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ABSTRACT. In this paper we solve the general case of the cohomological relative index problem for foliations
of non-compact manifolds. In particular, we significantly generalize the groundbreaking results of Gromov
and Lawson, [GL83], to Dirac operators defined along the leaves of foliations of non-compact complete
Riemannian manifolds, by involving all the terms of the Connes-Chern character, especially the higher order
terms in Haefliger cohomology. The zero-th order term corresponding to holonomy invariant measures was
carried out in [BH21] and becomes a special case of our main results here. In particular, for two leafwise
Dirac operators on two foliated manifolds which agree near infinity, we define a relative topological index
and the Connes-Chern character of a relative analytic index, both being in relative Haefliger cohomology.
We show that these are equal. This invariant can be paired with closed holonomy invariant currents (which
agree near infinity) to produce higher relative scalar invariants. When we relate these invariants to the
leafwise index bundles, we restrict to Riemannian foliations on manifolds of sub-exponential growth. This
allows us to prove a higher relative index bundle theorem, extending the classical index bundle theorem of
[BHO8]. Finally, we construct examples of foliations and use these invariants to prove that their spaces of
leafwise positive scalar curvature metrics have infinitely many path-connected components, completely new
results which are not available from [BH21]. In particular, these results confirm the well-known idea that
important geometric information of foliations is embodied in the higher terms of the A genus.
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In this paper we continue our program of extending the groundbreaking relative index theorems of Gromov-

MSC (2010): 53C12, 53C21, 58J20

Key words: foliation, Dirac operator, relative index, positive scalar curvature.

1

Lawson, especially Theorem 4.18, [GL83], to Dirac operators defined along the leaves of foliations of non-
compact complete Riemannian manifolds. Their results have played a fundamental role in the development
and understanding of the existence and non-existence of metrics with positive scalar curvature (PSC), as
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well as the structure of spaces of such metrics. It is an essential tool for the extension of results for compact
manifolds to non-compact manifolds.

In [BH21], we extended the Gromov-Lawson theorem to foliations admitting invariant transverse measures,
and crucial requirements for the applications were that the foliation admits a holonomy invariant measure,
and that the measured A genus of the foliation be non-zero. In this paper, we dispense with both these
requirements and completely solve the general case. We obtain results for all the terms of the Atiyah-
Singer characteristic forms associated with the Dirac operators, especially the higher order terms of the
Connes-Chern character of the relative analytic index, as well as the higher order terms of the Connes-Chern
characters of their “index bundles”. We also construct a large collection of spin foliations, with trivial
zero-th order Haefliger A genus, whose spaces of leafwise PSC metrics have infinitely many path connected
components. In particular, these results confirm the idea that the higher order terms of the A genus carry
important geometric information.

As in [BH21], our work is in the spirit of the transition from the Atiyah-Singer index theorem, [AS68III],
to Connes’ index theorem for foliations, [C79, C81, CS84]. In order to overcome the problems of dealing
with non-compact manifolds, we assume that our objects have bounded geometry. Our higher relative index
theorem then provides the expected formula in an appropriate relative Haefliger cohomology for pairs of
foliations which are isomorphic near infinity, equating the higher relative analytical index constructed out
of parametrices with the higher relative A-hat forms. When the foliations are top dimensional, we recover
the Gromov-Lawson theory [GL83, LM89]. When the foliated manifolds are compact (without boundary),
we recover the cohomological version of the Connes-Skandalis index theorem [CS84], as developed in [BHO04]
using Haefliger cohomology. When the foliations are not top-dimensional, any pair of Haefliger transverse
currents which are compatible near infinity lead to scalar higher relative index formulae. We thus recover
the results of our previous paper [BH21] by pairing our higher relative index formula with a compatible pair
of holonomy invariant transverse measures.

As is well known and already observed for closed foliated manifolds, see for instance [BH08, BHW14,
HL99], despite the top-dimensional case, further conditions are required to relate the higher analytic index of
leafwise Dirac operators to their spectral index, say the Connes-Chern characters of the leafwise projections to
their kernels, the so-called index bundle. The examples in [BHW14] show that such restrictions are necessary.
Assuming, as in [BHO8], that the spectral projections of the leafwise Dirac operators are sufficiently sparse
near zero and that the foliations are Riemannian, we prove our next higher index theorem which now involves
the relative spectral index. This theorem holds only in the absolute Haefliger cohomologies since the pair
of index bundles is in general not compatible near infinity. This incompatibility can prevent the pairing of
the index bundles with compatible near infinity Haefliger currents from being well defined. Finally, we show
that when the ambient manifolds have sub-exponential growth, such pairings are miraculously well defined
as soon as the Dirac operators are invertible near infinity, and they equal the pairing with the higher relative
A-hat forms. The invertibility near infinity is the usual Gromov-Lawson condition involving the zero-th
order term of the Bochner formula. It occurs for instance when the foliations are spin with leafwise PSC
near infinity, compare with [GL83].

Notational details are given in the next section.

Denote by (M, F) a foliated manifold where M is a non-compact complete Riemannian manifold and F is
an oriented foliation (with the induced metric) of M. We assume that both M and F' are of bounded geometry
and that the holonomy groupoid of F' is Hausdorff. We will sometimes assume that F' is Riemannian, and
when we do, we will explicitly point it out in the text. The general case will be addressed in [BH23].
We assume that we have a Clifford bundle Ej; — M over the Clifford algebra of the co-tangent bundle
to F, along with a Hermitian connection V¥ compatible with Clifford multiplication. This determines
a leafwise generalized Dirac operator, denoted Dp. We assume that we have a second foliated manifold
(M', F') with the same structures. We further assume that there are compact subspaces Ky = M ~\ Vs
and K, = M’ \ V{,, so that the situations on Vs and Vj,, are identical via a smooth isometry ¢. These
are the usual Gromov-Lawson relative data. Note that in our case, the “bad set” restricted to a leaf need
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not be compact as in the Gromov-Lawson case. Only the global aggregate of all such leafwise subsets needs
to be compact as a subset of M.

In [BH21], we worked on the ambient manifolds M and M’. Here we work on their holonomy groupoids
G and G’, with their canonical foliations Fy and F., as we did in [BH08]. We lift everything to G using the
range map r : G — M, which is a covering map from the leaves of F to those of F', and similarly for M’. In
particular, we have the G invariant leafwise Dirac operator D for the foliation Fy, and similarly D’ for F..

