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Optimal Portfolio and Consumption Policies Subject
to Rishel’s Important Jump Events Model:

Computational Methods
Floyd B. Hanson, Senior Member, IEEE, and John J. Westman, Member, IEEE,

Abstract— At important events or announcements, there can
be large changes in the value of financial portfolios. Events and
their corresponding jumps can occur at random or scheduled
times. However, the amplitude of the response in either case can
be unpredictable or random. While the volatility of portfolios
is often modeled by continuous Brownian motion processes,
discontinuous jump processes are more appropriate for modeling
the response to important external events that significantly affect
the prices of financial assets. Discontinuous jump processes are
modeled by compound Poisson processes for random events or by
quasi-deterministic jump processes for scheduled events. In both
cases, the responses are randomly distributed and are modeled in
a stochastic differential equation formulation. The objective is the
maximal, expected total discounted utility of terminal wealth and
instantaneous consumption. This paper was motivated by a paper
of Rishel (1999) concerning portfolio optimization when prices
are dependent on external events. However, the model has been
significantly generalized for more realistic computational con-
siderations with constraints and parameter values. The problem
is illustrated for a canonical risk-adverse power utility model.
However, the usual explicit canonical solution is not strictly
valid. Fortunately, iterations about the canonical solution result
in computationally feasible approximations.

Index Terms— important jump events, optimal portfolio-
consumption polices, Greenspan processes, canonical model ap-
proximate computations

I. INTRODUCTION

ALARGE NUMBER of continuous time models of finan-
cial markets have been based upon continuous sample

path geometric Brownian motion processes, such as Merton
[12], [13], [15, Chapters 4-6] and Black and Scholes [1].
However, Merton [14], [15, Chapter 9], in the original jump
diffusion finance model, applied discontinuous sample path
Poisson processes, along with Brownian motion processes,
to the problem of pricing options when the underlying asset
returns are discontinuous. Several extensions of the classical
diffusion theory of Black and Scholes [1] were derived by
minimizing portfolio variance techniques to jump diffusion
models similar to those techniques used to derive the classic
Black and Scholes diffusion formulae.
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Earlier, Merton [13], [15, Chapters 5-6] treated optimal
consumption and investment portfolios with either geometric
Brownian motion or Poisson noise, and illustrated explicit
solutions for constant risk-aversion in either the relative or the
absolute forms. Karatzas et al. [10] pointed out that it is nec-
essary to enforce non-negativity feasibility conditions on both
wealth and consumption, deriving formally explicit solutions
from a consumption investment dynamic programming model
with a time-to-bankruptcy horizon, that qualitatively corrects
the Merton’s results. Sethi and Taksar [18] present corrections
to certain formulae of Merton’s [13], [15, Chapters 5-6] finite
horizon consumption-investment model. Merton [15, Chapter
6] revisited the problem, correcting his earlier work by adding
an absorbing boundary condition at zero wealth and using
other techniques.

Rishel [17] introduced a optimal portfolio model for
stock prices dependent on quasi-deterministic scheduled and
stochastic unscheduled jump external events based on optimal
stochastic control theory. The jumps can affect both the stock
prices directly or indirectly through parameters. The quasi-
deterministic jumps are deterministic only in the timing of the
scheduled events, but the jump responses are random in mag-
nitude. The response to an event can be unpredictable, being
based on solid analysis, prefactored assessments, nuances or
other factors external to the event. Rishel’s theoretical paper
is the motivation for this computational application paper.
Much additional motivation comes from our extensive prior
research on computational stochastic control models for jump
environments, such as stochastic bioeconomic models with
random disasters (see Hanson and Ryan [7], and Hanson and
Tuckwell [8]) and stochastic manufacturing systems subject
to jumps from failures, repairs and other events (see Westman
and Hanson [19], [20], [21]). Here our model formulation is
a modification on Rishel’s [17] paper, with heavier reliance
on stochastic differential equations, constrained control, more
general utility objectives, generalized functions, and random
Poisson measure. Many of the modifications make the model
more realistic and computationally feasible. More realism
has been implemented through modifications systematically
relying on linear or geometric stochastic processes, while
using control constraints on stock fractions and consumption
policies.

The paper is arranged as follows. In Section II, the stochas-
tic differential equation model for the underlying bond and
more risky stock assets is formulated in terms of state and
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control dependent marked Poisson processes and quasi-de-
terministic processes, with diffusion processes used for the
less extreme background events. In Section III, the wealth
equations, with asset fractions and consumption variables,
are formulated for the portfolio. In Section IV, the portfolio
and consumption optimization problem is formulated and the
subsequent partial differential equation of stochastic dynamic
programming is derived from a generalized Itô [9] chain
rule. The computational complexity of the solution for the
canonical risk-adverse power utilities example in Section V
is significantly reduced in dimension upon separating out
the wealth and consumption dependencies. However, both
scheduled and unscheduled event parameters are not separable
from the time dependence as in the canonical case without
these parameters, but the canonical solution still serves as a
good leading order perturbation for the more complex problem
here. Further computational considerations are discussed in
Section VI concerning numerical procedures appropriate for
jump process terms. The computational solutions for a nu-
merical test model are presented in Section VII for various
values of the parameters. The computations have been carried
out in MATLABTM to demonstrate the reasonableness of the
calculations.

II. STATE AND CONTROL DEPENDENT ASSET MODELS

A financial portfolio is selected from a less risky asset or
bond and a number of risky assets or stocks. Let the bond
earn a rate r of interest such that its price B(t) at time t
satisfies the deterministic dynamical process with specified
initial condition,

dB(t) = rB(t)dt, B(0) = B0. (1)

The coefficient r is the constant interest rate for the bond,
so the bond would strictly be zero-coupon bond. Payment of
coupons could be accommodated, but that would be beyond
the purpose of this paper. Jumps may occur in the bond
rate directly related to announced changes in the federal
interest rate, so then r = r( ~A(t)), where ~A(t) is an event
parameter process described below, and for consistency with
the assumptions on other financial parameters, this will be
assumed in the analysis.

Let Si(t) be the price of the ith stock satisfying the Markov
geometric jump-diffusion and quasi-deterministic stochastic
differential equation,

dSi(t) = Si(t)

µi( ~A(t))dt+
M∑

j=1

σi,j( ~A(t))dZj(t)

+ dPi(t) + dQi(t)

]
, Si(0) = S0,i, (2)

for i = 1, 2, . . . , N1 risky assets or stocks. Here, the argument
~A(t) = (A1(t), A2(t)) is an event parameter vector process
consisting of unscheduled events A1(t) and scheduled events
A2(t) where ~a = (a1, a2) denotes an event or realization.
First the terms in (2) will be briefly identified, but will be
more thoroughly described later. The mean appreciation rate
for the ith stock is µi(~a) = µi(a1, a2) with volatilities given

by σi,j(~a), where the j denotes the jth continuous Brownian
motion processes is Zj(t), for j = 1, 2, . . . ,M . The stochastic
differential dPi(t) is a discontinuous, random, space-time
Poisson process representing important unscheduled events,
for i = 1, 2, . . . , N1 stocks. Important scheduled events are
modeled by an analogous quasi-deterministic differential pro-
cess dQi(t) which has scheduled or deterministic jump times,
but the amplitudes of the jumps are randomly distributed.

