diffusion process including the compound Poisson mark Q with jump-rate λ(t; x, u, t).
The SDE coefficients, (f(x, u, t), g(x, u, t), h(x, u, t, q)), are assumed to be bounded
or at least integrable in their arguments, so as not to over-restrict the problem. Let
the objective be the minimum of the expected cumulative running costs C(x, u, t)
and terminal cost S(xf , tf),

v∗(x, t) ≡ minU [t,tf)

[
E

(dW,dP)[t,tf)

[∫ tf

t C(X(s), U(s), s)ds + S(X(tf), tf)

∣∣∣X(t) = x, U(t) = u
]]

,

(8.2)

for t0 ≤ t < tf .
The application of Bellman’s Principle of Optimality and the stochastic

chain rule along with the infinitesimal moments E[dW (t)] = 0, Var[dW (t)] = dt and
E[dP (t; Q, X(t), U(t), t)|X(t) = x, U(t) = u] = λ(t; x, u, t)dt leads to the stochastic
dynamic programming PIDE using only order dt terms,

0 = v∗t (x, t) + minu [H(x, u, t)]

≡ v∗t (x, t) + minu

[
C(x, u, t) + f(x, u, t)v∗x(x, t) + 1

2g2(x, u, t)v∗xx(x, t)

+ λ(t; x, u, t)
∫
Q

(v∗(x + h(x, u, t, q), t) − v∗(x, t)) φQ(q; x, u, t)
]

= v∗t (x, t) + H∗(x, t) .

(8.3)

If the regular or unconstrained optimal control exists and is unique, then

u(reg)(x, t) = argmin
u

[H(x, u, t)] , (8.4)

but, in general, the optimal control, u∗(x, t), is subject to any control constraints.
The final condition from the minimal conditional expected cost objective (8.2) is

v∗(x, t) = S(x, tf). (8.5)

However, the boundary conditions in general are model and domain dependent.

8.1.1 Linear Control Dynamics and Quadratic Control Costs

In order, to keep the focus on basic computations, it will be assumed that the drift of
the state dynamics is linear in the control and that the running costs are quadratic
in the control, i.e, the LQJD problem in control only (LQJD/U) discussed
in Subsection 6.4.1. These assumptions are more general than the LQJD problem,
but are sufficient to determine optimal control clearly in terms of (x, t). Hence, let

f(x, u, t) = f0(x, t) + f1(x, t)u,

g(x, u, t) = g0(x, t), h(x, u, t, q) = h0(x, t, q),

λ(t; x, u, t) = λ0(t; x, t), φQ(q; x, u, t) = φQ(q),

C(x, u, t) = c0(x, t) + c1(t; x, t)u + c2(x, t)u2,

H(x, u, t) = H0(x, t) + H1(x, t)u + 1
2H2(x, t)u2 .

(8.6)

D
R

A
FT

“bk08compsdpfinal”
2007/1/4
page 226

i

i

i

i

i

i

i

i

226 Chapter 8. Computational Stochastic Control Methods

Thus, the PDE of stochastic dynamic programming in Hamilton-Jacobi form using
(6.19) with the current assumptions,

0 = v∗t (x, t) + H∗(x, t)

= v∗t (x, t) + C0(x, t) + C1(x, t)u∗ + 1
2C2(x, t)(u∗)2

+(f0(x, t) + f1(x, t)u∗)v∗x(x, t) + 1
2g2

0(x, t)v∗xx(x, t)

+λ0(t; x, t)
∫
Q

(v∗(x + h0(x, t, q), t) − v∗(x, t)) φQ(q)dq ,

(8.7)

and the regular control is from (6.31) after simplifications for the current one state
dimension form,

u(reg)(x, t) = − (c1(x, t) + f1(x, t)v∗x(x, t)) /c2(x, t) , (8.8)

provided c2(x, t) > 0, i.e., positive definite, for a minimum. Since real problems
have contraints, let U (min) ≤ u(x, t) ≤ U (max). Then the optimal control law can
be written

u∗(x, t) = min(U (max), max(U (min), u(reg)(x, t)))

=

U (min), u(reg)(x, t) ≤ U (min)

u(reg)(x, t), U (min) ≤ u(reg)(x, t) ≤ U (max)

U (max), U (max) ≤ u(reg)(x, t)

 .
(8.9)

For multidimensional state space problems see the stochastic dynamic programming
Chapter 6 here or Hanson’s computational stochastic dynamic programming chapter
in [108].

8.1.2 Crank-Nicolson, Extrapolation-Predictor-Corrector Finite

Difference Algorithm for SDP

The numerical algorithm used here is basically a modification of the work of Dou-
glas and Dupont [72, 73] on nonlinear parabolic equations modified for stochastic
dynamic programming and the PIDE for jump-diffusions.

First the problem is discretized in backward time since stochastic dynamic
programming is a backward problem but the state space is discretized in a regular
grid, with Nt nodes in t on [t0, tf] and Nx nodes in x on [x0, xmax],

t → Tk = tf −(k−1) · ∆t, for k = 1:Nt, ∆t = (tf − t0)/(Nt − 1) ,

x → Xj = x0+(j−1) · ∆X, for j = 1:Nx, ∆X = (xmax−x0)/(Nx−1) .
(8.10)

This grid leads to a corresponding discretization of the dependent variables that fol-
low using a second order central finite difference (CFD) for the time deriva-
tive, evaluating at the mid-time point, and second order CFDs for the state deriva-
tives when j = 1:Nx for each k = 1:Nt corresponding to the backward time count

D
R

A
FT

“bk08compsdpfinal”
2007/1/4
page 227

i

i

i

i

i

i

i

i

8.1. Finite Difference PDE Methods of SDP 227

with T1 = tf :

v∗(Xj , Tk) → Vj,k ,

v∗t (Xj , Tk+0.5) → (Vj,k+1−Vj,k)/(−∆t) ,

v∗x(Xj , Tk) → DVj,k = 0.5(Vj+1,k−Vj−1,k)/∆X ,

v∗xx(Xj , Tk) → DDVj,k = (Vj+1,k− 2Vj,k+Vj−1,k)/(∆X)2 ,

u(reg)(Xj , Tk) → URj,k = − (C1,j,k + F1,j,kDVj,k) /C2,j,k ,

u∗(Xj , Tk) → USj,k = min(UMAX, max(UMIN, URj,k)) ,

v∗(Xj +h0(Xj , Tk, q), Tk) → VHj,k(q),

(8.11)

where Fi,j,k = fi(Xj , Tk) for i = 0 : 1, Ci,j,k = ci(Xj , Tk) for i = 0 : 2, UMIN =
U (min) and UMAX = U (max).