Recall that for a good cover U = {(U;,T;)} of M, [HL90], by foliation charts U; with local complete
transversals T;  U;, the Haefliger forms associated to F' are the bounded smooth differential forms on 117;
which have compact support in each T;, modulo forms minus their holonomy images. The (absolute) Haefliger
cohomology of F, denoted H*(M/F), is then the associated de Rham cohomology, and is independent of
the choice of good cover, [Ha80]. Also recall that there is an integration over the leaves map from forms on

M to Haefliger forms, denoted J , which induces a map on cohomology. For the foliation given by the fibers
F

of a bundle M — B, the Haefliger cohomology reduces to the cohomology of the base and J is the classical
F
integration over the fibers map. See again [Ha80] for more details.

The receptacle for our relative index formulae will be a relative version of Haefliger cohomology that we
denote by H* (M /F, M'/F’;¢). This is the cohomology of pairs of Haefliger forms which agree near infinity
(that is, on T; far enough away from Ky and similarly for the 77), again modulo pairs of forms minus their
holonomy images which also agree near infinity.

Denote by AS(Dp) the Atiyah-Singer characteristic differential form, associated with the above -
compatible data, for Dp, and similarly for Dg/,. These differential forms agree near infinity on M and
M’. The relative A-hat genus of the compatible pair (D, D’), alternatively called the relative topological
index, is

Indy(D,D’) = [J AS(Dp), ,AS( };/))] € H¥(M/F,M'/F’; ).
Using parametrices, we define a relafive analyticiﬂ index class Ind, (D, D’) in the appropriate K-theory
group, and its Connes-Chern character,
ch(Ind,(D,D")) € H*(M/F,M'/F’; p).
Our first result is
Theorem 4.2 For the (M, F), (M',F'), D and D' as above,
ch(Ind, (D, D")) = Indy(D, D’) in H*(M/F,M'/F'; ).

So, pairing with any compatible near infinity pair (C, C") of closed Haefliger currents yields a (higher) scalar
relative index formula. Such pairings will be denoted (-, ), e.g. {ch(Ind,(D, D")), (C,C")).

An important application of this theorem is to pairs of “reflective” foliations, which we consider in Section
6. They can be “cut and pasted” to get a compact foliated manifold M , with the foliation F and operator
D 7. Given C and C” as above, denote by C the current they determine on M. Then we have the following
extension of the Gromov-Lawson Relative Index Theorem, see [GL83], which is most useful in Section 7,
where we construct our examples.

Theorem 6.7 Suppose that F (and so also F') is reflective. Then
{ch(Indy (D, D), (C,C")y = {ch(Indy(D3)),C).

The RHS of this index formula can then be computed using the classical higher cohomological index
theorem for foliations of closed manifolds [C94, BH04]. For top dimensional foliations, say when TF = TM
and TF' = TM’, the previous two theorems reduce to the classical Gromov-Lawson relative index theorems.
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Despite the top dimensional case, it is well known that the higher index is not easily related with the
so-called index bundle, i.e. the Chern character of the “kernel minus cokernel superbundle”. Constraints on
the spectral distributions, as well as on the geometry near infinity are necessary, see for instance [BHW14].
Denote by Py the leafwise spectral projection to the kernel of D?. In general Py is not transversely smooth
(although it is always leafwise smooth), and if not, we cannot even define its Connes-Chern character in our
Haefliger cohomology without perturbing the operator. There are though interesting classes of foliations and
leafwise Dirac-type operators whose kernel superbundle P, is transversely smooth, and in this case, we get
a well defined spectral index class

ch(Py) € HI(M/F),
and similarly for P}, see [BHOS].

Denote by Py, the leafwise spectral projection for D? for the interval (0,¢). The Novikov-Shubin
invariants N.S(D) of D are a measure of the density of the image of Py ). The larger NS(D) is, the sparser
the image of P ) is as € — 0.

We also have the natural map (7 x 7’) : H*(M/F,M'/F'; ) - H*(M/F) x H¥(M’'/F’), and with it the
Riemannian Foliation Relative Index Bundle Theorem.

Theorem 4.3 Fiz 0 < £ < q/2, where q is the codimension of F and F'. Assume that:

e the foliations F and F' are Riemannian;
e the leafwise operators Py, Py, P, and P(’0 9 (for € sufficiently small) are transversely smooth;

e NS(D) and NS(D') are greater than £.
Then, for 0 < k < £, we have in H2*(M/F) x H2*(M'/F")

7 x ') ch*(Ind, (D, D')) = (ch*(Ind, (D)), ch*(Ind, (D)) = (ch*(Pp),ch*(P})).

For Riemannian foliations, important examples of compatible near infinity pairs of closed Haefliger currents
are given by closed bounded holonomy invariant transverse differential forms w on M and w’ on M’ which
agree near infinity. These determine closed bounded Haefliger forms on T, denoted wr and w/., which agree
near infinity. Denote by dx the global volume form on M.

We then have the Higher Relative Index Pairing Theorem.

Theorem 4.6 In addition to the assumptions in Theorem 4.3, assume that for e sufficiently small,

J tr(Pjo,e))dr < o and J- tr(Ply )dx < o, and that M, and so also M', has sub-exponential growth.
M M

Then, for any w e CP (AT 2k %) and W' € CP(AT2V'™) (0 < k < 1) as above,
J ch(Py) A wr and J ch(P}) A wh are well defined complex numbers,
T ’

and

[ etz neor = [ anrt) it = (| [ Ase).([ ASDR) | Lor i

In Section 6, we show that the finite integral assumptions in Theorem 4.6 are satisfied when Dp (and hence
also D) is invertible near infinity, i.e. when the zeroth order differential operator RE in the associated
Bochner Identity

D% = V*V + RE,
is uniformly positive near infinity on M. The sub-exponential growth condition can be extended to expo-
nential growth provided it is not too robust. See Remark 5.7.

For a single foliated manifold with a pair of compatible near infinity leafwise Dirac operators, we have
the following generalization of a classical result of Gromov-Lawson [GL83], compare with Theorem 6.5 in
[LMS9].
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Theorem 6.5 Suppose that E and E' are two Clifford bundles over the foliated manifold (M, F), which
are isomorphic off the compact subset Kyr, with associated twisted Dirac operators D and D’. Let w be a
bounded closed holonomy invariant transverse form (or Haefliger current) of degree £ < q. Suppose that

M has sub-exponential growth, and F' is Riemannian;

the leafwise operators Py, P, Po,e) and P(’O‘) (for € sufficiently small) are transversely smooth;
min(NS(D), NS(D")) is greater than {;

RE, and hence also R‘E/, is uniformly positive near infinity.