The Zj(t), for j = 1, 2, . . . ,M , are independent, stan-
dard Brownian motion processes with zero mean and delta-
correlations. The continuous sample path processes Zj(t)
model the less extreme background random events that affect
the financial market. The Pi(t) are the ith component of
a marked or space-time Poisson process. The discontinuous
sample path processes dPi(t) model the rare, extreme events
that lead to large fluctuations in risk sensitive market assets.
The space-time differential Poisson processes dPi(t) are re-
lated to Poisson random measure, P(dt, dĵ1) (see Gihman and
Skorohod [4]),

dPi(t) =
∫
J1

J1,i(t, ĵ1; ~A(t))P(dt, dĵ1), (3)

for i = 0, 1, . . . , N1, where J1,i is the ith Poisson jump
amplitude function corresponding to the ith stock price when
i > 0 or to the parameter process A1(t) when i = 0,
ĵ1 = (j1,0,~j1) = [j1,i−1](N1+1)×1 is the extended (N1 + 1)-
dimensional random mark vector for the composite stock and
parameter unscheduled event mark space is J1. Each time the
constituent Poisson counting process has a jump signifying
a random unscheduled event, a random mark vector ĵ1 is
generated which in turn generates the value of the extended
vector jump amplitude

Ĵ1 =
(
J1,0, ~J1

)(
t, ĵ1; ~A(t)

)
=

[
J1,i−1

(
t, ĵ1; ~A(t)

)]
(N1+1)×1

,

resulting in both the jump in the unscheduled events parameter
process A1(t) from J1,0 and in the jump in stock price Si from
J1,i for i = 1, 2, . . . , N1, respectively. The component dPi(t)
of the Poisson driven process has the conditional expectation:

E[dPi(t)| ~A(t) = ~a] = λ(t)E
[
J1,i| ~A(t) = ~a

]
dt (4)

≡ λ(t)
∫
J1

J1,i(t, ĵ1;~a)φ1(ĵ1)dĵ1dt,

for i = 0, 1, . . . , N1, where λ(t) is the rate for the common
Poisson counting process, and φ1(ĵ1) is the joint density
of the unscheduled event amplitude marks. The dPi(t) has
conditional variance given by

Var[dPi(t)| ~A(t) = ~a] = λ(t)E
[
J2

1,i| ~A(t) = ~a
]
dt,

for i = 1, 2, . . . , N1, provided there is component-wise inde-
pendence. Given that there is an unscheduled event jump at
T1,`, the stock price Si(t) jump magnitude is

[Si](T1,`) ≡ Si(T+
1,`)− Si(T−1,`)

= J1,i

(
T−1,`, ĵ1,`; ~A(T−1,`)

)
Si

(
T−1,`

)
,
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for ` = 1, 2, 3, . . . jumps where ĵ1,` is a jump mark realization
associated with jump time T1,`.

The unscheduled events parameter A1(t) is generated by the
same space-time Poisson process P as above, such that J1,0 is
the jump amplitude and j1,0 is the jump mark of A1(t). The
jump in A1(t) is generated by the single underlying Poisson
counting process of the unscheduled event as it is for the stocks
in (2) at rate λ(t) for unscheduled events,

dA1(t) = A1(t)dP0(t),

where dP0(t) is given by (3) when i = 0. The infinitesimal,
conditional expected parameter is

Ej1,0

[
dA1(t)| ~A(t) = ~a

]
= λ(t)a1Ej1,0 [J1,0∣∣∣ ~A(t) = ~a

]
dt,

where Ej1,0 [J1,0| ~A(t) = ~a] is the conditional expected jump
amplitude of the zeroth component of the space-time Poisson
process. Again, a relative jump size is used here, rather than
an absolute jump amplitude.

The last term is the semi- or quasi-deterministic term,

dQi(t) =
∫
J2

J2,i

(
t, ĵ2; ~A(t)

)
Q
(
dt, dĵ2

)
(5)

on the right hand side of (2), and models the jumps resulting
from scheduled events at certain specified times T2,`, for
` = 1, 2, . . . , N2 scheduled jumps. The jumps trigger random
jump amplitudes of size J2,i(t, ĵ2; ~A(t)) so that Si(t) jumps by
J2,iSi(T−2,`) if i = 1, . . . , N1, while if i = 0, then A1(t) jumps
by J2,0A1(T−2,`), assuming T2,` < T2,`+1. Here the extended
random mark vector is ĵ2 = (j2,0,~j2) = [j2,i−1](N1+1)×1

with quasi-deterministic space-time measure Q(dt, dĵ2) for
scheduled jumps. The corresponding relative jump amplitude
vector, ~J2, is such that

E[dQi(t)| ~A(t) = ~a] = E[J2,i| ~A(t) = ~a]

=
N2∑
`=1

δR(t− T2,`)dt.

Thus, Q is similar to P , except that the jump times of the
former, T2,`, are scheduled with certainty while those of
the latter are random and thus unscheduled. The generalized
function symbol δR(t−T2,`) above defines a right continuous
delta function by∫ ∞

−∞
f(t)δR(t− T2,`) = f(T−2,`),

for some right-continuous function f , compatible with the
right continuity (continuity from the right) of the Poisson pro-
cess. Unlike the Dirac delta function, δR(t−T2,`) is a bounded
step function embodied in its constructive definition as the
difference of corresponding right continuous step functions,
δR(t − T2,`)dt = HR(t + dt − T2,`) −HR(t − T2,`), for in-
finitesimal dt, where HR(t−T2,`) is the right-continuous unit
step function that characterizes the simple Poisson counting

process. Thus, the scheduled jump amplitude for stock Si at
T2,` is

[Si](T2,`) ≡ Si(T+
2,`)− Si(T−2,`)

= J2,i(T−2,`, ĵ2,`; ~A(T−2,`))Si(T−2,`),

for i = 1, . . . , N1 stocks, due to non-anticipating, right-
continuity and such that stock i jumps from Si(T−2,`) to
J2,iSi(T−2,`) at the scheduled jump time T2,` with jump mark
vector realization ĵ2,`. It is further assumed that the final
scheduled jump at T2,N2 takes place before the terminal time
T , i.e., T2,N2 < T ≡ T2,N2+1.

These scheduled jumps affect the market due to events
such as changes in monetary policy, announcements of labor
statistics, other economic announcements or eminent labor
strikes, although the response magnitude of the jumps can be
random, as described by Rishel [17]. An example (February
17, 2000) of large fluctuations caused by announced events is
the semi-annual economic report of Chairman Alan Greenspan
of the Federal Reserve Board to Congress that concerned the
raising of interest rates and other matters. This was followed
the next day (February 18, 2000) by a ”double witching day”
in which there was a simultaneous expiration of contracts on
stock options and stock indices. Although these events and
the market responses to them are quite complex, a strong
motivation for these quasi-deterministic processes are the
influential announcement events by Chairman Greenspan and
thus they might be called “Greenspan processes.”

For the continuous portion of the sample paths, the non-
anticipating mean appreciation rate is µi( ~A(t)) and the
squared volatility is

∑M
j=1 σ

2
i,j( ~A(t)), changing with sched-

uled or random jump events. The vector ~A(t) = (A1(t), A2(t))
represents the parametric arguments of the mean appreciation
rates µi, the volatilities σi,j and the jump amplitudes Jk,i,
with k = 1 denoting unscheduled events and k = 2 denoting
scheduled events.

