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1. Introduction
1.1 Background:

• Merton’s 1971 pioneering J.E.T. paper on the optimal portfolio and
consumption problemfor geometric diffusions used HARA

(hyperbolic absolute risk-aversion) utility. However, there were

errors, in particular with the bankruptcy boundary conditions and

vanishing consumption, some errors were due to the HARA model.

See also Merton’s 1969 lifetime portfolio paper in R.E.&S.

• Merton’s optimal portfolio errorsare throughly discussed in the

seminal collection of papers with coauthors in Sethi’s bankruptcy

book in 1997. See his introduction, the KLS(ethi)S M.O.R. 1986

paper and the J.E.T. 1988 paper with Taksar.
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1.2 Market Jump Properties:

• Statistical evidencethat jumps are significant in financial markets:

– Stock and Option Prices in Ball and Torous (’85);

– Capital Asset Pricing Model in Jarrow and Rosenfeld (’84);

– Foreign Exchange and Stocks in Jorion (’89).

• Log-return market distributions usuallyskewed negative,
η3 ≡ M3/(M2)

1.5 < 0, if data time interval sufficiently long,
compared to the skew-less normal distribution.

• Log-return market distributions usuallyleptokurtic,
η4 ≡ M4/(M2)

2 > 3, i.e., more peaked than normal.

• Log-return market distribution havefatter or heavier tailsthan the
normal distribution’s exponentially small tails.

• Time-dependenceof rate coefficients is important, i.e., non-constant
coefficients are important; and stochastic volatility.
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1.3 Jump-Diffusion Models:

• Merton (J.F.E., 1976) in his pioneering jump-diffusion option
pricing modelused IID log-normally distributed jump-amplitudes

with a compound Poisson process. Other authors have also used the

normal jump-applitude model.

• Kou (Mgt.Sci. 2002, and 2004 with Wang) used the IID

log-double-exponential (Laplace)for option pricing.

• Hanson and Westman(2001-2004) have a number of optimal

portfolio papers using various log-return jump-amplitude

distributions such asdiscrete, normal and uniform distributions.

• Jump-diffusions give skewness and excess-leptokurtosisto market

distributions.
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1.5 Jump Considerations:

• Extreme jumpsin the market arerelatively rare (statistical outliers)
among the large number of daily fluctuations.

• Aı̈t-Sahalia (J.F.E., 2004) showsdifficulty in separating the jumps
from the diffusionby the usual maximum likelihood methods.

• NYSE have had circuit breakers installedsince 1988 to suppress

extreme market changes, like in the 1987 crash.

• Uniform jump-amplitudeshave thefattest of tails and finite range,
consistent with circuit breakers and parsimony.

• Bankruptcy conditionsalso need to be considered for the

jump-integrals of the jump-diffusion PIDEas we shall see for the

optimal portfolio problem; unlike the option pricing problem.
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2.0 Log-Return Double-Uniform Amplitude Density:

• Linear Stochastic Differential Equation (SDE):

dS(t) = S(t)(µd(t)dt+σd(t)dG(t))+

dP (t)X

k=1

S(T −
k )J(T −

k Qk), (1)

whereS(0) = S0 > 0 and

– µd(t) = expected rate of returnin absence of asset jumps, i.e.,

diffusive drift;

– σd(t) = diffusive volatility (standard deviation);

– G(t) = Brownian motion or diffusion process, normally

distributed such thatE[dG(t)] = 0 andVar[dG(t)] = dt;

– P (t) = Poisson jump counting process, Poisson distributed

such thatE[dP (t)] = λ(t)dt = Var[dP (t)];
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2.0 Continued: Stock Price Dynamics:

– J(t, Q) = Poisson jump-amplitudewith underlyingrandom
mark variableQ, selected for log-return so that

Q = ln(J(t, Q) + 1), such thatJ(t, Q) > −1;

– T −
k is thepre-jump timeandQk is an independent and

identically distributed(IID) mark realization at thekth jump;

– TheprocessesG(t) andP (t) along withQk are independent,
except thatQk is conditioned on a jump-event atTk.
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2.1 Double-Uniform Probability Jump-Amplitude
Q Mark Distribution:

ΦQ(q; t) = p1(t)
q − a(t)

|a|(t)
I{a(t)≤q<0} +

„
p1(t)+p2(t)

q
b(t)

«
I{0≤q<b(t)}

+I{b≤q<∞}, p1(t) + p2(t) = 1, a(t) < 0 < b(t),

• Mark Mean: µj(t) ≡ EQ[Q] = (p1(t)a(t) + p2(t)b(t))/2;