Then, since ch(E) = ch(E") off K,

J.’C (AS(Dp)(ch(E) — ch(E")) A w = JT (ch(Py) — ch(P})) A wr.

In the reflective case, again more constraints are necessary to obtain the link with the index bundle, and
we have the following.

Theorem 6.8 Suppose that F (so also F') is reflective. Suppose furthermore that F is Riemannian and
that Py and P(o ¢ are transversely smooth and the Novikov-Shubin invariants of Dy are greater than ¢, for
some 0 < £ < q/2. Then for any 2¢ homogeneous @-compatible (w,w’) as above,

{ch(Ind, (D, D)), [wr,wi]) = {(ch(Pp), Bs)-
Moreover, if we impose the assumptions of Theorem 4.6, then

((ch(Py), ch(Ry)), (wr,whpn)) = {(ch(Py), D).

In Section 7, we consider foliations which admit positive scalar curvature (PSC) leafwise metrics. Given
such a foliation, we associate to any pair (go, g1) of such metrics, an invariant living in Haefliger cohomology,
which provides an obstruction for the leafwise path connected equivalence of gy and g¢;. This precisely
generalizes the classical Gromov-Lawson invariant. Finally, we construct a large collection of spin foliations
whose space of leafwise PSC metrics has infinitely many path connected components.

Acknowledgements. MTB thanks the french National Research Agency for support via the project ANR-14-
CE25-0012-01 (SINGSTAR). JLH thanks the Simons Foundation for a Mathematics and Physical Sciences-
Collaboration Grant for Mathematicians, Award Number 632868.

2. THE SETUP

Denote by M a smooth non-compact complete Riemannian manifold of dimension n, and by F' an oriented
foliation (with the induced metric) of M of dimension p, (until further notice, we assume that p is even),
and codimension ¢ = n — p. The tangent and cotangent bundles of M and F' are denoted TM,T*M,TF
and T*F. The normal and dual normal bundles of F' are denoted v and v*. A leaf of F is denoted by L. At
times, we will assume that F' is Riemannian, that is the metric on M, when restricted to v is bundle like, so
the holonomy maps of v and v* are isometries. We will consider the general case in [BH23|.

We assume that both M and F' are of bounded geometry, that is, the injectivity radius on M and on all
the leaves of F' is bounded below, and the curvatures and all of their covariant derivatives on M and on all
the leaves of F' are bounded (the bound may depend on the order of the derivative).

Let U be a good cover of M by foliation charts as defined in [HL90]. In particular, denote by D?(r) = {z €
RP,||z|| < r}, and similarly for D?(r). An open locally finite cover {(U;,v;)} of M by foliation coordinate
charts v¢; : U; — DP(1) x D9(1) < R™ is a good cover for F' provided that

(1) For each y € DI(1), P, = ¢; *(DP(1) x {y}) is contained in a leaf of F. P, is called a plaque of F.

(2) U, nU; # &, then U; nU; # &, and U; n U; is connected.

(3) Each v; extends to a diffeomorphism 1; : V; — DP(2) x D?(2), so that the cover {(V;,;)} satisfies
(1) and (2), with D?(1) and D?(1) replaced by D?(2) and D%(2).
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4) Each plaque of V; intersects at most one plaque of V; and a plaque of U; intersects a plaque of U; if
J J
and only if the corresponding plaques of V; and V; intersect.

(5) There are global positive upper and lower bounds on the norms of each of the derivatives of the ;.

Bounded geometry foliated manifolds always admit good covers.

For each U; € U, let T; < U; be a local complete transversal (e.g. T; = 1; *({0} x D9(1))) and set
T = |J T;. We may assume that the closures of the 7; are disjoint. Given (U;,T;) and (U;,Tj), suppose
that ;¢ : [0,1] — M is a path whose image is contained in a leaf with 7,;,(0) € T; and ~;;¢(1) € T;. Then
7vije induces a local diffeomorphism h.,., : T; — T}, with domain Dom,,,, and range Ran,, ,. The space
AF(T) consists of all smooth k-forms on 7' which are C* bounded and have compact support in each T;.
The Haefliger k-forms for F, denoted A (M /F), consists of elements in the quotient of A¥(T') by the closure
of the vector subspace W generated by elements of the form a;;¢ — hjij ,Qije where ajq € AF(T) has support
contained in Ran.,,. We need to take care as to what this means. Members of W consist of possibly infinite
sums of elements of the form oy, — hi"m ,Qije, with the following restrictions: each member of VW has a bound
on the leafwise length of all the ~;;, for that member, and each +;;, occurs at most once. Note that these
conditions plus bounded geometry imply that for each member of W, there is n € N so that the number of
elements of that member having Dom,, ., contained in any 7; is less than n, and that each U; and each U;
appears at most a bounded number of times. The projection map is denoted

[]: AX(T) — AZ(M/F).

Denote the exterior derivative by dp : A¥(T) — AF+1(T), which induces dy : A*(M/F) — A1 (M/F).
Note that A¥(M/F) and dy are independent of the choice of cover . The cohomology H(M/F) of the
complex {A%*(M/F),dy} is the Haefliger cohomology of F'.

Denote by A*(M) the space of differential forms on M which are smooth and C® bounded, and denote
its exterior derivative by d; and its cohomology by HX(M;R). As the bundle TF is oriented, there is a
continuous open surjective linear map, called integration over F,

f L AZFE(M) — AN(T),

which commutes with the exterior derivatives. This map is given by choosing a partition of unity {¢;}

subordinate to the cover U/, and setting f w to be the class of Z ¢;w. It is a standard result, [Ha80],
F i JU;

that the image of this differential form [J
F

commutes with dj; and dg, it induces the map f : HPTF(M;R) — H¥(M/F).
F

w] e A¥(M/F) is independent of the partition of unity and of

the cover U. As f
F

Note that J

is integration over the fibers of the projection U; — T;, and that each integration w — f oiw
Ui Ui

is essentially integration over a compact fibration, so J satisfies the Dominated Convergence Theorem on
F
each U; e U.

The holonomy groupoid G of F' consists of equivalence classes of paths v : [0, 1] — M such that the image
of 7y is contained in a leaf of F. Two such paths v, and 7, are equivalent if v1(0) = v2(0), 71(1) = 72(1), and
the holonomy germ along them is the same. Two classes may be composed if the first ends where the second
begins, and the composition is just the juxtaposition of the two paths. This makes G a groupoid. The space
G of units of G consists of the equivalence classes of the constant paths, and we identify G(© with M.