The scheduled events parameter process A2(t) is assumed to
have jumps at the same times as that of the scheduled events,

dA2(t) = A2(t)dQ0(t), (6)

where dQ0(t) is given in (5) when i = 0,

[A2](T2,`) = J2,0

(
T−2,`, ĵ2,`, ~A(T−2,`)

)
A2(T−2,`) (7)

is the jump size for a given mark vector realization ĵ2,` at
jump `, where the conditional expectation is

E
ĵ2

[
A2(T+

2,`)| ~A(T−2,`) = ~a−`

]
=
(
1 + E

ĵ2
[J2,0

∣∣∣ ~A(T−2,`) = ~a−` ]
)
a−2,`,

in terms of the conditional expected relative jump size for
unscheduled parameter A2. Here, a relative jump size is
used, so that this relative size is added to one in the factor
multiplying the old value, rather than an absolute size in
Rishel [17] where the absolute size is added to the old value.
Geometric or multiplicative noise is used here as being more
appropriate than additive noise.

Our model for the underlying assets is similar to that of
Rishel [17], except that more general and realistic distributions
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are used here for the appreciation, volatilities and unscheduled
jump parameters, systematically relying upon linear parameter
processes, rather than the discrete random states used in Rishel
[17]. Also, space-time Poisson processes are used extensively
in the model here.

III. PORTFOLIO WEALTH EQUATION

Let W (t) be the portfolio wealth process at time t that
includes a bond asset at price B(t) and the N1 risky stocks
Si(t). Let Ui(t) be the instantaneous fraction of the wealth
W (t) invested in the ith risky asset at time t for i =
1, 2, . . . , N1 and U0(t) denotes the fraction invested in bonds
at time t, so that U0(t) +

∑N1
i=1 Ui(t) = 1, which serves as

the defining constraint for the bond fraction U0(t) in terms
of the stock fraction vector ~U(t) = [Ui(t)]N1×1. Along with
consumption of capital, the stock investment fractions will
comprise the components of the stock fraction control policy
vector, ~U(t), for this problem. The Ui(t) can take on arbitrary
real values if i > 0 in theory, since the fraction of stock i can
be negative if the stock is sold short at time t in anticipation of
a drop in prices making it profitable to buy back later, while
the fraction invested in bonds can be negative if money is
borrowed on the bond and invested in stock i with i > 0. The
sum over the stock fractions can exceed unity and thus are
unbounded above, in theory. However, for practical reasons,
the stock fractions must be bounded or limited since borrowing
and short selling would be limited. Further, if the jump model
leads to singular control calculations, then the control space
would need to be bounded. Thus for more realism, the control
space will be assumed bounded, for example, by component-
wise constraints, Umin,i ≤ ui ≤ Umax,i, with Umin,i ≤ 0 and
Umax,i > 0 specified, defining a stock fraction control domain
Du example.

The relative change in wealth dW (t)/W (t) at time t due
to the relative change in the bond price is U0(t)dB(t)/B(t)
and that due to the ith stock price is Ui(t)dSi(t)/Si(t), but
wealth also decreases due to instantaneous consumption C(t).
Thus using the dynamics in the stocks (2) coupled with the
bonds, the wealth satisfies the stochastic differential equation
(SDE),

dW (t) = −C(t)dt+W (t)
[
r( ~A(t))dt+ ~U>(t) (8){(

~µ( ~A(t))− r(~a)~1
)
dt+ σ( ~A(t))d~Z(t)

+ d~P (t) + d~Q(t)
}]

,

with matrix-vector notation such that ~U>(t) = [Uj(t)]1×N1

denotes the transpose of ~U(t), ~1 = [1]N1×1, ~µ(~a) =
[µi(~a)]N1×1, σ(~a) = [σi,j(~a)]N1×M , d~Z(t) = [dZi(t)]M×1,
d~P (t) = [dPi(t)]N1×1 and d~Q(t) = [dQi(t)]N1×1. The zeroth
jump process components (dP0(t), dQ0(t)) associated with
the random jump parameters (A1(t), A2(t)) do not directly
appear in (8). The jump in wealth is given by

[W ](Tk,`) ≡ W (T+
k,`)−W (T−k,`)

=
N1∑
i=1

Ui(T−k,`)Jk,i(T−k,`, ĵk,`; ~A(T−k,`))

·W (T−k,`),

at each jump time t = Tk,`, for ` = 1, 2, 3, . . . when k = 1
for unscheduled jumps or ` = 1, 2, . . . , N2 when k = 2 for
scheduled jumps, and with the realized mark vector ĵk,` for
each `th jump of type k, combining both types of jumps in a
single formula.

IV. CONSUMPTION AND PORTFOLIO OPTIMIZATION
PROBLEM

Let Uf (w;~a) be the utility function of final wealth as well
as of the events parameter vector ~a, and let U(c) be the utility
of instantaneous consumption for the investor. Suppose the
investor consumes c = C(t) at time t and ends up with wealth
w = W (T ) at the final time T . The investor seeks to maximize
the conditional expected, current value at t of the discounted
utility of the terminal wealth and instantaneous consumption,
i.e.,

v∗(t, w;~a) = max
{~u,c}[t,T )

[
E

[
e−β(~a)(T−t)Uf (W (T ); ~A(T ))

+
∫ T

t

e−β(~a)(τ−t)U(C(τ))dτ

∣∣∣∣∣Sc(t)

]]
, (9)

where the conditioning set is Sc(t) ≡{
W (t) = w, ~U(t) = ~u,C(t) = c; ~A(t) = ~a

}
, upon selecting

the maximizing portfolio policies ~U(t) and consumption C(t),
assuming the wealth process W (t) satisfies the stochastic
dynamics specified by (8). Discounting at rate β = β( ~A(t)) is
used here to account for opportunity costs due to potentially
better alternative investments, in contrast to Rishel [17].
Here, β is the real (nominal less inflation) discount rate but
could jump with the announced announced changes in the
federal funds discount rate. The utility functions U(c) and
Uf (w;~a) are assumed to be increasing concave functions.
i.e., U ′(c) > 0 and U ′′(c) < 0, for example. The differences
from Rishel’s [17] paper are that events parameter vector ~a
is included in the terminal wealth utility making ~a genuinely
included in the model and also the cumulative discounted
running utility for consumption of wealth is included as part
of the optimal objective. The maximization in the case of
constraints is over some specified feasible control domains,
i.e., ~u ∈ Du and c ∈ Dc, and is subject to the non-negative
feasibility conditions on consumption C(t) ≥ 0 and on wealth
W (t) ≥ 0 making zero wealth an absorbing state to avoid the
possibility of arbitrage (Merton [15, Chapter 6]). Thus, The
optimization problem is subject to the zero wealth absorbing
boundary condition

v∗(t, 0+;~a) = e−β(~a)(T−t)Uf (0;~a) (10)

+ U(0)
∫ T

t

e−β(~a)(τ−t)dτ.

to account for the non-negative wealth condition W (t) ≥ 0
(Merton [15, Chapter 6]). It is assumed that consumption must
be zero when wealth is zero. The bequest or terminal wealth
condition v∗(T,w;~a) = Uf (w;~a), must also be satisfied. The
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events parameter vector ~a = (a1, a2) forms an extension of
the state space from the wealth state w.