The Crank-Nicolson Implicit (CNI) method provides central differencing
in state and time, so is second order accurate in both independent variables, i.e.,
O2(∆X) + O2(∆t), and the implicitness provides stability over all positive steps in
time, ∆t. However, for general problems, such as those that are multi-dimensional
or are nonlinear, the implicit and tridiagonal properties are no longer valid, unless
CNI can be extended by alternating directions implicit (ADI) through known
splittings of the spatial operators. However, for nonlinear problems, recalling from
Chapter 6 that the PDE of stochastic dynamic programming is nonlinear, ADI is
not useful and predictor-corrector methods can be used to preserve the second order
accuracy in several dimensions and for nonlinear problems. For these more general
applications, the basic structure of the CNI method upon dissection consists of a
midpoint integral approximation and an averaging to convert the time-midpoint to
integral grid point values. Thus, symbolically using the PDE of stochastic dynamic
programming in Hamilton-Jacobi form, 0 = v∗t (x, t) + H∗(x, t), using (8.7), the
midpoint rule approximation is then

Vj,k+1−Vj,k =
∫ Tk−∆t

Tk
v∗t (Xj , t)dt = −

∫ Tk−∆t

Tk
H(Xj , t)dt

≃ +∆t · H(Xj , Tk+0.5) = +∆t · Hj,k+0.5 ,
(8.12)

which is finally followed by a second order accuracy preserving averaging
step,

Vj,k+1≃Vj,k + 0.5 · ∆t · (Hj,k + Hj,k+1) , (8.13)

where the midpoint (mid-time) value of the objective has been replaced by targeted
values at given time nodes. While this last step may look like a linear assumption, in
most cases this can be extended by quasi-linearization, e.g., the average for a power
can be approximated by (Vj,k+0.5)

n+1 ≃ 0.5(Vj,k)n(Vj,k + Vj,k+1) in the zeroth
correction with further refinement in subsequent corrections, always keeping the
newest update of Vj,k+1 as a linear term. The reader can show that under second
order differentiability the averaging step is second order accurate in time (O2(∆t))
at the midpoint, it being well-known that the midpoint rule used here is second
order accurate in time. It is the midpoint rule evaluation that makes the seemingly

D
R

A
FT

“bk08compsdpfinal”
2007/1/4
page 228

i

i

i

i

i

i

i

i

228 Chapter 8. Computational Stochastic Control Methods

first order approximation for v∗t (x, t) in (8.11) accurate to O2(∆t) rather than to
O(∆t).

Integration and Interpolation for Jump Integrals

Another modification is needed for handling the jump integrals. One procedure is
the use of Gauss-statistics rules introduced by Westman and Hanson in [277]
as a generalization of the Gaussian quadrature rules, but customized for the given
mark density φQ(q) in the application. These rules use Nq points Qi and Nq weights
wi and have a polynomial precision of degree nq = Nq − 1. The weights and nodes
satisfy the 2 · Nq nonlinear equations,

Nq∑

i=1

wi · Qj
i = EQ[Qj] =

∫

Q

qjφQ(q)dq , (8.14)

for j = 0 : 2Nq−1. This leads to the Gauss-statistics approximation for the jump
integral:

IVHj,k ≡
∫
Q

VHj,k(q)φQ(q)dq ≃
∑Nq

i=1 wiVHj,k(Qi)

=
∑Nq

i=1 wiv
∗(Xj+h0(Xj , Tk, Qi), Tk) .

(8.15)

In general, the VHj,k(Qi) will be implicit values that are not necessarily at specified
state nodes j′ = 1 : Nt in Vj′,k. Just as in Crank-Nicolson averaging, O2(∆X)
interpolation is needed relative to the nearest neighbor state nodes. Let the ith
state argument be

Xj +h0(Xj , Tk, Qi) = Xj+ℓi
+ ǫi∆X ,

where the floor integer is

ℓi = ℓi,j,k = ⌊h0(Xj , Tk, Qi)/∆X⌋

and fraction
ǫi = ǫi,j,k = h0(Xj , Tk, Qi)/∆X − ℓi.

Thus, the O2(∆X) interpolation is

VHj,k(Qi) ≃ (1−ǫi) · Vj+ℓi,k + ǫi · Vj+ℓi+1,k , (8.16)

assuming the jumps are not out of range of the state space or are handled by proper
boundary conditions. Thus,

IVHj,k ≃
Nq∑

i=1

wi ((1−ǫi) · Vj+ℓi,k + ǫi · Vj+ℓi+1,k) . (8.17)

Example 8.1. Gauss-Statistics Quadrature for Log-Uniform

Jump-Amplitudes:

D
R

A
FT

“bk08compsdpfinal”
2007/1/4
page 229

i

i

i

i

i

i

i

i

8.1. Finite Difference PDE Methods of SDP 229

For example, in the case that φQ(q) is the density of the uniform distribution on
[a, b], then

for Nq = 1, nq = 1, w1 = 1, Q1 = 0.5(a + b) ;

or

for Nq = 2, nq = 3, w1 = 0.5, w2 = 0.5,

Q1 = 0.5(a + b) − 0.5(b − a)/
√

3, Q2 = 0.5(a + b) + 0.5(b − a)/
√

3 .

For higher precision on finite mark domains [a, b], piecewise applications of these
rules can be made on subdivisions [qi, qi+1] where qi = a + (i − 1)∆q for i = 1 :Mq

nodes with ∆q = (b − a)/(Mq − 1). See Westman and Hanson [277] for more
information.

In the case that there is a special q-dependence of the jump-amplitude coeffi-
cient h0(x, t, q) for which the moments can be easily or conveniently calculated, then
it may be possible to use just the interpolation of VHj,k(q) without Gauss-statistics
quadrature in q.

Example 8.2. Geometric Jump-Diffusion with Log-Uniform

Jump-Amplitudes Jump-Integral Approximation:

In the financial geometric jump-diffusion with log-uniform jump-amplitude distribu-
tion (10.119), the distribution of q is uniform with respect to the log-return ln(x),
but in the original return values the jump in the return is h(x, t, q) = x · (eq − 1)
by Itô’s chain rule. For the financial market q is very small, then so is eq − 1,
while a is small and negative with b small and positive. Provided |ǫ| ≤ 1 where
ǫ = Xj(e

q − 1)/∆X, then the appropriate piece-wise linear interpolation using the
explicit node set {Vj−1,k, Vj,k, Vj+1,k} is

VHj,k(q) ≃
{

(1 − ǫ)Vj,k + ǫVj+1,k, q ≥ 0, ǫ ≥ 0

−ǫVj−1,k + (1 + ǫ)Vj,k, q ≤ 0, ǫ ≤ 0

}
. (8.18)

Since the factor (eq−1) is now explicit, it can be integrated directly without Gaussian
quadrature to produce,

∫ b

a
VHj,k(q)φQ(q)dq ≃ Vj,k +

Xj

∆X (Vj,k − Vj−1,k)1+a−ea

b−a

+
Xj

∆X (Vj+1,k − Vj−,k) eb
−1−b
b−a .

(8.19)

Extrapolation, Prediction and Correction

Summarizing the above CNI discretizations, the PIDE of stochastic dynamic pro-
gramming of (8.7) can be put in the preliminary form

Vj,k+1 = Vj,k + ∆t · Hj,k+0.5

= Vj,k + ∆t (Cj,k+0.5 + Fj,k+0.5 · DVj,k+0.5

+0.5 · G2
0,j,k+0.5 · DDVj,k+0.5 + Λk · (IVHj,k+0.5 − Vj,k+0.5)

)
,

(8.20)

D
R

A
FT

“bk08compsdpfinal”
2007/1/4
page 230

i

i

i

i

i

i

i

i

230 Chapter 8. Computational Stochastic Control Methods

where Cj,k = C0,j,k + C1,j,kUSj,k + 0.5 · C2,j,k · US2
j,k, Fj,k = F0,j,k + F1,j,kUSj,k,

G0,j,k = g0(Xj , Tk), Λk = λ0(Tk), USj,k = min(UMAX, max(UMIN, URj,k)) and
URj,k = − (C1,j,k + F1,j,k · DVj,k) /C2,j,k, using (8.11).