The basic open sets defining the (in general non-Hausdorfl) 2p + ¢ dimensional manifold structure of G are
given as follows. Given U;,U; € U and a leafwise path +;;, starting in U; and ending in U}, define the graph
chart U; ., U; to be the set of equivalence classes of leafwise paths starting in U; and ending in U; which are
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homotopic to 7;;¢ through a homotopy of leafwise paths whose end points remain in U; and U; respectively.
It is easy to see, using the holonomy map h.,;, : T; — Tj that U; x,;, U; ~DP(1) x DP(1) x D?(1).

G has the natural the maps r,s : G — M, with s([y]) = 7(0) and 7([y]) = v(1). It also has has two
natural foliations, F and F;., whose leaves are the fibers of s and r. We will primarily use Fs, whose leaves

are denoted L, = s~1(x), for x € M. Note that r : L, — L is the holonomy covering map. We will assume
that G is Hausdorff, which is automatic for Riemannian foliations.

Yije

The smooth sections of a bundle E are denoted by C*(E), and those with compact support by CP(E).
We assume that any connection or any metric on E, and all their derivatives, are bounded. See [Sh92] for
material about bounded geometry bundles and their properties.

For a real or complex bundle Ey; — M, the external tensor product bundle Fy X EY;, — M x M
can be pulled back under (s,7) to a smooth bundle denoted E X E* over G. We denote the smooth,
bounded sections k(7) with compact support of the restriction of this bundle to subset U; x.,;, U;j = G by
CL (Ui %4, Uj, EX E*). We extend them to all of G by by setting k(y) = 0if v ¢ U; x,,, Uj.

Definition 2.1. [BH18] The algebra C°(E X1 E*) consists of smooth sections k of EXI E*, called kernels,
such that k is a (possibly infinite) sum k = 3., kije, with each kije € CF(U; x,;, Uj, EXK E*). For each
k, we require that there is a bound on the leafwise length of its vije, and that each index ij€ occurs at most
once. We further require that for each k, each of its derivatives in the local coordinates given by the good
cover is bounded, with the bound possibly depending on the particular derivative.

The proof of Lemma 2.3 of [BHO8| shows that this is indeed an algebra. Each k € C°(E [X] E*) defines a
G-invariant leafwise smoothing operator on C°(E) in the sense of [C79], which is transversely smooth and
has finite propagation. See [Sh92| for the definition of bounded geometry smoothing operators, as well as
[NWX96] for the groupoid version. To see this, use the leafwise distance function d.(vy,%) on f/x This is
defined as the infimum over the leafwise length [(y4~!) of all paths in the class of ¥9~1 € G. For any bounded
geometry foliation with Hausdorff holonomy groupoid, the sets U; x ., U; have the property that there is a
universal constant (namely the bound C on the diameters of all the placques in all the U; x.,,, U;), so that
for all v € U; x,,, Uj, we have I(y) < [(vi5¢) + 2C. Next, suppose that kij, € C(U; x,,, Uj, EX E*), and
o€ CP(E). Then,

k@) = [ kA oG,
Ls
Now, kije(77") = 0 unless ¥~ € U; x,,, U;, that is only if [(777!) = dy)(7,7) < (vije) + 2C, the
very definition of finite propagation. The restrictions imposed on each k;;¢ imply that each U; and each Uj;
appears at most a bounded number of times, so the sum converges locally uniformly, in particular pointwise.
These restrictions on k insure that it also has bounded propagation.

Denote by Dp a generalized leafwise Dirac operator for the even dimensional foliation F. It is defined
as follows. Let Ej; be a complex vector bundle over M with Hermitian metric and connection, which is of
bounded geometry. Assume that the tangent bundle T'F is spin with a fixed spin structure. Because F is
even dimensional, the bundle of spinors along its leaves, denoted Sp splits as Sp = S}t @ Si.. Denote by
V' the Levi-Civita connection on each leaf L of F. V¥ induces a connection V¥ on Sg|L, and we denote
by VEE the tensor product connection on Sr ® Ejs|L. These data determine a smooth family Dp = {Dr}
of leafwise Dirac operators, where Dy, acts on sections of Sp ® Ep|L as follows. Let Xq,..., X, be a local
oriented orthonormal basis of T'L, and set

P
Dy = Y p(X:) V"
i=1
where p(X;) is the Clifford action of X; on the bundle Sg ® FEjs|L. Then Dy, does not depend on the choice
of the X;, and it is an odd operator for the Zs grading of Sp ® Ey = (S;C ® Em) @ (Sp ® En). Thus
Dr : CX(SF ® Ey) — CP(S) ® Eyr), and D% : C*(SE ® Ey) — CX(SE ® Ear). For more on the
generalized Dirac operators that we are using here, see [LM89].
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Given a leafwise operator A on S® F® Av¥, denote its leafwise Schwartz kernel by k4. Then, depending
on the context and under appropriate assumptions on k4, the Haefliger traces, Tr(A) and Tt(A), of A are
defined to be,

Tr(A) = JFtr(kA(fj))dzpeAf(M/F) and  Te(A) = [ Ltr(kA(x,x))dxF]eH:(M/F),

Wher~e dx p is the leafwise volume form associated with the fixed orientation of the foliation F. The element
T € L, is the class of the constant path at © € L ¢ M. See again for instance [BHO04] for more details on
these constructions.

Now suppose that we have the situation in Section 4 of the companion paper [BH21]. That is, we have:
foliated manifolds (M, F') and (M', F');

Clifford bundles Ey; — M and Ejp; — M’, with Clifford compatible Hermitian connections;
leafwise Dirac operators Dp and Dp;

compact subspaces Kpr = M \ Vi and K, = M/ N Vi

an isometry ¢ : Vay — Vi, with o= }(F) = F;

e an isomorphism ¢ : Eyly,, — EleViﬂ’ covering ¢, with ¢* (V¥ -F' |V1(4,) =VEE |,
The pair ® = (¢, ¢) is thus a bundle morphism from E|Vas to E) |V{,,. The well defined (since they are
differential operators) restrictions of Dp and Dp- to the sections over Vi and Vj,, agree through @, i.e.

(@7)*oDpo®*|y;, = Dpr vy,

M

Such operators are called ® compatible. Without loss of generality, we may assume that Cp; and K, are
the closures of open subsets of M and M’ respectively.