Assuming that v∗(t, w;~a) = v∗(t, w; a1, a2) is continuously
differentiable in t, twice continuously differentiable in w
and continuous in the events parameter vector ~a between
scheduled jumps, plus sufficiently integrable, then stochastic
dynamic programming equations between scheduled jumps
(see Kushner [11], and Gihman and Skorohod [5] for the less
familiar Poisson driven terms) is

0 = v∗t (t, w;~a)− β(~a)v∗(t, w;~a) + max{~u,c} [U(c)
+
((
r(~a) + ~u>(~µ(~a)− r(~a)~1)

)
w − c

)
v∗w(t, w;~a)

+ 1
2~u

>σ(~a)σ>(~a)~uw2v∗ww(t, w;~a)
+ λ(t)

∫
J1

[
v∗
(
t, (1 + ~J>1 (t, ĵ1;~a)~u)w;(

1 + J1,0

(
t, ĵ1;~a

))
a1, a2

)
− v∗(t, w;~a)]φ1(ĵ1)dĵ1

]
= v∗t (t, w;~a)− β(~a)v∗(t, w;~a) + U(c∗)

+
((
r(~a) + (~u∗)>(~µ(~a)− r(~a)~1)

)
w − c∗

)
v∗w(t, w;~a)

+ 1
2 (~u∗)>σ(~a)σ>(~a)~u∗w2v∗ww(t, w;~a)

+λ(t)
∫
J1

[
v∗
(
t, (1 + ~J>1 (t, ĵ1;~a)~u∗)w;(

1 + J1,0

(
t, ĵ1;~a

))
a1, a2

)
− v∗(t, w;~a)

]
φ1

(
ĵ1

)
dĵ1,

(11)

where ~u∗ = ~u∗(t, w;~a) ∈ Du and c∗ = c∗(t, w;~a) ∈ Dc

are the optimal controls if they exist, v∗w and v∗ww are the
partial derivatives with respect to wealth, when T2,`+1 >
t > T2,`, or in jump time notation T−2,`+1 > t ≥ T+

2,`,
for ` = N2, N2 − 1, . . . , 1, 0 by counting backward, given
scheduled values at prejump times T−2,`+1. By right continuity,
solution values at T+

2,` and T2,` are equivalent. Let T2,N2+1 =
T−2,N2+1 ≡ T finally and T2,0 = T+

2,0 ≡ 0 initially, for
notational convenience to include the non-jump endpoints in
the jump time accounting. Positivity of wealth when there is an
unscheduled jump in wealth as in (11) requires the additional
positivity condition that (1 + ~J>1 (t, ĵ1;~a)~u) ≥ 0.

At the scheduled jumps, counting backward from t = T+
2,`

to t = T−2,`, the optimal, expected value function jumps due
to the fact that the scheduled jump times are not averaged as
are the unscheduled Poisson jump times (see Rishel [17] for a
somewhat different formulation) and takes its value from the
scheduled event jump in the amplitude A2 and the jump in
wealth W ,

v∗(T−2,`, w;~a) =
∫
J2

v∗
(
T+

2,`,
(
1 + ~J>2

(
T−2,`, ĵ2;~a

)
· ~u−2,`

)
w; a1, (12)(

1 + J2,0

(
T−2,`, ĵ2;~a

))
a2

)
φ2

(
ĵ2

)
dĵ2,

for ` = N2, N2 − 1, . . . , 2, 1 counting backward, where the
optimal control at T−2,` is given by ~u−2,` ≡ ~u∗(T−2,`, w;~a), since

W (T+
2,`) =

(
1 + ~J>2

(
T−2,`, ĵ2;~a

)
~u−2,`

)
W (T−2,`). The right

continuity property and the instantaneous jump property have
been used. Positivity of wealth when there is an scheduled
jump in wealth as in (12) requires the additional positivity

condition that
(
1 + ~J>2

(
t, ĵ2;~a

)
~u
)
≥ 0. Since dynamic

programming is a backward formulation in time, the jump
condition (12) is an implicit condition for v∗(T−2,`, w;~a) rather
than v∗(T+

2,`, w;~a) which is found from (11). The implicitness
is due to the argument of the maximum, the optimal control
~u∗(T−2,`, w;~a). Equation (12) can be conceptualized as the
dynamic programming equation for the artificial infinitesimal
backward time step T+

2,` > t ≥ T−2,`, given previously
calculated values at T+

2,`. There is no similar jump formula
for the optimal consumption at T−2,` since the consumption
does not satisfy a stochastic differential equation like W (t)
and ~A(t). Jump condition (12) illustrates the fact that quasi-
deterministic jumps are more difficult to treat than Poisson
jumps, since the random jump times of the Poisson jumps
are smoothed over during the expectation step in stochastic
dynamic programming.

If the maximum in (11) is unconstrained and attained by
the regular controls ~ureg(t, w;~a) and creg(t), given sufficient
differentiability, then on T2,`−1 < t < T2,` the regular controls
implicitly satisfy the dual critical conditions,

U ′(creg(t, w;~a)) = v∗w(t, w;~a), (13)

and
w2v∗ww(t, w;~a)σ(~a)σ>(~a)~ureg(t, w;~a)

= −wv∗w(t, w;~a)(~µ(~a)− r(~a)~1)

−λ(t)w
∫
J1

~J1

(
t, ĵ1;~a

)
v∗w (t,(

1 + ~J>1

(
t, ĵ1;~a

)
~ureg(t, w;~a)

)
w;(

1 + J1,0

(
t, ĵ1;~a

))
a1, a2

)
φ1

(
ĵ1

)
dĵ1,

(14)

for the optimal consumption and portfolio policies with re-
spect to the terminal wealth and instantaneous consumption
utilities (9). Since these regular control relationships introduce
nonlinearities in the dynamic programming equation (11), the
solution for v∗(t, w;~a) requires iteration, in general. Through
(13), the regular consumption creg(t, w;~a) inherits jump prop-
erties from v(t, w;~a).

At the scheduled jumps, t = T2,`, the portfolio policy must
jump when the optimal portfolio value jumps, but it may be
practical to bring policy constraints into play since the first
derivative critical condition for the regular control vector for
the stock fractions is

w
∫
J2

~J −
2,` v

∗
w

(
T+

2,`,

(
1 +

(
~J −
2,`

)>
~u −

reg,2,`

)
w; a1,(

1 + J −
2,0,`

)
a2

)
φ2(ĵ2)dĵ2 = ~0,

(15)

for the optimal jump condition (12). Here, ~u −
reg,2,` ≡

~ureg(T−2,`, w;~a), ~J −
2,` ≡ ~J2(T−2,`,

~j2;~a), J −
2,0,` ≡

J2,0(T−2,`, j2,0;~a). Under consumption and portfolio fraction
constraints, the nonlinear effects in the optimal value are
worsened, but leads to more realistic solutions. The iterative
solution is similar to that of the regular control case. The
regular policy set, {creg, ~ureg}, leads to new values for the
constrained optimal policy set, {c∗, ~u∗}, which in turn leads
to new optimal values v∗(t, w;~a) and new successive iterates
(see, for example, Hanson [6])
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V. CONSTANT RELATIVE RISK-AVERSION UTILITY:
CANONICAL MODEL

When the utility functions appearing in the objective func-
tional (9) are power functions,

U(c) = cγ/γ, c ≥ 0, 0 < γ < 1;
Uk(ak) = |ak|γk , ak 6= 0, γk 6= 0; k = 1, 2,
Uf (w;~a) = U(w)U1(a1)U2(a2), w ≥ 0,

(16)

then arbitrary powers of consumption and wealth imply that
in order to enforce real values on the utility functions, con-
sumption and wealth must be non-negative. For the jump event
parameters, a1 and a2, negative values are permitted to allow
the parameters to have negative effects on the model, but the
utility depends on the absolute value. The parameter utility
also makes the influence of events stronger in the model since
the parameters are genuinely in the optimization as well as
in the dynamics here. This is the case of iso-elastic marginal
utility or constant relative risk-aversion (CRRA). With these
power utility functions, a good guess for the form of the
canonical solution is by partial multiplicative separation of
variables,

v∗(t, w;~a) = Uf (w;~a)v0(t;~a), (17)

where the parameter-dependent, separated time function
v0(t;~a) is to be determined. The absorbing boundary condition
(10) is automatically satisfied with v∗(t, 0+;~a) = 0 by (17)
since U(0+) = 0 and Uf (0+;~a) = 0 through (16).