• Mark Variance:
σ2

j (t) ≡ VarQ[Q] = (p1(t)a
2(t) + p2(t)b

2(t))/3 − µ2
j(t);

• Mark Higher Central Moments:

M
(duq)
3 (t) ≡ EQ

ˆ
(Q − µj(t))

3˜

= (p1(t)a
3(t)+p2(t)b

3(t))/4 − µj(t)(3σ2
j (t)+µ2

j(t))

M
(duq)
4 (t) ≡ EQ

ˆ
(Q − µj(t))

4˜
= (p1(t)a

4(t)+p2(t)b
4(t))/5

−4µj(t)M
(duq)
3 (t) − 6µ2

j(t)σ
2
j (t) − µ4

j(t).

• More motivation:Double-uniform distribution unlinks the different
behaviors in crashes and rallies.
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2.2 Log-Returnln(S(t)) S∆E:

• According to a discrete form ofIt ô’s stochastic chain rulefor
jump-diffusions

∆ln(S(t)) ≡ ln(S(t + ∆t)) − ln(S(t))

≃ (µld(t) + λ(t)µj(t))∆t + σd(t)∆G(t)

+µj(t)(∆P (t) − λ(t)∆t) +
∑∆P (t)

k=1 (Qk − µj(t)),

separated into convenient zero-mean stochastic terms, where
µld(t) ≡ µd(t) − σ2

d(t)/2 and0 < ∆t ≪ 1.

• Some Moments on∆ ln(S(t)):

M
(dujd)
1 (t) ≡ E[∆ ln(S(t))] = (µld(t) + λ(t)µj(t))∆t,

M
(dujd)
2 (t) ≡ Var[∆ ln(S(t))] =

`
σ2

d(t) + λ(t)
`
µ2

j(t) + σ2
j (t)

´´
∆t,

M
(dujd)
3 (t) ≡ E

»“
∆[ln(S(t))] − M

(dujd)
1 (t)

”3
–

= (p1(t)a
3(t) + p2(t)b

3(t))λ(t)∆t/4,
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2.3 Log-Return Double-Uniform Probability Density
Theorem 2.3 Let

∆ln(S(t)) = G(t) +

∆P (t)∑

k=1

Qk

whereG(t) ≡ µld(t)∆t + σd∆G(t) is the Gaussian term.
Then the probability density of∆ln(S(t)) is

φ
(dujd)
∆ ln(S(t))(x) ≃

∑∞
k=0 pk(λ(t)∆t)φ

(dujd)

G(t)+
P

k
i=1

Qi
(x)

≡
∑∞

k=0 pk(λ(t)∆t)φ
(dujd)
k (x),

for sufficiently small∆t and−∞ < x < +∞, wherepk(λ(t)∆t) is the
Poisson distribution with parameterλ(t)∆t and the multiple-convolution,
Poisson distribution coefficients are

φ
(dujd)
k (x) =

(
φG(t)

k∏

i=1

(∗φQi
)

)
(x).
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2.3 Some theorem special details:
In the case of the correspondingnormalized second order approximation,

φ
(dujd,2)

∆ ln(S(t))(x) =
P2

k=0 pk(λ(t)∆t)φ
(dujd)
k (x)

‹P2
k=0 pk(λ(t)∆t) ,

where the density coefficients are given by

φ
(dujd)
0 (x) = φ(n)`x; µ, σ2´

,

for k = 0, whereφ(n)
`
x; µ, σ2

´
is the normal distribution with meanµ and

varianceσ2, while here
`
µ, σ2

´
=

`
µld(t), σ2

d(t)
´
∆t, for k = 1,

φ
(dujd)
1 (x) = + p1(t)

|a|(t)
Φ(n)

`
a(t), 0; x − µ, σ2

´

+ p2(t)
b(t)

Φ(n)
`
0, b(t);x − µ, σ2

´
,

whereΦ(n)
`
a, b; µ, σ2

´
is the normal distribution on(a, b) with density

φ(n)
`
x; µ, σ2

´
, and fork = 2, see the Zhu and Hanson in the 2006 Sethi volume

for φ
(dujd)
2 (x) since the formula and proof are too long to present here.
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2.4 Jump-Diffusion Parameter Estimation:
• S&P 500 Index Data:from 1988 to 2003 withn(sp) = 4036 daily

closings, so∆[ln(SP i)] ≡ ln(SP i+1)−ln(SP i) for i = 1:n(sp)−1

discrete log-returns.
• Basic Statistics:M (sp)

1 ≃ 3.640 × 10−4, M
(sp)
2 ≃ 1.075 × 10−4,

η
(sp)
3 ≡ M

(sp)
3 /(M

(sp)
2 )1.5 ≃ −0.1952 < 0,

η
(sp)
4 ≡ M

(sp)
4 /(M

(sp)
2 )2 ≃ 6.974 > 3.