Once there are two prior values Vj,k−1 and Vj,k which happens when k ≥ 2,
linear extrapolation (ex) can be used to accelerate the SDP corrections. The first
step from the final condition at k = 1 to k = 2 takes the most corrections since
no trend is available, only Vj,1. Otherwise the extrapolation (ex) step for the time-
midpoint is used for k ≥ 2 rather than the initial prediction at k = 1,

V
(ex)
j,k+0.5 =

{
Vj,k, k = 1

0.5(3Vj,k − Vj,k−1), k ≥ 2

}
, (8.21)

which is used to update the derivative DVj,k+0.5, 2nd derivative DDVj,k+0.5, regular
control URj,k+0.5, optimal control URj,k+0.5 and jump functions VHj,k+0.5(q) in

the list (8.11) for the pseudo-Hamiltonian ∆t · H(ex)
j,k+0.5 in (8.12, 8.20) using quasi-

linearization for nonlinear terms. The resulting update of the value is called the
predictor or 1st correction step (c, 1),

V
(c,1)
j,k+1 = Vj,k + ∆t · H(ex)

j,k+0.5 , (8.22)

for all j, as long as k ≥ 2. Otherwise the predicted step uses the current value or

V
(c,1)
j,k+1 = Vj,k +∆t ·Hj,k using (8.20). The evaluation step uses the updated average,

V
(c,1)
j,k+0.5 = 0.5(V

(c,1)
j,k+1 + Vj,k) , (8.23)

which is used to update all the needed values in (8.11) and finally in all the next
correction (c, 2),

V
(c,2)
j,k+1 = Vj,k + ∆t · H(c,1)

j,k+0.5 . (8.24)

The γth correction loop given V
(c,γ)
j,k+1 will contain

V
(c,γ)
j,k+0.5 = 0.5(V

(c,γ)
j,k+1 + Vj,k) , (8.25)

plus the corresponding evaluations of DV
(c,γ)
j,k+0.5, DDV

(c,γ)
j,k+0.5, UR

(c,γ)
j,k+0.5, UR

(c,γ)
j,k+0.5,

VH
(c,γ)
j,k+0.5(q) including integration, and H(c,γ)

j,k+0.5. Then

V
(c,γ+1)
j,k+1 = Vj,k + ∆t · H(c,γ)

j,k+0.5 . (8.26)

The corrections continue until the stopping criterion is reached, for instance, the
relative criteria given tolerance tolv,

∥∥∥V (c,γ+1)
j,k+1 − V

(c,γ)
j,k+1

∥∥∥
1

< tolv

∥∥∥V (c,γ)
j,k+1

∥∥∥
1

, (8.27)

for each k, continuing corrections if not satisfied, otherwise stopping the corrections
setting γmax = γ + 1 and setting the final (k + 1)st value at

Vj,k+1 = V
(c,γmax)
j,k+1 . (8.28)

D
R

A
FT

“bk08compsdpfinal”
2007/1/4
page 231

i

i

i

i

i

i

i

i

8.1. Finite Difference PDE Methods of SDP 231

In (8.27), ‖ ∗ ‖1 denotes the one-norm with respect to the state index j for cur-
rent time index k, but other norms could be used with the one-norm being less
computationally costly.

Stability criteria is another matter due to the complexity of the PIDE of
SDP in terms of multi-state systems, jump integrals, nonlinear terms and optimiza-
tion terms. A rough criterion focuses on the diffusion term G2

0,j,k+0.5DDVj,k+0.5 in
(8.20), which can be expanded by substituting the CFD form (8.11) for DVj,k+0.5

and DDVj,k+0.5 into (8.20) and produces

Vj,k+1 =
(
1 − ∆t

∆X2 G2
0,j,k+0.5

)
Vj,k+0.5

+0.5 ∆t
∆X2

(
G2

0,j,k+0.5 + Fj,k+0.5∆X
)

Vj+1,k+0.5

+0.5 ∆t
∆X2

(
G2

0,j,k+0.5 − Fj,k+0.5∆X
)

Vj−1,k+0.5

+∆tCj,k+0.5 + Λk∆t · (IVHj,k+0.5 − Vj,k+0.5) ,

(8.29)

where Cj,k = C0,j,k +C1,j,kUSj,k +0.5 ·C2,j,k ·US2
j,k and Fj,k = F0,j,k +F1,j,kUSj,k.

Following Kushner and Dupuis [179] and ignoring the jump and cost terms,
the positivity of the diffusion with drift terms leads to a parabolic mesh ratio

max
j,k

(
G2

0,j,k+0.5

) ∆t

(∆X)2
< 1, (8.30)

or so, but certainly should be less than one. This assumes that the PIDE is
diffusion-dominated and accounts for the drift as well as other terms in (8.3).
The discrete HJB equation is said to be diffusion-dominated, modified for current
form from a relation in [179], if

min
j,k

(
G2

0,j,k − |Fj,k|∆X
)
≥ 0, (8.31)

where Fj,k = F0,j,k + F1,j,kUSj,k, so that the coefficients of the non-diagonal terms,
Vj+1,k+0.5 and Vj−1,k+0.5 are also positive. Otherwise the discrete problem is either
mixed domination or drift-dominated, ignoring the jump cost terms. The tech-
nique is to decrease ∆t and/or increase ∆X if spurious oscillations appear. Not that
the diffusion-dominated condition (8.31) is satisfied for sufficiently small state step-
size ∆X as long as the diffusion coefficient G2

0,j,k+0.5 is not also sufficiently small.
For more information on linear and multi-state models, see Hanson [108], [216]
and [111] or see Kushner and Dupuis [179].

The central finite differences for state derivatives work quite well in the diffusion-
dominated regime, but are not useful for specified derivative boundary conditions,
such as the convection boundary condition and the no-flux or reflecting boundary
condition (7.43), e.g., v∗x(x0, t) = 0 on the left boundary or v∗x(xmax, t) = 0 on the
right boundary, respectively, assuming the diffusion coefficient g2

0(x, t)/2 > 0 for a
well defined flux and nonsingular boundary condition. Using second order forward
and backward finite differences, respectively, to maintain consistency in numerical
accuracy with the central differences in the interior of [x0, xmax], the derivatives at

D
R

A
FT

“bk08compsdpfinal”
2007/1/4
page 232

i

i

i

i

i

i

i

i

232 Chapter 8. Computational Stochastic Control Methods

the boundaries are

v∗x(x0, Tk) ≃ DV1,k = −0.5(V3,k − 4V2,k + 3V1,k)/∆x,

v∗x(xmax, Tk) ≃ DVNx,k = +0.5(VNx−2,k − 4VNx−1,k + 3VNx,k)/∆x.
(8.32)

Now, these signs of these terms are not a problem for stability since these conditions
are used as eliminants for V1,k for left boundary values and VNx,k for right boundary
values rather than a replacements for the discrete HJB equations (8.29). An alter-
nate derivative boundary condition implementation is to add artificial boundary to
the domain, but this author has found better performance using only the domain
with the derivative boundary values like (8.32).

For finite element versions see Chung, Hanson and Xu [54] or Hanson[108].
Although not on SDP, the work of Chakrabarty and Hanson [49] uses the CNI-
predictor-corrector methods discussed here with finite elements for a large scale
distributed parameter or PDE-driven system. Finite element methods are better
for presenting multidimensional systems and systems on irregular domains.