Substitution of the solution form (17) yields an explicit
linear dependence on the wealth for the regular control con-
sumption values as in the canonical case, using (13),

creg(t, w;~a) = w · c0,reg(t;~a)

≡ w

[U1(a1)U2(a2)v0(t;~a)]1/(1−γ)

=
wq2(~a)

v
1/(1−γ)
0 (t;~a)

, (18)

using U ′(c) = γU(c)/c and v∗w(t, w;~a) =
γUf (w;~a)v0(t;~a)/w, provided v0(t;~a) 6= 0 and provided
ak 6= 0 for each k, where

q2(~a) ≡ 1/ [U1(a1)U2(a2)]
1/(1−γ)

.

However, the regular consumption depends on a reciprocal
nonlinear power of v0(t;~a) with the power in the range
(−∞,−1). For the stock fractions, there is an implicit form,
independent of wealth, found by (14), with

v∗ww(t, w;~a) = γ(γ − 1)Uf (w;~a)v0(t;~a)/w2,

U((1 + ~JT
1 ~u)w) = γU(1 + ~JT

1 ~u) · U(w),

U1((1 + J1,0) · a1) = U1(1 + J1,0) · U1(a1),

such that

~ureg(t;~a) =
1

1− γ
(σσ>)−1(~a)

[
~µ(~a)− r(~a)~1 (19)

~I ′
1 (~ureg(t;~a), t;~a)

]
,

where the control gradient of I1 is denoted by

~I ′
1 (~u, t;~a) = γ2

∫
J1

~J1(t, ĵ1;~a)
U(1 + ~J>1 (t, ĵ1;~a)~u)

(1 + ~J>1 (t, ĵ1;~a)~u)
·U1(1 + J1,0(t, ĵ1;~a))ψ(t, ĵ1;~a)φ1(ĵ1)dĵ1,

with the primary source of implicitness is expressed by

ψ(t, ĵ1;~a) ≡ v0(t; (1 + J1,0(t, ĵ1;~a))a1, a2)
v0(t; a1, a2)

, (20)

provided that the diffusion matrix, σ(~a)σ>(~a), is invertible.
Note the fact that the ~ureg(t;~a) is independent of the wealth, w,
a crucial property needed for partial separability. However, ~ureg
is not independent of event parameter vector ~a. The function
ψ(t, ĵ1;~a) in (20) signifies the degree of nonseparability of
the parameter vector ~a from the time dependence. Hence
the regular stock fraction policy depends on the separated
value function v0 through ψ, but only through the relative
dependence on the unscheduled events parameter a1, between
deterministic, scheduled jump events.

For more realism, constraints on the stock fraction control
vector ~u will be assumed,

u∗i (t;~a) = max[Umin,i,min[Umax,i, ureg,i(t;~a)]],

for i = 1, 2, . . . , N1, in the case of component-wise constraints
for the stock fraction control domain Du, where Umin,i and
Umax,i are the finite lower and upper bounds on the ith stock
fraction, respectively. Similarly, constraints on consumption,
c ∈ Dc, may lead to the optimal consumption relative to wealth
in the form,

c∗0(t, w;~a) = c∗(t, w;~a)/w
= min [c0,reg(t, w;~a), C0,max] ,

where C0,max is the spending cap relative to wealth. In view of
the vanishing denominator problem in the canonical solution
for CRRA model creg(t, w;~a) in (18), a consumption cap is
essential to avoid infinite consumption whenever a1 = 0, a2 =
0 or v0(t;~a) = 0.

Substitution of the power solution form (17) and the con-
strained optimal control vector ~u∗(t;~a) corresponding to the
regular control vector ~ureg(t;~a) in (18-19) into the stochastic
dynamic programming equation (11) leads to an ordinary
differential equation depending on the vector parameter ~a. This
equation can be viewed as an implicit Bernoulli equation with
variable coefficients for sufficiently small parameter values,

0 =v′0(t;~a)
+(1− γ)

(
q′1(t, ~u

∗(t;~a);~a)v0(t;~a)

+ q̂2(t;~a)v
γ

γ−1
0 (t;~a)

)
,

(21)

q′1(t, ~u;~a) ≡
∂q1(t, ~u;~a)

∂t
= 1

1−γ

[
−β(~a) + γ

(
r(~a) + ~u>(~µ(~a)− r(~a)~1)

)
−γ(1−γ)

2

[
~u>(σ(~a)σ>(~a))−1~u

]
+ λ(t)(I1(~u, t;~a)− 1)

]
,

(22)
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q̂2(t;~a) ≡ 1
1−γ

[(
c∗0(t;~a)
c0,reg(t;~a)

)γ

− γ

(
c∗0(t;~a)
c0,reg(t;~a)

)]
q2(~a),

(23)

I1(~u, t;~a) ≡ γ
∫
J1
U
(
1 + ~J>1

(
t, ĵ1;~a

)
~u
)

·U1

(
1 + J1,0

(
t, ĵ1;~a

))
ψ
(
t, ĵ1;~a

)
φ1

(
ĵ1

)
dĵ1,

(24)

for t on [T+
2,`−1, T

−
2,`) for ` = N2+1, N2, . . . , 2, 1 subintervals

with T2,0 ≡ 0 and T2,N2+1 ≡ T . The formula defining
I ′
1 (~u, t;~a) is the control gradient of I1(~u, t;~a) using the facts

that U ′(w) = γU(w)/w and U(b · w) = γU(b) · U(w). In
the presence of control constraints, constrained perturbations
of q1(t, ~u;~a), upon replacing the unconstrained ~ureg with the
constrained optimal ~u∗, force iterative perturbations on v0(t;~a)
to yield approximations of the constrained, scaled optimal
value v0(t;~a). Similarly, the dependence of the modified
function q̂2(t;~a) on the optimal consumption functions c∗0(t;~a)
and c0,reg(t;~a) forces iterative perturbations on v0(t;~a). The
advantage is that the perturbation is still independent of the
state of the wealth.

The partial separability assumption where ~a still appears
in the time function v0(t;~a) is mainly due to the jumps in
the event parameters, but also due to the ~a-dependence of
the coefficients of the variance σ(~a), the mean return µ(~a),
and the utilities Uk(ak). If these coefficients were indepen-
dent of ~a, then the time function could be replaced by just
v0(t). Otherwise, the implicit dependence on ψ(t, ĵ1;~a) in the
integrals I ′1 and I1 will require iterative, interpolation, or other
approximate solutions.