• Yearly Partitioning: ∆[ln(SP
(spy)
jy,k )] for k = 1:n

(sp)
y,jy

data points per
year forjy = 1:16 years.

• Six-Dimensional Parameter Space:Given∆Tjy
≃ 1/252 years/day,

yjy
=
(
µld,jy

, σ2
d,jy

, ajy
, bjy

, p1,jy
, λjy

)
.

• Maximum Likelihood Objective:

f(yjy) = −

n
(sp)
y,jyX

k=1

log
“
φ

(dujd,2)
∆ ln(S(t))(xk; yjy)

”
.
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2.5 Computational Procedures:

• Optimization Techniques: Nelder-Mead down-hill simplex method
using thefminsearch function implementation of MATLABTM,

needing only one new function evaluation for each successive step to

test for best new search direction.

• Constraint Techniques: Barrier techniquesused to enforce

σ2
d,jy

> 0, ajy
< 0, bjy

> 0, p1,jy
∈ [0, 1) andλjy

> 0.

• Some Average Values:

(µd, σd, µj , σj) ≃
(
0.17, 0.10, 3.1 × 10−4, 8.6 × 10−3

)
.
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2.6 Results for (µd(t), σd(t)) and (µj(t), σj(t)):
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(a) Diffusion parameters:µd(t) & σd(t).

1988 1990 1992 1994 1996 1998 2000 2002 2004

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Jump Parameters: µ
j
(t) & σ

j
(t) versus t

t, Time in Years

µ j(t
) 

&
 σ

j(t
)

 

 

µ
j
(t)

σ
j
(t)

(b) Jump parameters:µj(t) & σj(t).

Figure 1: Jump-diffusion mean and variance parameters, (µd(t), σd(t) )

and (µj(t), σj(t)) on t ∈ [1988, 2004.5], represented as piecewise linear

interpolation of yearly averages assigned to the mid-year.
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2.7 Results for (λ(t)/500, p1(t) ) and (a(t), b(t)):
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(a) Jump parameters:λ(t)/500 & p1(t).
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(b) Jump parameters:a(t) & b(t).

Figure 2: More jump parameters, (λ(t)/500, p1(t) ) and (a(t), b(t)) on

t ∈ [1988, 2004.5], represented as piecewise linear interpolation of yearly

averages assigned to the mid-year.
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2.8 Results for Skewness and Kurtosis Coefficients:
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Figure 3: Comparison of skewness and kurtosis coefficients for both the

S&P500 data and the estimated double-uniform jump diffusion values ont ∈

[1988, 2004.5], represented as piecewise linear interpolation of yearly averages

assigned to the mid-year.
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3.0 Optimal Portfolio and Consumption Policies:

• Portfolio: Riskless asset orbond at priceB(t) and Risky asset or

stock at priceS(t) (1), with instantaneous portfolio change fractions

U0(t) andU1(t), respectively, such thatU0(t) + U1(t) = 1.

• Exponential Bond Price Process:
dB(t) = r(t)B(t)dt , B(0) = B0 .

• Jump-diffusion Portfolio Wealth ProcessW (t),
Less ConsumptionC(t):

dW (t) = W (t)

(
r(t)dt + U1(t)

(
(µd(t) − r(t))dt

+σd(t)dG(t) +
∑dP (t)

k=1

(
eQk − 1

)))
− C(t)dt ,

(2)

subject to constraintsW (t) ≥ 0, 0 ≤ C(t) ≤ C
(max)
0 W (t) and

U
(min)
0 ≤ U1(t) ≤ U

(max)
0 , allowing shortselling (U (min)

0 < 0)

and borrowing (U (max)
0 > 1) .
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3.1 Portfolio Optimal Objective

• Portfolio Objective:

v∗(t, w) = max
{u,c}

[
E

[
e−β(t,tf)Uf(W (tf))

+

∫ tf

t

e−β(t,s)U(C(s)) ds

∣∣∣∣W (t) = w, U1(t) = u, C(t) = c

]]
.

(3)

• Cumulative Discount:β(t, s) =
∫ s

t
β̂(τ)dτ , whereβ̂(t) is the

instantaneous discount rate.

• Consumption and Final Wealth Utility Functions:U(c) andUf (w)

are bounded, strictly increasing and strictly concave.

• Variable Classes:State variable isw, while control variables areu

andc.