8.1.3 Upwinding Finite Differences If Not Diffusion-Dominated

When the diffusion-dominated condition (8.31) is no longer valid then the drift
term becomes important or the system (8.3) becomes drift dominant and the coef-
ficients of the non-diagonal terms, Vj+1,k and Vj−1,k are no longer guaranteed to be
positive. In this case the system takes upon more hyperbolic PDE characteristics
since the drift terms are of hyperbolic type as are first order PDEs. In the case of
drift-dominance or near-drift-dominance, following Kushner [179] and others, the
finite difference to the first state partial of the optimal value function v∗x(Xj , Tk) in
(8.11) should be changed from second-order CFD to first-order upwinded finite
differences (UFD) which uses forward or backward finite differences (FFDs or
BFDs) to coincide with the sign of the drift coefficient, respectively, i.e.,

DVj,k =

{
(Vj+1,k − Vj,k)/∆x, Fj,k ≥ 0

(Vj,k − Vj−1,k)/∆x, Fj,k < 0

}
, (8.33)

where again Fj,k = F0,j,k + F1,j,kUSj,k. Thus, upwind is in the direction of the
drift. However, upwinding requires a sacrifice of numerical accuracy consistency,
going from O(∆X2) CFD to O(∆X) UFD for the first state partial, in favor of
more stable numerical calculations. Substituting the UFD form (8.33) for DVj,k in
(8.20) produces

Vj,k+1 =
(
1 − ∆t

∆X2

(
G2

0,j,k+0.5 + 0.5|Fj,k+0.5|∆X
))

Vj,k+0.5

+0.5 ∆t
∆X2

(
G2

0,j,k+0.5 + [Fj,k+0.5]+∆X
)

Vj+1,k+0.5

+0.5 ∆t
∆X2

(
G2

0,j,k+0.5 + [Fj,k+0.5]−∆X
)

Vj−1,k+0.5

+∆tCj,k+0.5 + Λk∆t · (IVHj,k+0.5 − Vj,k+0.5) ,

(8.34)

D
R

A
FT

“bk08compsdpfinal”
2007/1/4
page 233

i

i

i

i

i

i

i

i

8.1. Finite Difference PDE Methods of SDP 233

where [f]± ≡ max[±f] ≥ 0, such that [f]+ +[f]− = |f | and [f]+− [f]− = f . Hence,
for the diffusion terms, all coefficients are positive provided the drift-adjusted
parabolic mesh ratio condition is satisfied,

max
j,k

(
G2

0,j,k+0.5 + 0.5|Fj,k+0.5|
) ∆t

(∆X)2
< 1, (8.35)

without the extra diffusion-dominated condition in (8.31) being needed.

8.1.4 Multi-state Systems and Bellman’s Curse of

Dimensionality

Generalization to multi-dimensional state spaces can lead to very large scale com-
putational problems, since the size of the computational problem grows with the
number of dimensions multiplied by the number of nodes per dimension.

Starting with a version of the PDE of SDP in (6.19) modified for the LQJD/U
form in (6.21-6.25) and no diffusion process correlations (R ′ = Inw×nw

),

0 = v∗t (x, t) + C0(x, t) + C⊤
1 (x, t)u∗ +

1

2
(u∗)⊤C2(x, t)u∗

+∇⊤
x [v∗](x, t) · (f0(x, t) + f1(x, t)u∗)

+
1

2

(
g0g

⊤
0

)
(x, t) :∇x

[
∇⊤

x [v∗]
]
(x, t) (8.36)

+

np∑

ℓ=1

λℓ(t)

∫

Qℓ

(
v∗
(
x + ĥ0,ℓ(x, t, qℓ), t

)
− v∗(x, t)

)
φQℓ

(qℓ)dqℓ ,

where the double-dot product (:) is defined as a trace in (5.99) and the ℓth jump-

amplitude vector is ĥ0,ℓ(x, t, qℓ) ≡ [h0,i,ℓ(x, t, qℓ)]nx×1 for ℓ = 1:np.
Let the state dimension be nx and realized state vector be given by x =

[xi]nx×1. In discrete form, the state vector with a common Nx nodes per dimension
becomes x = [xi]nx×1 → Xj = [Xi,ji

]nx×1, representing a single point in state
space, given one ji for each state i from the range ji = 1 : Nx for i = 1 : nx with
Xi,ji

= xi,0 + (ji − 1)∆Xi and ∆Xi = (xi,max − xi,0)/(Nx − 1). The entire set of
points in state space can be represented by X = [Xi,j]nx×Nx

with corresponding
vector index J = [Ji,j]nx×Nx

. This representation leads to a large scale expansion
of the independent variables of SDP from that in (8.37) for each current k = 1:Nt,

D
R

A
FT

“bk08compsdpfinal”
2007/1/4
page 234

i

i

i

i

i

i

i

i

234 Chapter 8. Computational Stochastic Control Methods

using CFD for each state component of state partial derivatives:

v∗(Xj, Tk) → VJ,k ≡ [Vj1,j2,...,jnx ,k]Nx×Nx×···×Nx ,

v∗
t (Xj, Tk) → (VJ,k+1−VJ,k)/(−∆t),

∇x[v∗](Xj, Tk) → DVJ,k ≡ [DVi,j1,...,jnx ,k]nx×Nx×···×Nx

=
ˆ`

Vj1+δi,1,...,jnx+δi,nx
,k

−Vj1−δi,1,...,jnx−δi,nx
,k

´
/∆Xi

˜
nx×Nx×···×Nx

,

∇x

ˆ
∇

⊤
x [v∗]

˜
(Xj, Tk) → DDVJ,k ≡ [DDVi,j,j1,...,jnx ,k]nx×nx×Nx×···×Nx ,

u(reg)(Xj, Tk) → URJ,k ≡ [URi,j1,...,jnx ,k]nx×Nx×···×Nx

= − (C1,J,k + F1,J,kDVj,k) . //, C2,J,k,

u∗(Xj, Tk) → USJ,k ≡ [USi,j1,...,jnx ,k]nx×Nx×···×Nx

= [min(UMAXi, max(UMINi

, URi,j1,...,jnx ,k))]nx×Nx×···×Nx ,

v∗(Xj + bh0,ℓ(Xj, Tk, qℓ), Tk) → VHJ,k(qℓ).

(8.37)

where δi,j is the Kronecker delta, Fi,J,k = fi(XJ , Tk) for i = 0 : 1, Ci,J,k =
ci−(XJ , Tk) for i = 0 : 2, the symbol “./” denotes element-wise division, UMINi =

U
(min)
i for i = 1:nx and UMAXi = U

(max)
i for i = 1:nx. The hypercube form of the

control constraints is used here only for a concrete example, and can be replaced
for what is appropriate in the application of interest.

The Hessian matrix is not necessarily diagonal and is only so if the diffusion
coefficient 0.5(g0g

⊤
0)(x, t) is diagonal, so the full, asymmetric Hessian is given here:

DDVJ,k ≡
ˆ
DDVi,j,j1,...,jnx ,k

˜
nx×nx×Nx×···×Nx

=
ˆ`

Vj1+δi,1,...,jnx+δi,nx
,k−2Vj1,...,jnx ,k+Vj1−δi,1,...,jnx−δi,nx

,k

´
δi,j

‹
∆X2

i

+0.25
`
Vj1+δi,1+δj,1,...,jnx +δi,nx

+δj,nx
,k

−Vj1−δi,1+δj,1,...,jnx−δi,nx
1+δj,nx

,k − Vj1+δi,1−δj,1,...,jnx+δi,nx
−δj,nx

,k

+Vj1−δi,1−δj,1,...,jnx−δi,nx
−δj,nx

,k

´

·(1 − δi,j) /(∆Xi∆Xj)]
nx×nx×Nx×···×Nx

,

(8.38)

in the second order accuracy, central finite difference form. If the Hessian is diago-
nal, then only the second line of (8.38) is needed. The off-diagonal terms, i.e., when
i 6= j, are conveniently calculated as the operator product of two central finite dif-
ferences for the two independent partials. In the case where the off-diagonal terms
are significant enough that they can affect stability and convergence, Kushner and
Dupuis [179] recommend a better form form than that given in (8.38) for the cross
term in DDVJ,k.