Recall the following material from [BH21]. Denote by g : M — [0,00) and ¢’ : M’ — [0,0) compatible
smooth approximations to the distance functions 9, (Kps, z) and 90 (K, 2'), where 037 and 90 are the
distance functions on M and M’. So we assume that g and ¢’ are 0 on Ky and K, respectively and they
satisfy ¢’ o ¢ = g. Hence, for s = 0, the open submanifolds M (s) = {g > s} and M'(s) = {¢' > s} agree
through ¢, that is (M (s)) = M’'(s) and g|ar(s) = 9’ © ¢|nr(s). For s = 0 denote by T the set

TS = {TlCT|TlﬁM(S)¢®},
and similarly for 7.

Suppose that (¢,¢") € W x W' < AX(T) x AZ(T"), with ¢ = X, ,y o = hja and (" = 3}y o' = B3,

For simplicity, we have dropped the subscripts. The vector subspace W x, W' < W x W' consists of elements

(¢,¢") which are ¢ compatible. This means that all but a finite number of the («,~) and (a/,7’) are paired,
that is

a = ¢*() and 4 = pony, so a-hia = p*(@ —hid).

Definition 2.2. Given 8 € A*(T) and B’ € A*(T"), the pair (B, ') is w-compatible if there exists s = 0 so
that = ¢*(B') on Ts. Set

AX(M/F,M'/F';¢) = {(B,8") € AX(T) x AX(T") | (B,8') is ¢ compatible}/(W x, W').

The de Rham differentials on A% (T) and A% (T") yield a well defined relative Haefliger complex, whose
homology spaces are denoted

HE(M/F,M'|F';0) = @o<reHE (M/F, M'[F'; ),
and there are well defined graded maps,
n: HY(M/F,M'/F';0) - H*(M/F) and «': H*(M/F,M'/F';¢) — H*(M'/F").
which are induced by the projections

ALM/F,M'[F'; ) > AZ(M/F) and AZ(M/F,M'/F'; o) — AZ(M'/F").
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Definition 2.3. Suppose (§,¢&') € A*(M/F,M'/F'; ), and let C and C’" be closed (bounded) ¢ compatible
holonomy invariant Haefliger currents. Set

(&,€),(C,C)) = Jim (C¢lrar,) = C"(€|r1r)) -

This is well defined because any representative in (£, ¢’) is ¢ compatible, so the right hand side is eventually
constant. In addition, every (¢,¢") € W x, W' is ¢ compatible, so satisfies

Jim (O(Clrr) = C'(Clrry) = 0.

To see this, recall that there is a global bound on the leafwise length of the v and + in ¢ and ¢’. This, and
the fact that there are only finitely many unpaired («,v) and (¢/,~"), insures that for large s, every unpaired
(v, ) will have both Dom., and Ran, = T'\ T, so C(a — h3a) will be zero, and similarly for every unpaired
(¢/,~"). Those (,7) and (&/,7') which are paired and appear in the integration, will have Dom, and/or
Ran, c T'\. T, with corresponding Dom,, and/or Ran,, < 7"\ T,. In both cases, their integrals will cancel.

Remark 2.4. Examples of such currents include the following.

(1) Invariant transverse measures A and A’ on T and T' which are ¢ compatible as in [BH21].

(2) Suppose w € CP(A*v*) and w' € CP(A*V'™) are closed holonomy invariant forms on M and M’
which are ¢ compatible. They determine ¢ compatible closed holonomy invariant currents, also
denoted wr and wi. In particular,

<(£a§/)’ (Wvaér'» = lim ( 5 AW — 5/ A wél"’) :
s—2o \ JroT, TI\T!
Here wp = w|r, which is well defined and is holonomy invariant, as is wh.
For Riemannian foliations, examples of this type abound. In particular, the characteristic forms
of holonomy invariant bundles which agree at infinity, for ezample AMTv*®(R'V), and AMTV* R (RV').
For definiteness, we will generally use this example in the sequel, but all the statements obviously
remain valid with more general holonomy invariant currents.

In this paper, we will have a number of different pairings, which will be uniformly indicated by the notation
{-,-». The notation should make clear where the objects live. For example, we have

], aswe). [ aswp)| ornd = [ ([ aswe) swr- [ ([ a0p) rwre

{(ch(Py),ch(P)), (wr,wp)y = JT ch(Py) A wr — J ch(Pg) A wip

’

and

In the first case, the terms in the pairing live in relative Haelfliger cohomology. In the second, the terms are
pairs of bounded Haefliger forms, and the second pair happen to agree near infinity.

3. CHERN CHARACTERS IN HAEFLIGER COHOMOLOGY

We recall in this section the main steps in the construction of the Chern character in Haefliger cohomology
and explain how they immediately extend to the case of a pair of foliations which are compatible near infinity.
In this latter case, our Chern character takes values in a relative version of Haefliger cohomology that we
introduce below.

In [BH21] we worked on M, while in [H95, HL99, BH04, BHO08], we worked on G, which we will also do
here, but our basic data will be taken from the ambient manifolds. The results in [BH21] extend readily to
G with the only change being that the spectral projections used on G are for the operator lifted to F. This
represents another extension, in the spirit of Connes’ extensions in [C79, C81], of the classical Atiyah L?
covering index theorem, [A76]. In addition, as will be explained below, the results in the above cited papers
where M was assumed to be compact still hold provided both M and F are of bounded geometry and we
use our definition of the Haefliger cohomology.
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All the data in the previous section may be lifted to (G, Fs) using the map r : G — M. The notation we
will use is obtained from that above by:

Ev —E, Spr—S, VPP Vv, L—>1L,, Dp—D; Dy— D,.

Thus the smooth G invariant family D = {D,} of leafwise Dirac operators acting on sections of S ® E|L, is
given as follows. Let X1,..., X, be a local oriented orthonormal basis of T'L,. Then,

P

Dy =Y p(Xi)Vx, : CL(Ga; ST®E) - CL(Ga, ST®E) and D2 : CL(Ga, ST ®E) — CL(Ga, ST® E).
i=1

Denote by Av¥, the exterior powers of the dual normal bundle v} of Fs = r*F, which we identify with

s¥(T*M) = s*(TF*) ® s*(v*) so that each CP(S® E® Av?) is an Q*(M)-module. We extend D to an

Q*(M)-equivariant operator

D:CP(SQFERAvY) — CP(S®ER® Av)),

by using the leafwise flat connection on Av¥ determined by the pull-back of the Levi-Civiti connection on
T*M.

In [BHOS8], we used the traces Tr and Tt to define Connes-Chern characters in H* (M /F) for operators on
C*(S® E). For the leafwise spectral projection Py onto the kernel of D?, when this latter is smooth, this
is denoted,

ch(Py) € Hi(M/F).
We also proved that if M is compact and Ind, (D) is Connes’ K-theory index class defined in terms of a
parametrix for D, then under the usual regularity assumption, ch(Py) = ch(Ind,(D)). We now extend these
notions to our situation.