• Final Condition: v∗(tf , w) = Uf (w).
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3.2 Absorbing Natural Boundary Condition:
Approaching bankruptcyw → 0+, so by consumption constraint

c → 0+ and by the objective (3),

v∗
(
t, 0+

)
= Uf

(
0+
)
e−β(t,tf ) + U

(
0+
) ∫ tf

t

e−β(t,s)ds. (4)

This is the simple variant what Merton gave as a correction inhis 1990

book for his 1971 optimal portfolio paper. However, KLAS(ethi)S 1986

and Sethi with Taksar 1988 pointed out that it was necessary to enforce

the non-negativity of wealth and consumption. See also Sethi’s 1997

bankruptcy book for a large collection of papers as well as excellent

summaries by Markowitz and Sethi, including the 1986 and 1988 papers,

for a much greater variety of optimal portfolio and consumption problems.
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3.3 Portfolio Stochastic Dynamic Programming PIDE:

0 = v∗
t (t, w)−β̂(t)v∗(t, w) + U(c∗(t, w))

+ [(r(t)+(µd(t)−r(t))u∗(t, w))w−c∗(t, w)] v∗
w(t, w)

+1
2
σ2

d(t)(u∗)2(t, w)w2v∗
ww(t, w)

+λ(t)
(

p1(t)
|a|(t)

∫ 0

a(t)
+p2(t)

b(t)

∫ b(t)

0

)

·
(
v∗(t, (1+(eq − 1)u∗(t, w))w)−v∗(t, w)

)
dq,

(5)

whereu∗ = u∗(t, w) ∈
[
U

(min)
0 , U

(max)
0

]
and

c∗ = c∗(t, w) ∈
[
0, C

(max)
0 w

]
are the optimal controls if they exist, while

v∗w(t, w) andv∗ww(t, w) are the continuous partial derivatives with respect

to wealthw when0 ≤ t < tf . Note that(1+(eq − 1)u∗(t, w))w is a

wealth argument.
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3.4 Non-Negativity of Wealth and Jump Distribution:

Since(1+(eq − 1)u∗(t, w))w is a wealth argument in (5), it must
satisfy the wealth nonnegativity condition, so

κ(u, q) ≡ 1 + (eq − 1)u ≥ 0

on the support[a(t), b(t)] of the jump-amplitude mark densityφQ(q; t).

Lemma 1. Bounds on Optimal Stock Fraction due to
Non-Negativity of Wealth Jump Argument:
If the support of φQ(q; t) is the finite interval q ∈ [a(t), b(t)] with
a(t) < 0 < b(t), then u∗(t, w) is restricted by (5) to

−1

J(t, b(t))
=

−1

eb(t) − 1
≤ u∗(t, w) ≤

1

1 − ea(t)
=

−1

J(t, a(t))
, (6)

but if the support of φQ(q) is fully infinite, i.e., (−∞, +∞), then
u∗(t, w) is restricted by (5) to

0 ≤ u∗(t, w) ≤ 1. (7)

F. B. Hanson and Z. Zhu — 22 — UIC and NMIC



3.4 Remarks Continued: Non-Negativity of Wealth and
Jump Distribution:
• Recall thatu is the stock fraction, so that short-selling and

borrowing will be overly restricted in the infinite support case (7)
wherea(t) → −∞ andb(t) → +∞, unlike the finite case (6)
where−∞ < a(t) < 0 < b(t) < +∞.

• So, unlike option pricing, finite support of the mark densitymakes a
big difference in the optimal portfolio and consumption problem!

• Thus, it would not be practical to use either normally or
double-exponentially distributed marks in the optimal portfolio and
consumption problem with a bankruptcy condition.

• If [amin, bmax] = [mint(a(t)), maxt(b(t))], then the overallu∗ range

for the S&P500 data is

[umin, umax] =

[
−1

(ebmax − 1)
,

+1

(1 − eamin)

]
≃ [−18, +12].
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4.0 Unconstrained Optimal or Regular Control Policies:

In absence of control constraints and in presence of sufficient

differentiability, the dual policy, implicit critical conditions are

• Regular Consumptionc(reg)(t, w):

U ′(c(reg)(t, w)) = v∗w(t, w). (8)

• Regular Portfolio Fractionu(reg)(t, w):

σ2
d(t)w2v∗ww(t, w)u(reg)(t, w) = −(µd(t) − r(t))wv∗w(t, w)

−λ(t)w
(

p1(t)
|a|(t)

∫ 0

a(t)
+p2(t)

b(t)

∫ b(t)

0

)
(eq − 1)

v∗w(t, κ(u(reg)(t, w), q)w) dq.