These are the basic numerical ingredients for converting the one-state prob-
lem Crank-Nicolson Extrapolator-Predictor-Corrector method in Subsec-
tion 8.1.2 to the multi-state problem.

Curse of Dimensionality

In the full Hessian case, the Hessian is the largest array that will be needed in the
computation and will basically determine the order of both computing and memory

D
R

A
FT

“bk08compsdpfinal”
2007/1/4
page 235

i

i

i

i

i

i

i

i

8.2. Markov Chain Approximation for SDP 235

demands for the solution of the PDE of SDP. In this full case the demands per
time-step k will then be roughly proportional to the order of the DDVj,k count or

O (NDDV) = O

(
n2

x ·
nx∏

i=1

Nx

)
= O

(
n2

x · Nnx
x

)
= O

(
n2

x · enx ln(Nx)
)

, (8.39)

which is nx times the size of the vector functions like DVj,k and will grow exponen-
tially with state dimension times the logarithm of the common number of nodes per
dimension. If the number of nodes per dimension varies, i.e., Ni nodes in dimension

i, then the geometric mean Nx = (
∑nx

i=1 Ni)
1/nx can be used in place of the common

value Nx in the above exponential estimate. This exponential growth in demands
quantifies the exponential complexity in solving the PIDE of SDP and is called
Bellman’s curse of dimensionality. However, the very same exponential com-
plexity (8.39) is found in high dimensional, second order PDEs. If there are nx = 6
states and there are Nx = 64 nodes per state using 8-byte (8B) or double words,
then the order of the amount of storage required is NDDV = 8 · 62 · 646B = 18GB,
where 1GB is a gigabyte or a computer billion bytes or 10244 bytes.

If the discrete Hessian is diagonal, then the amount of storage needed is re-
duced to some multiple of

NDV = 8 · nx · Nnx
x B,

using 8 byte (8B) words, DDV that has the same size as DV, so in the example
with nx = 6 and Nx = 64, NDV = 8 · 6 · 646B = 3GB, a more reasonable size for
a large scale problem capable computer. If the number of nodes per dimension is
reduced to 32 instead of 64, then the amount of storage needed is some multiple
of 8 · 6 · 326B = 49, 152MB = 0.0469GB, approaching PC desktop capability (1MB
being a megabyte or or 10242 bytes). The growth of the curse of dimensionality in
the logarithm to the base 2 scale is illustrated in Fig. 8.1 for the diagonal Hessian
size case NDV. Note the top scale in the figure is about 60 log(B) and 260B = 10246B
is 1 terabytes (1TB) or 10242GB (1GB = 240B, while 1MB = 220B) and that is
well within the capabilities of our current largest scale computers.

For parallel processing techniques in computational stochastic programming
refer to Hanson’s 1996 chapter [108]. See also [109] for more general supercomputing
techniques that were developed originally solving computational control application
problems.

8.2 Markov Chain Approximation for SDP

Another method for numerically solving stochastic dynamic programming problems
in continuous time is Kushner’s Markov chain approximation (MCA) [174, 175]
that implicitly provides good convergence properties by normalizing the correspond-
ing finite differences as proper Markov chains. In addition, MCA facilitates the proof
of weak convergence using probabilistic arguments. Kushner and Dupuis’s [179]
method of using an auxiliary stochastic process, so that the composite stochastic
process properly satisfies boundary conditions, is also treated. The summary here is
in the spirit of this applied text to make the Markov chain approximation method

D
R

A
FT

“bk08compsdpfinal”
2007/1/4
page 236

i

i

i

i

i

i

i

i

236 Chapter 8. Computational Stochastic Control Methods

0
1

2
3

4
5

6

2

4

6

8

10

10

20

30

40

50

60

log
2
(N

x
), log

2
(Nodes)

Curse of Dimensionality: N
DV

 = log
2
(8*n

x
 exp(n

x
 ln(N

x
)))

n
x
, State Dimensions

lo
g

2(N
D

V
),

 L
o

g
2(

P
ro

b
le

m
 S

iz
e

O
rd

er
)

Figure 8.1. Estimate of the logarithm to the base 2 of the order of the
growth of memory and computing demands using 8 byte words to illustrate the curse
of dimensionality in the diagonal Hessian case for nx = 1 : 10 dimensions and
Nx = 1:64 = 1:26 nodes per dimension. Note that 1KB or one kilobyte has a base
2 exponent of 10 = log2(2

10), while the base 2 exponent is 20 for 1MB, 40 for 1GB
and is 60 for 1TB.

more accessible, concentrating on the techniques, rather than the problems and
formal definitions.

8.2.1 The MCA Formulation for Stochastic Diffusions

Although MCA is valid for jump-diffusions, only diffusions will be considered here
to keep the complexity manageable and the reader can consult [179] for a more
complete treatment of MCA. Let the diffusion satisfy the SDE,

dX(t)
sym
= f(X(t), U(t), t)dt + g(X(t), t)dW (t) , (8.40)

where the notation otherwise is the same as in (8.1) of the prior section, with f
and g being bounded, continuous and Lipshitz continuous in X , while f has the
same properties in U , but uniformly. For later reference, the following conditional
infinitesimal moments are

E[dX(t)|X(t) = x, U(t) = u] = f(x, u, t)dt,

Var[dX(t)|X(t) = x, U(t) = u] = g2(x, t)dt.
(8.41)

D
R

A
FT

“bk08compsdpfinal”
2007/1/4
page 237

i

i

i

i

i

i

i

i

8.2. Markov Chain Approximation for SDP 237

Let the minimal, expected costs be defined as

v∗(x, t) ≡ minU [t,tf)

[
E

(dW,dP)[t,tf)

[∫ tf

t
C(X(s), U(s), s)ds + S(X(tf), tf)

∣∣∣X(t) = x, U(t) = u
]]

,

(8.42)

for t0 ≤ t < tf . The corresponding PDE of stochastic dynamic programming is

0 = v∗t (x, t) + minu [H(x, u, t)]

≡ v∗t (x, t) + minu

[
C(x, u, t) + f(x, u, t)v∗x(x, t) + 1

2g2(x, t)v∗xx(x, t)
]

= v∗t (x, t) + H∗(x, t) .

(8.43)

The first step of the numerical part of the MCA procedure is to approximate
the backward PDE (8.43) by a backward Euler method in time for simplicity. Then
using the kth time step at tk with optimal value vk(x) ≃ v∗(x, tk), the next value is

vk−1(x) = vk(x) + ∆tk−1 minu

[
Ck(x, u) + fk(x, u)v′k(x) + 1

2g2
k(x)v′′k (x)

]
, (8.44)

for forward index k = 1 : Nt, tk ≡ tk−1 + ∆tk−1, tNt
= tf , Ck(x, u) = C(x, u, tk),

fk(x, u, tk) and gk(x) = g(x, tk). The final condition is vNt
(x) = S(x, tf). The time

step ∆tk−1 is called the MCA interpolation time increment and is selected
to help form a proper Markov chain for convergence, so the increments are not
necessarily constant. Though motivated by an approximation in time, time has been
removed from the problem, i.e., the current problem is actually time-independent.
Finite differences in the state come after specifying diffusion consistency conditions.