We now return to our compatible foliations (M, F) and (M’, F’) and their holonomy groupoids G and
G'. First, we lift the compatibility data ® to G and denote again the corresponding data by ®, which gives
an equivalence off (the generally non-compact subsets) K = r~!(Kj;) and K’ = (v')"Y(Kyp), that is on
the subsets V = r=1(Vyy) and V' = (+')~}(Vays). In [BHO8], we defined an algebra of super-exponentially
decaying G—operators on C*(S ® E ® av¥). Here we need a stronger condition on our operators, namely
that they have finite propagation. This is provided by using operators from the algebra C° ((SQ E® Av¥)
(S ® E ® Av¥)*), which we denote simply as CC(Fy). Any A = (Az)zem € CP(F,) defines a leafwise
(smoothing) G—operator on CX(S® E® Av¥) which has uniform finite propagation, and its Schwartz kernel
is smooth in all variables, with all derivatives being globally bounded, the bounds possibly depending on the
derivatives.

Using the algebra C(Fy), we have a K-theory index class represented by idempotents constructed from a
parametrix, and this K-index does not depend on the parametrix, so its Connes-Chern character is also inde-
0 D~
DT 0 ] '
Suppose that Q; is a smooth (in ¢) family of leafwise parametrices for D. That is, each @Q; is an odd operator
which is smooth in all variables, and which has finite propagation remainders, namely the even operators

St = IS+®E —Qt_D+ and Rt = IS—@E_D+Qt_~
For t > 0, set, as in [BHOS],

pendent of the parametrix. In particular, as D is an odd super operator, we may write D = [

St Q7 (R + RY)
At =
R,D* —R?
Then A; has finite propagation, is smooth in all variables, and is a bounded leafwise smoothing operator,
that is, A, € C;°(Fs). Set m_ = diag(0,1s-gg), and 74 = diag(Is+gw,0). Then A; + 7n_ is an idempotent
as is m_. Set
Ind, (D) = [A; +7_] — 7] € Ko(CP(F5)).
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Since A;+7_ is a smooth family of idempotents, it follows from results of [BHO04] that Ind, (D) is independent
of t. Since any two parametrices can be joined in a smooth family, it follows immediately that Ind, (D) does
not depend on the parametrix.

For details of the following, see [BHO08], Section 3, where we define the quasi-connection,
CPS®E® rvF) L CP(S®E® avk).
Given an operator A on S ® E ® Av¥, denote by
0, : End(C*(S® E® Av))) - End(C*(S® E® Avk))
the linear operator given by the graded commutator
0, (A) = [VY, A].

Set 6 = (V¥)?, which is a leafwise differential operator with coefficients in Av¥. Since 02 is not necessarily
zero, we used Connes’ X-trick in [BHO8] to construct a new differential operator § out of ¢, and 6, whose
square is zero. Note carefully that §A is nilpotent since it always contains a coefficient from Av¥=1

Corollary 3.7 of [BHOS8] states,
Proposition 3.1. The Haefliger form Tr(At exp [_(%‘?:)2]) 18 closed, and the Haefliger class
‘It(At exp [_(37’4’)2]) 1s independent of t.

T

Definition 3.2. The Connes-Chern character of Ind, (D) is,
—(6A;)?
ch(Ind, (D)) =‘It(AteXp [(229]) e H*(M/F).
7T
We have the same constructions for D’. In Section 5, we construct families of parametrices Q; and Q}

directly from D and D’ in such a way that their remainders are ® compatible, so also are A; and A}.

For pairs (A4, A’) of operators from C°(Fy) x C°(F!) which are ®-compatible, there is also an algebra
C¥(Fs, Fl; ®), and the previous construction of the analytic index class extends immediately to yield the
relative analytic index class

Ind,(D,D") = [(Ar+7_, A, + 7] —[(m_,7")] € Ko(CX (Fs, Fl; @)).
The Connes-Chern character then extends to the relative case
ch: KO(CZO(FSstIaq))) - HC*(M/F7M//F1790)7

with the obvious definition (see [BHO8], Theorem 3.2 for the notation below and more precise details),

ch([e,&]) = [Tr (eexp<_é§e)2)) ,Tr<e’exp (_(56/)2»] e H*(M/F,M'/F';y).

T 2im

Definition 3.3. Suppose the parametrices Q; and Q have ® compatible remainders, so with ® compatible
operators Ay and A,. Then the relative Connes-Chern character of Ind, (D, D’) is given by

a0, ~ [1e (s (Z02)) 1oy (“U5))] < mzanim

The class ch(Ind,(D,D’)) is clearly well defined due to its independence of the ®-compatible pair of
finite propagation parametrices. This is proved below, see Theorem 5.5, where we also point out that it is
independent of the parameter t.
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4. FOUR THEOREMS

Our first main theorem is the following extension of a classical Atiyah-Singer Index Theorem. This
theorem is purely local and, as in [BH21], requires bounded geometry.

Denote by [AS(Dr)] the Atiyah-Singer characteristic class for D, and similarly for D’%,. Note that for
large s, the differential forms satisfy AS(Dp) = ¢*(AS(D%)) on Ms, so

(], Ase). [ aswe) e azaarrar o,
F F
Definition 4.1. The relative topological index of (D, D") is,

Ind,(D,D’) = [JFAS(DF)7J

Theorem 4.2. [The Higher Relative Index Theorem] Suppose that (M, F), (M',F'), D and D' are as in
Section 2. In particular, F' and F’ need not be Riemannian. Then,

ch(Ind, (D, D")) = Ind¢(D,D") € HY (M/F,M'/F’; )

In particular, for any closed @-compatible pair (C,C") of holonomy invariant closed Haefliger currents, the
following scalar formula holds

(ch(Indy (D, D')),[C,C']) = lim << L AS(DR) g, O — ¢ L AS(D’F,)|T/\T;,C’>> .

’

AW%ﬂeﬁwmwmm.

s—+00

Denote by P ) the spectral projection for D? for the interval (0,¢). The Novikov-Shubin invariants
NS (D) of D are greater than k > 0 provided that there is 7 > k so that
Tr(P,)) is O(e™) as € — 0.

A Haefliger form ¥ depending on € is O(¢") as ¢ — 0 means that there is a representative ¢ € ¥ defined on
a transversal T, and a constant C' > 0, so that the function on T, ||[¢||r < Ce™ as ¢ — 0. Here | |7 is the
pointwise norm on forms on the transversal T' induced from the metric on M.