(9)
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4.1 Canonical Decomposition with CRRA Utilities:

• Constant Relative Risk-Aversion (CRRA⊂ HARA) Power Utilities:

U(x) = Uf(x) =
xγ

γ
, x ≥ 0, 0 < γ < 1. (10)

• ⇐= Relative Risk-Aversion (RRA):

RRA(x) ≡ −U ′′(x)/(U ′(x)/x) = (1 − γ) > 0, γ < 1,

i.e., negative of ratio of marginal to average change in marginal
utilility ( U ′(x) > 0 & U ′′(x) < 0) is a constant; the “risk-hating”
singular utilities whenγ ≤ 0 are excluded here.

• CRRA Canonical Separation of Variables:

v∗(t, w) = U(w)v0(t), v0(tf) = 1, (11)

i.e., if valid, then wealth state dependence is known and only the
time-dependent factorv0(t) need be determined.
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4.2 Canonical Simplifications with CRRA Utilities:

• Regular Consumption Control is Linear in Wealth:

c(reg)(t, w) ≡ w · c
(reg)
0 (t) = w/v

1/(1−γ)
0 (t), (12)

with optimal consumptionc∗0(t) = max
[
min

[
c
(reg)
0 (t), C

(max)
0

]
, 0
]

perw.

• Regular Portfolio Fraction Control is Independent of Wealth:

u(reg)(t, w)≡ u
(reg)
0 (t)

= 1
(1−γ)σ2

d
(t)

[
µd(t)−r(t)+vλ(t)I1

(
u

(reg)
0 (t)

)]
,

(13)

in fixed point form andu∗
0(t) = max

[
min

[
u

(reg)
0 (t), U

(max)
0

]
, U

(max)
0

]
,

whereI1(u) =
“

p1(t)
|a|(t)

R 0
a(t) +

p2(t)
b(t)

R b(t)
0

”

(eq
− 1)κγ−1(u, q)dq.
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4.3 CRRA Time-Dependent Component in Formal
Bernoulli Equation:

0 = v′
0(t) + (1 − γ)

(
g1(t; u

∗
0(t))v0(t) + g2(t)v

γ
γ−1

0 (t)

)
, (14)

where

• Bernoulli Coefficientsg1(t; u) andg2(t),

g2(t) = g2

(
t; c∗0(t), c

(reg)
0 (t)

)
, introduce implicit nonlinear

dependence onu∗
0(t), c∗0(t) andc

(reg)
0 (t), so iterative approximations

are required ( Zhu and Hanson 2006).
• Formal (Implicit) Bernoulli Solution:

v0(t) =

[
e−g1(t;u

∗

0(t))(tf −t)

(
1+

∫ tf

t

g2(τ )eg1(t;u
∗

0(t))(tf −τ)dτ

)]1−γ

,

where g1(t; u∗
0(t))(tf − t) ≡

Z tf

t

g1(s;u∗
0(s))ds.
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5.1 Federal Funds Ratesr(t) and β̂(t)):
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Figure 4:Federal funds rate (H.15-Historical Data) for interestr(t) and discount-

ing bβ(t) on a daily bases, represented by piecewise linear interpolation with yearly

averages assigned to the midpoint of each year fort = 1988.5:2003.5 .
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5.2 Results for Regularu(reg)(t) and Optimalu∗(t)
Portfolio Fraction Policies:
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(a) Regular stock fraction policyu(reg)(t).
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(b) Optimal stock fraction policy,u∗(t) .

Figure 5: Regular and optimal portfolio stock fraction policies,u(reg)(t) and

u∗(t) on t ∈ [1988, 2004.5], the latter subject to the control constraints set

[U
(0)
min, U

(0)
max] = [−18, 12].
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5.3 Results for Optimal Valuelv∗(t, w) and
Optimal Consumptionc∗(t, w):
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(a) Optimal portfolio valuev∗(t, w).
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(b) Optimal consumption policyc∗(t, w) .

Figure 6: Optimal portfolio valuev∗(t, w) and optimal consumption policy

c∗(t, w) for (t, w) ∈ [1988, 2004.5] × [0, 100].
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6. Conclusions
• Introducedlog-double-uniform distribution of jump-amplitudesinto

jump-diffusion stock price models.

• Developed estimation oftime-dependent jump-diffusion parameters
for more realistic market models.

• Demonstrated significant effects on the variation of instantaneous

stock fraction policy due totime-dependence of interest and
discount rates.

• Emphasized that double-uniform distribution is areasonable
assumption for rare, large jumps, crashes or buying-frenzies.

• Showed jump-amplitude distributions with compact supportare
much less restricted on short-selling and borrowing in the optimal
portfolio and consumption problem.
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