8.2.2 MCA Local Diffusion Consistency Conditions

Let ξk for k ≥ 0 denote a Markov chain of discrete stages, intended as a discrete
model for the state x, whose spacing is the order of some state mesh measure ∆X ,
i.e., |∆ξk| = O(∆X) where ∆ξk ≡ ξk+1 − ξk. Let the Markov chain transition
probability for diffusions (D) be defined by

p(D)(x, y|u) ≡ Prob[ξk+1 = y|ξj , uj , j < k, ξk = x, uk = u] (8.45)

for transitions from current stage ξk = x to the next stage ξk+1 = y using control
policy uk = u. (The term stage is used to denote a discrete state.) These transitions
must satisfy the probability rules of non-negativity p(D)(x, y|u) ≥ 0 and probability
conservation for transitions,

∑
ℓ p(D)(x, Xℓ|u) = 1, under current control u and over

probable state transitions y = Xℓ. The increments ∆ξk must satisfy the MCA local
diffusion consistency conditions:

E[∆ξk|x, u] ≡ ∑
ℓ(Xℓ − x) · p(D)(x, Xℓ|u) = ∆tk−1 · (fk(x, u) + o(1));

Var[∆ξk|x, u] ≡ ∑
ℓ(Xℓ − x − E[∆ξk|x, u])2 · p(D)(x, Xℓ|u)

= ∆tk−1 · (g2
k(x) + o(1)),

(8.46)

D
R

A
FT

“bk08compsdpfinal”
2007/1/4
page 238

i

i

i

i

i

i

i

i

238 Chapter 8. Computational Stochastic Control Methods

with ∆ξk → 0+ as ∆X → 0+, for k = 0 : Nt−1. The conditions are consistent
with the first two conditional infinitesimal moments (8.41) of a stochastic diffusion
approximation corresponding to the SDE (8.40), so they are neccesary preconditions
for convergence of the Markov chain to the diffusion SDE (8.40).

See Sect. 7.8 on p. 216 or Feller, vol. II [84]) for more information. Also, see
Kloeden and Platen [165] for stricter definitions of diffusion consistency conditions.
The generalization of these diffusion consistency conditions to jump-diffusions is
much more complicated, but is treated in Subsect. 8.2.4.

The discrete process can be used to construct a piece-wise constant (pwc/)
interpolation of the state and control processes in continuous time, i.e.,

(X(pwc/)(t), U (pwc/)(t) = {(ξk, uk), tk−1 ≤ t < tk−1 + ∆tk−1 = tk,

for k ≥ 1} ,
(8.47)

with the relationship between the interpolation times tk and interpolation time
increments ∆tk−1 being tk+1 =

∑k
j=0 ∆tj . In general, the time increments will

depend on ξk and uk, which also depends on the order of state mesh ∆X , so
∆tk−1 = ∆tk−1(ξk, uk; ∆X). As the state mesh goes ot zero, it is required that the
maximal state mesh go to zero, i.e., maxu,x[∆tk−1(x, u; ∆X)] → 0+.

8.2.3 MCA Numerical Finite Differences for State Derivatives

and Construction of Transition Probabilities

Construction of the Markov chain transition probabilities is found by finite differ-
encing the state derivative. The state derivative is upwinded by first order forward
or backward differences (UFD) for greater stability depending on the sign of the
drift coefficient fk(x, u, t) as in (8.33),

v′k(x) ≃

(
vk(x + ∆X) − vk(x)

∆X , fk(x, u) ≥ 0

(
vk(x) − vk(x − ∆X)

∆X , fk(x, u) < 0

 (8.48)

and central finite differences (CFDs) of second order accuracy are used for the
second state partial

v′′k (x) ≃ vk(x + ∆X) − 2vk(x) + vk(x − ∆X)

∆X2 . (8.49)

Alternately, second order upwinding can be used for the state first derivative so
that the accuracy is consistent with O(∆X2) accuracy of the second derivative used
above, but this leads to a double jump in the state by 2±∆X so this complication
will not be introduced here although the larger O(∆X) error numerically pollutes
the smaller O(∆X2) error for small ∆X . Using the O(∆X2) forward and backward
finite differences of the form used for derivative boundary conditions in (8.32) would
not be useful since the alternating signs would lead to improper, negative transition
probabilities for a least one double step transition.

D
R

A
FT

“bk08compsdpfinal”
2007/1/4
page 239

i

i

i

i

i

i

i

i

8.2. Markov Chain Approximation for SDP 239

Substituting into Eq. (8.44) for vk−1(x) and then collecting the coefficients in
terms of transition probabilities,

vk−1(x) = minuk−1

[
∆tk−1 · Ck(x, uk−1) + p

(D)
k (x, x|uk−1) · vk(x)

+p
(D)
k (x, x + ∆X |uk−1) · vk(x + ∆X)

+p
(D)
k (x, x − ∆X |uk−1) · vk(x − ∆X)

]
,

(8.50)

the transition probabilities are found to be

p
(D)
k (x, x|uk−1)=1−∆tk−1

∆X2
·
(
g2

k(x)+∆X |fk(x, uk−1)|
)
, (8.51)

p
(D)
k (x, x + ∆X |uk−1)=

∆tk−1

∆X2
·
(
0.5g2

k(x)+∆X [fk(x, uk−1)]+
)
, (8.52)

p
(D)
k (x, x − ∆X |uk−1)=

∆tk−1

∆X2
·
(
0.5g2

k(x)+∆X [fk(x, uk−1)]−
)
, (8.53)

where [f]± ≡ max[±f] ≥ 0. Upwinding ensures that all terms in the coefficients of

∆tk−1 are non-negative, so that the up and down transition probabilities, p
(D)
k (x, x+

∆X |uk−1) and p
(D)
k (x, x−∆X |uk−1) are nonnegative. Note that on the right-hand-

side of the conservation law (8.50) for the transition probabilities to get the value
function for the past time tk−1, the value function is evaluated at the current time
tk, but the control is for the past time tk−1 which makes it seem like the control is
implicit. However, uk−1 is thought to be the control to get the state x from time
tk−1 to time tk and the optimization over uk−1 will determine uk−1 in terms of
values at tk anyway, so is not really an implicit term. Genuine implicit methods are
discussed in Kushner and Dupuis [179].

It is clear that ∆tk−1 must be sufficiently small so that the state self-transition

probability p
(D)
k (x, x|uk−1) is non-negative, i.e., is a proper probability. This implies

the following convergence criteria

∆tk−1

∆X2
≤ 1

γ2
k(x)+∆X |fk(x, uk−1)|

(8.54)

or in terms of a generalization of the parabolic mesh ratio condition

(
g2

k(x)+∆X |fk(x, uk−1)|
)
· ∆tk−1

(∆X)2
≤ 1, (8.55)

including both the diffusion coefficient and the upwinded drift term in the scaling
of ∆tk−1/(∆X)2. Since (8.54) should hold for all discrete time steps k, then we
should have

max
x,u,k

[
(g2

k(x)+∆X |fk(x, u)|)∆tk−1

∆X2

]
≤ 1. (8.56)

D
R

A
FT

“bk08compsdpfinal”
2007/1/4
page 240

i

i

i

i

i

i

i

i

240 Chapter 8. Computational Stochastic Control Methods

The diffusion consistency conditions (8.46) can be confirmed in this three local
state case directly,

E[∆ξk|x, uk−1] = p
(D)
k (x, x|uk−1) · 0 + p

(D)
k (x, x + ∆X |uk−1) · (+∆X)

+p
(D)
k (x, x − ∆X |uk−1) · (−∆X)

= ∆tk−1 · ([fk(x, uk−1)]+ − [fk(x, uk−1)]−)

≡ ∆tk−1 · fk(x, uk−1),

Var[∆ξk|x, uk−1] = p
(D)
k (x, x|uk−1) · (∆tk−1fk(x, uk−1))

2

+p
(D)
k (x, x + ∆X |uk−1) · (∆X − ∆tk−1fk(x, uk−1))

2

+p
(D)
k (x, x − ∆X |uk−1) · (−∆X − ∆tk−1fk(x, uk−1))