The implicit Bernoulli equation (21) can be formally trans-
formed to an easily integrable formal linear differential equa-
tion by the change of variables

θ(t) = v
1−γ/(γ−1)
0 (t;~a) = v

1/(1−γ)
0 (t;~a),

0 = θ′(t) + q′1(t, ~u
∗(t;~a);~a)θ(t) + q̂2(t;~a), (25)

which has a general solution that can easily be converted to
the general solution for the desired time function,

v0(t;~a) = θ1−γ(t;~a) =
[
e−q̂1(t;~a) (K0 (26)

−
∫ t

q̂2(τ ;~a)eq̂1(τ ;~a)dτ

)]1−γ

,

where K0 is a constant of integration and

q̂1(t;~a) ≡
∫ T

t

q′1(τ, ~u
∗(τ ;~a);~a)dτ,

is the cumulative growth rate exponent on [t, T ] for the
linear system θ(t). Since v0(t;~a) will be only piece-wise
continuous and have jumps at scheduled jump times, the
constant of integration K0 will be different on different inter-
jump intervals between scheduled jumps, i.e.,

v0(t;~a) =


V0,`(t;~a),

T+
2,`−1 ≤ t < T−2,`,

` = N2 + 1 . . . , 2, 1

V0,`(T−2,`;~a),
t = T−2,`,

` = N2 + 1, . . . , 2, 1

 , (27)

with semi-open intervals appropriate for right continuous
limits, where T2,0 = T+

2,0 ≡ 0 and T2,N2+1 = T−2,N2+1 ≡ T
are taken as the starting and stopping times, respectively, for
notational convenience.

On the final time step, [T2,N2 , T ), the optimal utility value
function final condition is v∗(T,w;~a) = Uf (w;~a), so the
partially separated time function satisfies the reduced final
condition, v0(T ;~a) = 1. Thus, using (26),

v0(t;~a) = V0,N2+1(t;~a)

≡

[
e−q̂1(t;~a)

(
1 +

∫ T

t

q̂2(τ ;~a)eq̂1(τ ;~a)dτ

)]1−γ

,

where q̂1(T ;~a) ≡ 0 defines q1’s constant of integration, and
the solution for the optimal value function is v∗(t, w;~a) =
Uf (w;~a)V0,N2+1(t;~a) with optimal controls, ~u∗(t;~a), in pres-
ence of control constraints, using solutions from (19). On
earlier time steps [T+

2,`−1, T
−
2,`) between scheduled jumps, for

` = N2, . . . , 2, 1, in the natural backward time of dynamic
programming, the v0(t;~a) using (12) and (17) must satisfy
the local final jump condition for that interval,

V0,`(T−2,`;~a) = I2(~u −
2,`, T

−
2,`;~a),

where

I2(~u, T−2,`;~a) ≡ γ

∫
J2

U(1 + ( ~J −
2,` )>~u)U2(1 + J −

2,0,`) (28)

·V0,`+1(T+
2,`; a1, (1 + J −

2,0,`)a2)φ2(ĵ2)dĵ2.

and the corresponding control jump condition is given by the
optimal control,

~u −
2,`(~a) ≡ [u∗i (T

−
2,`;~a)]N1×1 = argmax

~u∈Du

[I2(~u, T−2,`;~a)],

taking the regular control vector when the constraints are
satisfied. Also recall that positivity constraint on the wealth
multiplying factor (1+ ~J>2 ~u) must be satisfied. The argument
(1 + J −

2,0,`)a2 of V0,`+1 in the integral I2 above requires
interpolation of V0,`+1 over the scheduled event parameter a2

to fit the finite difference representation. With the local final
condition and the general solution in (26), the time dependent
solution is written

v0(t;~a) = V0,`(t;~a)

≡

[
e−q̂1,2,`(t;~a)

((
V −0,`

)1/(1−γ)

(29)

+
∫ T2,`

t

q̂2(τ ;~a)eq̂1,2,`(τ ;~a)dτ

)]1−γ

,

for the interval [T+
2,`−1, T

−
2,`) when ` = N2 + 1, . . . , 2, 1

subintervals between scheduled jumps, where

q̂1,2,`(t;~a) ≡
∫ T2,`

t

q′1(τ, ~u
∗(τ ;~a);~a)dτ,

V −0,` ≡ V0,`(T−2,`;~a) is given by the local final condition with
V0,`+1(T+

2,`−1;~a) = V0,`+1(T2,`;~a) by piece-wise continuity
and right continuous limits to supply the value under the
integral I2 with ` + 1 replaced by `. Note that (29) defines
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V0,`(t;~a) only implicitly, since q̂2(t;~a) depends on c0,reg and
c∗0, which in turn depend on v0(t;~a) = V0,`(t;~a).

The corresponding optimal consumption is

c∗0(T
−
2,`;~a) = min

[
c0,reg(T−2,`;~a), C0,max

]
(30)

= min
[
q2(~a)/V

1/(1−γ)
0,` (T−2,`;~a), C0,max

]
,

which is piece-wise continuous with jumps at the scheduled
jump times due to the jumps of v0(t;~a). The optimal con-
trol on [T+

2,`−1, T
−
1,`) has the same composite form as for

[T+
2,N2

, T ), since it depends only on the diffusive volatility
matrix σ(~a), the mean appreciation rate µ(~a) less the interest
rate r(~a), the jump amplitudes and their distributions.

VI. FURTHER COMPUTATIONAL CONSIDERATIONS

In Section V, the optimal, expected instantaneous consump-
tion and terminal wealth investment portfolio problem using
power utilities reduces the computational complexity of the
problem to a much more feasible level than that for the
more general problem in Section IV.The main computational
difficulty compared to the more standard Gaussian noise
problem is the numerical treatment of the marked Poisson
process related integrals that appear in the reduced equations
for the optimal control ~u∗(t, w;~a) in both regular form (19)
as well as the corresponding jumps, the cumulative growth
rate of the linear form, q̂1(t;~a), in (22) for the separated
time function v0(t;~a) in (21) and the jump conditions for
v0(t;~a) in the local final condition. Westman and Hanson
[21] have developed numerical procedures for treating these
marked Poisson jump integrals that are valid for arbitrary
jump densities. The procedure generalizes Gaussian quadrature
rules using an arbitrary density as the integral weighting func-
tion. Given a continuous density φ(z), the Gaussian-Statistics
quadrature for jump integrals approximates the integrals over
continuous functions f(z) as

f ≡
∫
J
f(z)φ(z)dz '

n∑
k=1

wkf(zk),

where the n nodes zk ∈ J and corresponding n weights
wk are related to the first few moments of the density φ(z),
which for the two point rule has cubic moment accuracy
up to and including skewness. Piece-wise rules, with piece-
wise renormalization, were also constructed in Westman and
Hanson [21].

The implicit equations governing the regular or optimal
controls in (19) and the scheduled jump controls require
some iterative procedure such as Newton’s method to find the
regular optimal controls when they exist using the gradient
and Hessian matrix of the integral I1(~u, t;~a) with respect to
the stock fraction control ~u. Since (19) has the functional form
~ureg = K1+K2

~I ′
1 (~ureg), suppressing the (t;~a) dependence for

all quantities, where K1 and K2 are functions independent of
control ~ureg, then the (k+ 1)st Newton iterate between jumps
is

~u(k+1)
reg ' ~u(k)

reg −
[
K2I

′′
1 (~u(k)

reg )− IN

]−1

·
[
K1 +K2

~I ′
1 (~u(k)

reg )− ~u(k)
reg

]
,

where I ′′
1 (~u) is the Hessian matrix of second ~u-derivatives of

I1 and IN is the N th order identity matrix. Also, the separation
imperfection function ψ(t, ĵ1;~a) in (20) in general requires
linear interpolation to evaluate the value function when (1 +
J1,0)a1 is not an a1-node, so that the Newton’s iteration for
~ureg is coupled with the iterations for ψ.