Recall that Py is the spectral projection onto the kernel of D?. In general the leafwise operators Po,e)
and Py are not transversely smooth (although they are always leafwise smooth), so that, in general, their
Haefliger traces in A%(M/F) are not defined. When Py is transversely smooth, see [BHO8], Definition 3.8,

_(5(7T7_LPO))2)) c H:(M/F%

T

ch(Py) = ‘It(ﬂ’ipo exp(

and similarly for P}. Here 74 is the grading operator
T+ = diag(15+®E, - IS—®E)~
When P is transversely smooth,

—(0(m+ Po,e)))?

Ch(P(O’E)) = It(’irip(o’e) exp( %m

)« Hzm),

and similarly for P(/o 0 For simplicity of notation, we will uniformly suppress the constant 2i7 in what follows.
As the closed Haefliger differential forms Tr(my Py exp (—(6(m1 Pp))?)) and Tr(x, Pjexp (—(6(. P))?)) are
not  compatible in general, we proceed as follows.

The component of ch(Ind, (D, D’)) in H2*(M/F,M'/F’; ) is denoted ch*(Ind, (D, D’)), and the part of
ch(Ind, (Py) in H?*(M/F) is denoted ch*(P)), and similarly for P.

The following theorem generalizes the main result of [BHO8] to bounded geometry foliations.

Theorem 4.3. [Riemannian Foliation Relative Index Bundle Theorem] Fix 0 < £ < q/2, where q is the
codimension of F' and F'. Assume that:
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o the foliations F' and F’' are Riemannian;

o the leafwise operators Py, P, Po,e) and P(’0 0 (for € sufficiently small) are transversely smooth;

e NS(D) and NS(D’) are greater than ¢.
Then, for 0 < k < ¢, we have in H**(M/F) x H?*(M'/F")

(m x ') ch*(Ind, (D, D)) = (ch¥(Ind, (D)), ch*(Ind,(D"))) = (ch*(Py),ch*(P})).
Remarks 4.4.
(1) If the foliations F and F' are not Riemannian then we can still prove this equality but under the
stronger assumption that NS(D) and NS(D’) be greater than 3q, see [HL99, BH23|.

(2) The examples in [BHW14] show that the conditions on the Novikov-Shubin invariants are the best
possible.

(3) Note that if there are uniform gaps in the spectrums at 0, that is there is € > 0 s0 P o) = P(’0 0= 0,
then P ¢y and P(’0 o are transversely smooth and the Novikov-Shubin invariants are infinite. For top
dimensional foliations, i.e. TF = TM, these special cases were studied for instance in [Vi67, Do87].

Combining Theorem 4.2 and Theorem 4.3, we immediately deduce the following important corollary.

Theorem 4.5. Under the assumptions of Theorem 4.3, assume furthermore that Py = P} =0, then
(] ase). [ aswr)) = 00 i szou/r) < m200/F)
F F

So the vanishing conclusion of the previous theorem holds in particular when there exists € > 0 such that

P[O,e) =0 and P[/076) =0.

Denote by w e C®(A*v*) and w’ € C*(A*1'*) closed bounded holonomy invariant differential forms on
M and M’ which are ¢ compatible. For simplicity, we will assume that w and w’ are ¢ compatible on Vi
and Vj,,. These determine ¢ compatible closed bounded Haefliger forms on T, denoted wr and w/.,. Recall
that dz is the global volume form on M.

Theorem 4.6. [Higher Relative Index Pairing Theorem] In addition to the assumptions in Theorem 4.3,
assume the following:

e for e sufficiently small, Py . satisfies J tr(Ppo,e))dr < o0, and similarly for P[’O o
" ;
e M, and so also M’', has sub-exponential growth.

Then, for any homogeneous w € CP(A9=2kv*) and W' € CP(A9=2k0') as above, (0 < k < (),

J ch(Py) A wr and J ch(P}) A wh are well defined complex numbers,
T ’

and
[ enmy nwr = [ ey nan = | [ ason) [ aswp)|.forwr )

Remarks 4.7.

(1) Since the pair of Connes-Chern characters of Py and P} is usually not @-compatible, the previous
theorem is totally new and we cannot deduce it from any absolute version of the index bundle theorem.
This is compatible with the classical relative index theorem.

(2) The theorem also holds for appropriate closed ¢ compatible closed holonomy invariant currents, but
this more general statement will not be needed for our applications.

(3) We shall see in Section 6 that the finite integral assumptions are satisfied when the zero-th order
operator RE defined there in the Bochner formula is strictly positive near infinity. As RE is locally
defined, this means that RE; is also strictly positive near infinity.

(4) The growth condition is a technical assumption which simplifies the proof, it can be weakened as
explained in Remark 5.7
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(5) The main theorem in [BH21] recovers the Gromov-Lawson relative index theorem in full generality
for bounded geometry manifolds, which correspond to top-dimensional foliations. Our results here
require more conditions to deal with the higher components of the Connes-Chern character, and it
only recovers the Gromouv-Lawson results for sub-exponential bounded geometry manifolds. Recall
that in the top-dimensional case, Gromov-Lawson show that there is € > 0 so that Py = 0, and

J tr(Py)dx < o0, so all the other assumptions of Theorems 4.3 and 4.6 are fulfilled.
M

5. PROOFS OF THE THEOREMS

This section is devoted to the proofs of Theorems 4.2, 4.3, 4.5 and 4.6. The proofs are rather technical
and have been split into many intermediate lemmas and propositions. We shall first prove Theorem 4.2 and
then later on Theorems 4.3 and 4.5, and eventually we shall end this section by the proof of Theorem 4.6.

Recall the following construction from [BH21]. Denote the Fourier Transform of a complex valued function
g by g and FT(g), and its inverse transform FT~!(g) by §. If h is also a complex function, denote the
convolution of g and h by g * h. Set gx(z) = g(Az), for non-zero A € R*. We have the following facts:

FT(gy) = %FT(g)%; FT(g*h) =2rnFT(g)FT(h); and FT(3) = FT~*(3) = g, if g is even.

Fix a smooth even non-negative function ¢ supported in [—1,1], which equals 1 on [—1/4,1/4], is non-

A~

increasing on R, and whose integral over R is 1. Note that FT'(¢)) = 1 since 1 is even. The family %1/)%
is an approximate identity when acting on a Schwartz function f by convolution, since, up to the constant
V27 which we systematically ignore,

= D) = FT W) = F - .
in the Schwartz topology as ¢ — 0. Denote as usual by || - || s the norm of an operator acting from the r
Sobolev space to the s Sobolev space. Then more is true.