2

= ∆tk−1 ·
(
g2

k + |fk(x, uk−1)|∆X − 2∆tk−1f
2
k (x, uk−1)

)

= ∆tk−1 ·
(
g2

k + o(1)
)

as ∆X → 0+ and consequently ∆tk−1 → 0+.
Upon proper choice of the time and state grids satisfying (8.56), for example

in the case of regular grids as used in the previous section in (8.10) with Nt nodes
in t on [t0, tf] and Nx nodes in x on [x0, xmax], Tk = tf −(k−1)∆t for k = 1 : Nt,
∆tk−1 = ∆t = (tf − t0)/(Nt − 1) and Xj = x0 + (j − 1)∆X for j = 1 : Nx,
∆X = (xmax−x0)/(Nx−1), then

Vj,k−1 ≡ vk−1(Xj)

= ∆t · Ck(Xj , Uj,k−1) + p
(D)
k (Xj , Xj |Uj,k−1) · Vj,k

+p
(D)
k (Xj , Xj+1|Uj,k−1) · Vj+1,k

+p
(D)
k (Xj , Xj−1|Uj,k−1) · Vj−1,k,

(8.57)

when the optimal control is

Uj,k−1 = argminuk−1

[
∆tk−1 · Ck(Xj , uk−1) + p

(D)
k (Xj , Xj |uk−1) · Vj,k

+p
(D)
k (Xj , Xj+1|uk−1) · Vj+1,k

+p
(D)
k (Xj , Xj−1|uk−1) · Vj−1,k

]
,

(8.58)

for j = 1 : Nx for each stage k = Nt : −1 : 2 in backward order. Note that
in [179], Kushner and Dupuis suggest a preference for selecting the interpolation
time-step ∆tk−1 so that the self-transition probability p(D)(x, x|u) vanishes leading
to a renormalization of the non-self-transition probabilities like p(D)(x, x ± ∆X |u).

In this section, the Markov chain approximation has only been summa-
rized to convey the main ideas, but for those interested in the weak convergence
proofs and related theory they should consult [176, 179] and additional references
therein.

D
R

A
FT

“bk08compsdpfinal”
2007/1/4
page 241

i

i

i

i

i

i

i

i

8.2. Markov Chain Approximation for SDP 241

8.2.4 MCA Extensions to Include Jump Processes

In [179, Sect. 5.6, pp. 127-133], Kushner and Dupuis briefly present the extensions
of the Markov chain approximation for diffusions to that for jump-diffusions.
Earlier Kushner and DiMasi [178] made contributions to the jump-diffusion optimal
control problem, while Kushner [177] more recently gave further results on existence
and numerical methods for the problem.

The main idea is based upon the facts that the Poisson process is instan-
taneous compared to the continuity of the diffusion process and that the Poisson
process during short time intervals ∆t can be asymptotically treated as a zero-one
Bernoulli process as mentioned in prior chapters. Starting with the jump-diffusion
SDE extension of (8.40),

dX(t)
sym
= f(X(t), U(t), t)dt + g(X(t), t)dW (t) ,

+h(X(t), U(t), t, Q)dP (t; Q, X(t), U(t), t) ,
(8.59)

where dP (t; Q, X(t), U(t), t) is the differential Poisson process with rate λ(t; x, u, t),
h(x, u, t, q) is the state jump-amplitude and generalized probability density φQ(q).
The conditional infinitesimal moments are given by

E[dX(t)|X(t) = x, U(t) = u] = f(x, u, t)dt + EQ[h(x, u, t, Q)]λ(t; x, u, t)dt,

Var[dX(t)|X(t) = x, U(t) = u] = g2(x, t)dt + EQ[h2(x, u, t, Q)]λ(t; x, u, t)dt.
(8.60)

By separability of the diffusion and the jumps for sufficiently small time-steps

∆tk−1, the diffusion transition probabilities are unchanged, p
(D)
k (x, y|u) for stage k.

The probability of zero or one Poisson jump in time-steps of ∆tk−1 can be written

p
(J)
j,k =

1 − λ∆tk−1 + o(∆tk−1), j = 0 jumps

λ∆tk−1 + o(∆tk−1), j = 1 jump

o(∆tk−1), j ≥ 2 jumps

, (8.61)

as ∆tk−1 → 0+.
For the discretization jump-amplitude function h(x, t, q) of the corresponding

compound Poisson process, a concrete rather than the abstract formulation of Kush-
ner and Dupuis [179] will be given so that the transition of a piece-wise-constant
pre-jump stage x = Xj for some j to a piece-wise-constant post-jump stage y = Xℓ

for some ℓ, where Xj+1 = Xj + ∆Xj for j = 1 : Nx − 1, X1 = x0, XNx
= xmax

and the mesh is given by ∆X = maxj (∆Xj) → 0+. However, the treatment of
jumps is much more complicated than that for diffusion whose dependence is only
local, depending on only nearest neighbor or similarly close nodes, but jump be-
havior is globally dependent on nodes that may be remote from the current node
Xj . Also, the connection of the jump-amplitude function to the jump-amplitude
random mark variable q will be clarified. The jump-amplitude may be continuously
distributed due to a continuous mark density φQ(q). It is assumed that post-jump
stage y = x + h(x, t, q) is uniquely invertible with q as a function of y given x, but
it is necessary to have a set target S(Xℓ) rather than a point target y = Xℓ so a

D
R

A
FT

“bk08compsdpfinal”
2007/1/4
page 242

i

i

i

i

i

i

i

i

242 Chapter 8. Computational Stochastic Control Methods

corresponding set Qj,ℓ(t) of positive probability measure can be found. Let S(Xℓ)
be a partition of the state domain [X1, XNx

] such that

Nx∑

ℓ=1

S(Xℓ) = [X1, XNx
].

The S(Xℓ) will usually depend on the application due particular boundary condi-
tions, singular points or related zero points, which could lead to forward or backward
shifted intervals or intervals centered about Xℓ as with rounding. The discretized,
here piece-wise-continuous (pwc), instead of the prior piece-wise-constant (pwc/)

step functions, jump-amplitude H
(pwc)
j,ℓ (t) given the stage set S(Xℓ) is

H
(pwc)
j,ℓ (t) = h(Xj , t,Qj,ℓ(t)) = S(Xℓ) − Xj , (8.62)

implicitly defining the mark set Qj,ℓ(t) for 1 ≤ j < ∞ and 1 ≤ ℓ < ∞. This ensures
that a jump takes a proper (pwc) stage Xj to a proper (pwc) stage Xℓ defined by the
set S(Xℓ). Given a jump it is also necessary to know the corresponding probability
of the transition referenced by (8.62) , i.e.,

Prob [y = x + h(x, t, q) ∈ S(Xℓ) | x = Xj, y ∈ S(Xℓ)]

= Φ(Xj , Xℓ, t) ≡
∫
Qj,ℓ(t)

φQ(q)dq,
(8.63)

where φQ(q) is the generalized mark density with corresponding distribution ΦQ(q),

except that when h(Xĵ , t, q) = 0 for some ĵ, i.e., there is a zero jump and y ∈ S(Xℓ)

is not achievable for general ℓ, then Φĵ,ℓ(t) ≡ 0. In the case that Φ(Xj , Xℓ, t) leads
to a probabilistically deficient distribution, in general the renormalized form is

Φ̂(Xj , Xℓ, t) = Φ(Xj , Xℓ, t)
/

Φ(Xj , t) , (8.64)

where

Φ(Xj , t) ≡
Nx∑

ℓ=1

Φ(Xj , Xℓ, t) =

Nx∑

ℓ=1

∫

Qj,ℓ(t)

φQ(q)dq.