In the case of the control jump condition and if regular
controls exist, then the Newton’s (k + 1)th iterate for the
critical points yields,

~u(k+1)
reg ' ~u(k)

reg −
[
I ′′
2 (~u(k)

reg )
]−1

~I ′
2

(
~u(k)

reg

)
,

at the jump time t = T−2,`. For this case, an additional
approximation is required which is the linear interpolation over
the scheduled events parameter a2 to convert the argument
(1 + J−2,0,`)a2 to a proper discrete node of V0,`+1 needed
for evaluating the integrand of I2. This linear interpolation
is coupled with the Newton iteration for the critical points of
I2.

A. Algorithm Summary
Since there is very little literature about numerical proce-

dures for stochastic dynamic programming with jump pro-
cesses as compared to those for Brownian motion processes,
the numerical procedure for the current problem will be
outlined here.

1) Initialize stochastic dynamic and financial model param-
eters, using as realistic values as possible from available
data.

2) Check validity of model parameters for satisfaction of
wealth positivity conditions with respect to the range of
control fraction constraints.

3) Set up finite numerical grids for t, w, a1, and a2, subject
to problem conditions:
• Initialize stochastic dynamic and financial model

parameters,
• Note that the wealth w dependence has been sepa-

rated from the (t, a1, a2) dependence in the canon-
ical solution so that the wealth grid is only needed
in the final assembly of the final solution upon
appending the wealth factors to v∗(t, w;~a) and
c∗(t, w;~a).

• The time grid is structured with scheduled jump
times and an inter-jump subgrid between the sched-
uled jump times.

• Each scheduled jump time has two representations
in the inter-jump accounting: the post-jump at T+

2,`

and the prejump at T−2,`, numerically the same
times, but the solutions will have different values
due to the scheduled jumps. The jump conditions
specified by the integral I2 are handled as a special
loop. Thus, for example, the total number of points
Ntot = N2 ·(N2D +1)+1, where N2 is the number
of scheduled jumps and N2D is the number of
divisions per scheduled jump, including two points
for each scheduled jump time to represent both pre-
jump and post-jump values.

• For the (a1, a2) grids, avoid the singular nodes of
creg in (18) at a1 = 0 and a2 = 0.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 49, NO. 3, PP. 326-337, MARCH 2004 9

• Set up arrays for drift vector ~µ and volatility σ since
they depend only on the (a1, a2) in the dynamic
programming formulation.

4) Initialize the wealth independent dynamic programming
problem with the time factor v0(t;~a), and related solu-
tions needed to initialize the iterations, at the final time,
t = T or ` = N2 + 1, over the (a1, a2) grids.

5) Loop backward over the scheduled jumps from the last
jump (` = N2) to the initial time (artificial jump at
` = 0).

6) Loop backward over the subset of the inter-jump times
from the prior scheduled pre-jump time to the next post-
jump time, i.e., from T−2,`+1 to T+

2,`.
7) Loop over the scheduled parameter grid for a2.
8) Loop over an iteration loop for ψ, ~ureg, ~u∗ and v0, using

the inter-jump dynamic programming equations (20, 19,
29).

9) Loop over the unscheduled parameter grid for a1 within
each iteration.

10) If the absolute changes in successive iterations of ~ureg
are sufficiently less than some prescribed tolerance, then
end current iteration loop. Typically, control variables
are the slowest to converge, but other variables could be
included.

11) End nested a2 grid and backward inter-jump time loops.
12) Repeat nested a2 grid loop, iteration loop and a1 grid

loop, but with the jump conditions for wealth indepen-
dent forms of ~ureg, ~u∗ and v0 using post-jump T+

2,` values
to get pre-jump T−2,` values using iteration procedures
appropriate for the I2 jump conditions,

13) Loop over the wealth grid with nested a1, a2 and t grid
loops to assemble the wealth dependent final results:
v∗(t, w;~a), creg(t, w;~a) and c∗(t, w;~a).

14) Output results: v∗(t, w;~a), c∗(t, w;~a) and ~u∗(t;~a).
Due to the large complexity of this important event model,
there are no available convergence proofs, but the heuristic
convergence of the algorithm procedure has been computa-
tionally demonstrated with a numerical test described in the
next section. All approximations in the implementation of the
algorithmic procedure are based on sound procedures to the
best of our knowledge and wide experience.

VII. NUMERICAL TEST MODEL

As a numerical test, a simple jump model is considered,
bearing in mind that jump processes lead to more analytical
complexity than diffusion processes. It is assumed the state
space has the dimension of one stock (N1 = 1). Both
unscheduled (random) and scheduled (deterministic) jumps
result in two equally likely discrete random jump amplitude
marks at each jump time, respectively. The reduced model still
retains much of the analytical and numerical complexity of
the full model, and is represented by the log-return stochastic
differential equation,

d ln(S(t)) = [µ(a1, a2)− 0.5σ2]dt+ σdZ(t)

+
∫
J1

ln(1 + J1,1(j1))P(dt, dj1) (31)

+
∫
J2

ln(1 + J2,1(j2))Q(dt, dj2)

where both the drift µ(a1, a2) and parameter-less volatility σ
are scalar processes. The jump amplitudes are discrete in the
marks, jk,1, ln(1 + Jk,1(jk,1)) = qk,1, for each jump type,
k = 1 when unscheduled or k = 2 when scheduled, and
are realized through two possible integer marks jk,1 = 1 or 2,
with probabilities pk,1(jk,1) = 0.5 and values qk,1 each at each
jump time Tk,`. For the scheduled process, when k = 2, only
the jump times are scheduled, but the amplitudes or responses
are random.

For realistic values for the coefficients, the daily closings of
the S&P500 stock index from 1995-1999 (Financial Forecast
Center, [3]) are used as a large sample composite estimate
of a stock market mutual fund. The S&P500 data has been
transformed into changes in the natural logarithm of the index
closings from day to day. The use of higher order moments
for determining the model coefficients are avoided due to the
high ill-conditioning when using nonlinear curve fitting. The
Poisson rate is taken as λ = 3 per year as a rough estimate
of the number of extreme outliers in the data corresponding
to the day to day changes in the logarithm of the S&P500
stock index. For unscheduled jumps (k=1), approximate ex-
treme values in the logarithmic changes q1,1,a = −0.07 and
q1,1,b = +0.05 will be assumed. The extreme values for
scheduled jumps (k=2) are assumed to be q2,1,a = −0.05
and q2,1,b = +0.03. With the 1995-1999 S&P500 sample
standard deviation 0.010027 (very close to 0.01), the volatility
σ can be found, since all jump process parameters have
been specified. The corresponding sample mean change in the
logarithm of the S&P500 index between trading days is nearly
zero or 9.22× 10−4. The sample time step has been taken as
∆t = 1/252.6 years, using the average number of trading days
per year in 1995-1999. Finally with the volatility determined,
the leading drift µ(0, 0) coefficient follows from the expected
first moment. The parameter processes, (a1, a2), are assumed
to effect only the drift, so that

µ(a1, a1) = µ(0, 0)(1− 0.1(a1 + a2)),

selecting a decreasing linear function in the parameters a1 and
a2.

Economic parameters are taken to be constant for this test
with r = 0.070537 using the average rate for Moody AAA
bonds and β = 0.046167 using the average discount rate, both
from the Federal Reserve Bank (Federal Reserve System, [2])
for 1995-1999. The powers of the utility functions were taken
as γ = 0.20 and γ1 = 0.10 = γ2 with N2 = 12 scheduled
jumps per year in the middle of the month. Other parameters of
the parameter processes (a1, a2) are taken to be J1,0 = −0.05
and J2,0 = −0.05, similar to other jump amplitudes. Control
constraints are Umin = −2.0 and Umax = +2.0 for stock
fractions, while Cmax = +400.0 for consumption.