Example 8.3. Geometric Jump-Diffusion Target Mark Set Calculations:

For the geometric jump-diffusion used in finance, with linear jump-amplitude

h(x, t, q) = xJ(q, t),

it is convenient to choose the log-return jump as the mark, i.e.,

q = [ln(X)](t) = ln
((

X(t−) + X(t−)J(q, t−)
)
/X(t−)

)
= ln(1 + J(q, t−)),

so h(x, t, q) = x(exp(q) − 1). Hence, X1 = x0 = 0 is a zero point needing special
treatment since there can be no target stage except for [X1, X1] = {0}, so that a
proper partition of [X1, XNx

] would be S(X1) = {0} and S(Xℓ) = (Xℓ−1, Xℓ−2] for

D
R

A
FT

“bk08compsdpfinal”
2007/1/4
page 243

i

i

i

i

i

i

i

i

8.2. Markov Chain Approximation for SDP 243

ℓ = 2:Nx. The discrete jump-amplitude H
(pwc)
1,ℓ (t) ≡ 0 for definiteness when X1 = 0

and
H

(pwc)
j,ℓ (t) ≡ Xℓ − Xj

for ℓ = 2:Nx. The target mark set is

Qj,ℓ(t) = (ln(Xℓ−1/Xj), ln(Xℓ/Xj)]

for ℓ = 2 : Nx when j > 1. Given a mark density, then a renormalized target
distribution Φ̂(Xj , Xℓ, t) can be calculated.

The Markov chain approximation ξk(∆X) is locally jump-diffusion con-
sistent if there is an interpolation time interval ∆tk−1 = ∆t(x, u; ∆X) → 0+

uniformly in (x, u, ∆X) as the mesh gauge ∆X → 0+ and so that

1. Along with ∆t(x, u; ∆X), there is a locally diffusion consistent transition prob-
ability p(D)(x, y | u; ∆X) satisfying the conditions in (8.46);

2. The jump-diffusion transition probabilities p(JD)(x, y | u; λ, ∆X) must
conserve probability over the post-jump values y = Xℓ from any given pre-
jump value x = Xj, i.e.,

∑

ℓ

p(JD)(Xj , Xℓ | u; λ, ∆X) = 1.

3. Markov chain increments ∆ξk satisfy the MCA jump-diffusion local consis-
tency conditions consistent with the jump-diffusion conditional infinitesimal
moments (8.60), with replacements f(x, u, t) → fk, (x, u), g(x, t) → gk(x),

h(x, t, q) → hk(x, q), H
(pwc)
j,ℓ (t) → H

(pwc)
j,ℓ,k Φ̂(Xj , Xℓ, t) → Φ̂k(Xj , Xℓ), under

current control u and over probable state transitions

E[∆ξk | Xj , uk−1] ≡
∑

ℓ(Xℓ − Xj) · p(JD)(Xj , Xℓ | uk−1; λ, ∆X)

= ∆tk−1 · (fk(Xj , uk−1) + λEQ[hk(Xj , Q)] + o(1)) ;

Var[∆ξk | Xj , uk−1] ≡
∑

ℓ(Xℓ − Xj − E[∆ξk | Xj , uk−1])
2

·p(JD)(x, Xℓ | uk−1; λ, ∆X)

= ∆tk−1 ·
(
g2

k(x) + λEQ[h2
k(Xj , Q)] + o(1)

)
,

(8.65)

with ∆ξk → 0+ as ∆X → 0+, for k = 0:Nt−1.

4. There is a small error factor ε(s, u; ∆X) = o(∆t(x, u; ∆X)) that can be used
to construct (Kushner and Dupuis [179], modified for clarification here) the
jump-diffusion transition probability p(JD)(x, y | u; λ, ∆X) and is of the
form

p(JD)(Xj , Xℓ | u; λ, ∆X)

= (1 − λ∆t(Xj , u; ∆X) − ε(Xj, u; ∆X)) · p(D)(Xj , Xℓ | u; ∆X)

+(λ∆t(Xj , u; ∆X) + ε(Xj , u; ∆X)) · Φ̂k(Xj , Xℓ)1Xℓ∈Xj+H
(pwc)
j,ℓ,k

,

(8.66)

D
R

A
FT

“bk08compsdpfinal”
2007/1/4
page 244

i

i

i

i

i

i

i

i

244 Chapter 8. Computational Stochastic Control Methods

for 1 ≤ j < ∞ and 1 ≤ ℓ < ∞, where 1S is the indicator function for set

S = {Xℓ ∈ Xj + H
(pwc)
j,ℓ,k } and is used so the term it multiplies is only used for

a jump.

By using the conservation laws

Nx∑

ℓ=1

p(D)(Xj , Xℓ | u; ∆X) = 1

and
Nx∑

ℓ=1

Φ̂(Xj , Xℓ, t) = 1,

it is easy to show the constructed jump-diffusion transition probability in (8.66) is
conserved, i.e.,

Nx∑

ℓ=1

p(JD)(Xj , Xℓ | u; λ, ∆X) = 1.

The error factor ε(s, u; ∆X) reflects the the asymptotically small error terms o(∆tk−1)
in the Poisson counting process definition (8.61), but is selected so the conservation
is exact.

Using the first moment diffusion local consistency condition in (8.46) and a
mark density weighted rectangular integration rule,

EQ[hk(x, Q)] ≃
Nx∑

ℓ=1

H
(pwc)
j,ℓ,k Φ̂k(Xj , Xℓ).

Then,

E[∆ξk | Xj , u] ≃ ∆tk−1(Xj , u; ∆X) · (fk(Xj , u) + EQ[hk(x, Q)] + o(1))

= X
(D)

+ X
(J)

,

splitting the diffusion and jump parts. Similarly, for the second moment jump-
diffusion consistency condition, except with more algebra with the above splitting
and more small time asymptotics in absorbing all quadratic and smaller time incre-
ments into ∆tk−1 · o(1), it can be demonstrated that

Var[∆ξk | Xj , u] ≃ ∆tk−1(Xj , u; ∆X) ·
(
g2

k(Xj) + EQ

[
h2

k(x, Q)
]
+ o(1)

)
.

Further evaluations require knowledge of the mark density, the jump-diffusion
coefficients (f, g, h) and the boundary condition on the state domain. Due to the
global nature of the compound jump process with jump beyond the local nodes
needed by the diffusion component process, the diffusion mesh ratio criteria (8.56)
(or (8.30) in case the central finite differences are usable) will have to suffice for
practical reasons. See Kushner and Dupius [179] for information on reflected bound-
ary conditions and other techniques for handling boundary conditions when there
are jumps.

D
R

A
FT

“bk08compsdpfinal”
2007/1/4
page 245

i

i

i

i

i

i

i

i

8.2. Markov Chain Approximation for SDP 245

Suggested References for Further Reading

• Chung, Hanson and Xu, 1992 [54].

• Douglas and Dupont, 1970 [72].

• Douglas, 1979 [73] .

• Dyer and McReynolds, 1979 [76].

• Gunzburger, 2003 [101].

• Hanson, 1989 [106], 1991 [107], 1996 [108] and 2003 [109, 110].

• Hanson and Naimipour, 1993 [111].

• Kushner, 1976 [174], 1990 [175], 2000a [176] and 2000b [177].

• Kushner amd DiMasi, 1978 [178].

• Kushner and Dupuis, 2001 [179].

• Kushner and Yin, 1997 [181].

• Larson, 1967 [182].

• Naimipour and Hanson, 1993 [216].

• Polak, 1973 [227].

• Press et al., 2002 [230].

• Westman and Hanson, 1997 [274] and 2000 [277].

• Zhu and Hanson, 2006 [291].