The numerical and graphical results were generated us-
ing the MATLABTM matrix laboratory system Full Version
5.3.1R11.1 (Moler et al. [16]). The use of MATLABTM was
motivated by the usual preference in financial engineering
work to keep the computational demands reasonable.

The optimal value, v∗(t, w;~a), is exhibited in Fig. 1(a) for
events parameter vector fixed at ~a = (+1,+1) and in Fig. 1(b)
at fixed ~a = (−1,−1). In both cases the optimal value
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appears to be nearly linearly decreasing with time, except
for small jump decrements at scheduled jump times while
mainly following the U(w) = wγ/γ power utility for wealth
as a template between jumps as in the canonical solution
(17). Although the data used for the scheduled events allow
either a negative or a positive jump, the expected jump is a
decrement since the magnitude of the negative jump is greater
as it is in the S&P500 data. The nearly linear decrease with
time is due to the decreasing cumulation of instantaneous
consumption as the time horizon T is approached, provided
that the discount rate is sufficiently small in the original
objective formulation (9). This perspective is that of stochastic
dynamic programming, such that starting at (t, w;~a) then
v∗(t, w;~a) is interpreted as the optimal expected current value.
The time-dependence is much stronger for the event parameter
vector ~a = (−1,−1) in Fig. 1(b) than for ~a = (+1,+1) in
Fig. 1(a).
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(b) Optimal expected value approximation v∗(t, w;−1,−1)

Fig. 1. Optimal expected value approximations versus time t and wealth w
in numerical results for test model.

The optimal consumption appears to decrease slowly with
time, except for small jump increments at the scheduled jump
times in Fig. 2(a) for c∗(t, w; +1,+1) versus time t and state
of wealth w at fixed events parameter vector ~a = (+1,+1)
while in Fig. 2(b) for c∗(t, w;−1,−1) for ~a = (−1,−1).

The linear variation in (18) of creg(t, w;~a) with the wealth
w is quite clear. Since from (18), creg(t, w;~a) has a time
dependence proportional to v

−1/(1−γ)
0 (t;~a) while v∗(t, w;~a)

is proportional to v0(t;~a), creg(t, w;~a) and v∗(t, w;~a) have
time rates of change of opposite sign, so creg(t, w;~a) is gen-
erally increasing while v∗(t, w;~a) is decreasing in time. For
the opposite extremes in parameter values, ~a = (−1,−1), the
values of c∗(t, w;−1,−1) are generally smaller, decreasing in
time, except for small jumps at scheduled jumps.
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(b) Optimal consumption policy approximation c∗(t, w;−1,−1)

Fig. 2. Optimal consumption policy approximations versus time t and wealth
in numerical results for test model.

The variation of the approximate optimal quantities with the
events parameters a1 corresponding to unscheduled events and
a2 for scheduled events is also quite interesting. In Fig. 3(a)
the optimal value, v∗(t, wmax; a1,+1) and in Fig. 3(b) the
optimal consumption policy c∗(t, wmax; a1,+1)illustrated, at
the maximal constraint on wealth, wmax = 100, versus time t
and a1 at fixed a2 = +1. The dependence on the parameter a1

is very strong reflecting the direct economic dependence on
the utility U1(a1) = |a1|γ1 with γ1 = 0.1 for fixed t, but with
additional dynamical effects from v0(t;~a). There is a step-like
character at scheduled jumps, also from v0(t;~a). The variation
of the value and consumption policy are complementary in that
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they are changing in opposite directions with respect to the
parameter a1. Note that only 20 discrete values were used for
the jump event parameters, so the lack of sufficient smoothness
in the a1 is due to the economy of the discrete representation
and not a real effect due to the model.
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Fig. 3. Optimal expected value approximation and the optimal consumption
policy versus time t and unscheduled events parameter a1 at wmax = 100
in numerical results for test model.

The optimal control policy for stock 1 fraction
u∗(T/2; a1, a2) at the midpoint of the time horizon
interval, t = T/2, versus both event parameters a1 and a2 is
shown in Fig. 4. With respect to the dependence on the event
parameters, the stock fraction optimal control policy surface
appears to be an increasing function of the parameter values
a1 and a2. Further, quantitative interpretation is difficult
since ureg(t;~a) satisfies a complicated implicit equation
in (19-20). However, since the main coupling between
the parameters and the stock fraction u1(t;~a) is in the
fraction-drift product u1(t;~a) · µ(~a) which has an optimum
when ∂u1/∂ak = −(u1/µ)∂µ/∂ak and ∂µ/∂ak < 0 in the
linear drift model chosen here, this leads to the intuitive
interpretation that ∂u1/∂ak > 0.
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Fig. 4. Optimal control policy approximation u∗(T/2; a1, a2) versus
unscheduled events parameter a1 and scheduled events parameter a2 in
numerical results for test model.

VIII. CONCLUSIONS

The portfolio optimization model for investment wealth
dependent on external jump events introduced by Rishel [17]
has been improved and generalized. The underlying stock
price, as well as random scheduled and quasi-deterministic
unscheduled event jump processes have been modeled consis-
tently by Markov noise in continuous time and deterministic
processes have been modeled by the generalized functions
corresponding to the stochastic jump processes. The Markov
noise includes both Brownian motion for background noise
and marked, space-time Poisson processes for rare random
jump events, while the analogous quasi-deterministic processes
are modeled by differentials of right continuous step functions
for scheduled events.

The expected terminal wealth utility objective of Rishel [17]
has been extended by including the scheduled and unscheduled
events jump parameters in a genuine way by including them in
the terminal utility, while consumption has been added in terms
of a cumulative instantaneous utility. Linear parameter stochas-
tic quasi-deterministic processes are used systematically for
more realism. Discounting has been included in the terminal
objective and the instantaneous or running objective, as it
would be in any policy strategy sensitive to other opportunities
that might produce higher gains, lower costs or more returns.
Also, constraints are placed on the stock fraction controls to
make optimal control computation for the power utility, jump
model finite, better-posed and more realistic.

Formulae are carefully worked out for the piece-wise con-
tinuous solutions with jump conditions for the power utility
models of the constant relative risk aversion type. Overall, the
modifications make the optimal portfolio jump model more
realistic and computationally feasible. The canonical power
utility model solutions are not exactly separable with respect
to parameter arguments due to the presence of distributed
Poisson jump amplitudes and jump event parameters for both
scheduled and unscheduled events. Computational techniques
are given to handle iterations about the canonical power utility
model solutions for complications due to implicitly defined



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 49, NO. 3, PP. 326-337, MARCH 2004 12

stock fraction control policies and due to jump perturbations in
the jump event parameter arguments of the optimal, expected
value. The approximate canonical model approach greatly
reduces the computational demands over the conventional
computational stochastic dynamic programming approach. Op-
timal, expected value, stock fraction and consumption re-
sults are illustrated for a numerical model test problem with
two discrete random jump amplitudes in each of scheduled
and unscheduled type jump events. Computational feasibility
has been demonstrated using the matrix laboratory system
MATLABTM for the numerical solution development, rather
than a large scale programming code. The major contribution
of this paper is the successful computation of the results
considering the complexity of the jump processes used in this
application.
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