Vi xf = FT Y FT(

Lemma 5.1. Suppose that 1 : Ry — Ry, with p(t) < Cpt? or p(t) = Cpt~? near 0, where p > 0 and Cp, > 0.
Then, for any Schwartz function f,

. 1~
%E% <[tw\}Z *f]u(t) - fﬂ(t)) -
in the Schwartz topology.

Thus for all r,s,
1 ~
li — 1 * D) — D
| ] R

so the differences of their Schwartz kernels converge uniformly to 0 pointwise.

r,s = Oa

Proof. The last statement follows from standard Sobolev theory given the first. Thus we need only prove
that the difference of the Fourier transforms goes to zero in the Schwartz topology. But,

~

A 1
o (L/#"&z " ]m)) ~ T uo ] = oyt Ovaue = V-

Now, 1 /7/,,)(2) —11is 0 for |2| < u(t)/4y/t and constant for |z| > pu(t)/v/t, so all its derivatives are zero on
these subsets. In addition, for all non-negative n, there is a constant C,, so that
a’I’L

| 5on v (2) = DI < Cu(VE/ult))"

Thus, we have

o1 -
||Z"7m [ (¥ _1)] lloo = sup
0z | p(t) T VO |21 0(0)/(4v/D)

v = <
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m k N
p |n 3 Coat Bt 2o [ f ](@' -

_1
1=/ | iZb ozF | pu(t) " #®
. Con WA/ ()~ sup |2 O (/)| =
k=0 |z[=p(t)/(4v/1)

m
> ok VO™ ()~ sup |z
k=0 ‘Z|>1/(4\/Z)

Since f, so also f, is Schwartz, for any non-negative k € Z, the function z — 2" f (k) (2) is Schwartz. But
for any Schwartz function g, any N > 0 (N < 0 is trivial) and any n > 0, }in(l) t Nsup |g(z)| = 0. Thus, if

B
wu(t) < Cpt? or p(t) = Cpt~P near 0,
B N A
}l_f}(l)HZ o [M(t) ﬁ(ﬂ&/z/u(t) - 1)} |l = 0. .

Define the functions «(t) and 5(t) as follows. Both have domains (0, 1), and are smooth. «(t) = ¢ near 0,
and «(t) = 1 —t near 1, it is increasing on (0, 1/2] and symmetric about ¢ = 1/2. § is an increasing function,
with 8 =t near 0, and 8(¢) = (1 —t)~! near 1.

Set e(z) = e~*"/2, and for t € (0, 1), set

Remark 5.2. By Lemma 5.1, we have,
lim (Xt(z) — e—tzz/Q) - 0 = lim (Xt<z) _ (3—22/(2(1—t)))7

t—0

in the Schwartz topology. In addition, the limit ast — 0 of the Schwartz kernel of x*(D) — e~tD*/2 and the
limit as t — 1 of the Schwartz kernel of x*(D) — e=D*/20=1) potp, converge uniformly pointwise to zero.

Lemma 5.3. x*(D) has finite propagation < /B(t)/a(t).

Proof. Since € = e, we have that up to a constant,

1 -~
FT(ﬁ’(/}ﬁ *6) = ’(/Jm@.

In fact, up to a constant,
X'(D) = FTH Y el (VB()D) = fR V(v (t)€)e(§) cos(§+/B(t) D) de,
since wme is even. Setting n = /«a(t)¢ gives,

XD) = s | vletn/al) costr BOOD)n

The operator cos(n/B(t)/a(t)D) has propagation < |n1/B(t)/a(t)], see [Ch73, R87]. Thus x*(D) has finite

propagation < 4/8(t)/a(t), which near 0 is < 1, while near 1 it is < (1 —¢)™!, so may go to infinity as
t— 1. O

As D is an odd super operator, we may write

1t

D = [ DO+ %_ ], and we set Q; = (1—Xt(02)_1xt(z))(D) = (1_Xt(2)2_ X <Z)z)(D)
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We claim that @, is a smooth family of leafwise parametrices for D with finite propagation ® compatible
remainders, namely the even operators

S; = Istge — Qi D" and Ry = Is-gp—D7Q;.
There are similar relations for D~.
The main step in the proof of Theorem 4.2 is the following expected independent result.
Proposition 5.4. For 0 <t <1, set, as in [BH21],

St Qi (R, + R?) 52 SQ7 (1+ Ry)
At = = )
RyD* —R? R,D* —R?

a form which is more useful here. Then Ay and §A;, so also (§A;)?, have finite propagations which are
bounded by multiples of A/B(t)/a(t), are smooth in all variables, and are bounded leafwise smoothing opera-
tors.

Proof. We deal with A; first. Note that S; = x*(0)~1x!(D) acting on S* ® E, and similarly for R; acting
on 8~ ® E. They both have finite propagations, and by Theorem 2.1, [R87], they are both smooth in
all variables. It follows immediately that S?, R, R;D*, S; and R; are also smooth in all variables. Since
propagation is additive for compositions, they all have finite propagations, which are bounded by multiples of
A/B(t)/a(t). Finally, since x!(z) is a Schwartz function, x*(D) and x*(D)D are bounded leafwise smoothing
operators.

To deal with @ , we show that
(- X0~ (2)) D)
D—D+

has finite propagation which is bounded by a multiple of 4/5(t)/a(t), so also does Q; = @t(D_DJ“)D_7
and that S;@Q; is smooth in all variables and is a bounded leafwise smoothing operator.

Q.(D~D*) =

For u € (0, 1], set

X(z) = l (2),

Lo 1
—— 1 €u
Va(t) Ve® 70
and

1— Xt,u 0)—1Xt,u 2 B Xt,u O) _ Xt,u P
(?t,u(z) _ (22 ( ) _ Xt,u(o) 1 ( — ( )

Notice that x*°(z) and §*°(z) are also well defined, and that for fixed z, the resulting function is continuous
on [0, 1] and smooth on (0,1). Since

tau _ -1 1 o L %
YU (z) = FT (FT(mwm

eu> YW B(t)z),
we have,

(e = | al) e costoyBO) = | wiv/a@un)e " cosu/Bi):)d.
and,

X(0) = wa«/a(t)uy)e*f/?dy.
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The latter is smooth in ¢t and u, positive, and bounded by J eﬂﬁ/zdy. Thus x“*(0)~! is smooth on
R
(0,1) x (0,1). In addition,

0
—=- (X""(0)7) = f v (Vatyuy)v/a(tye v 2dy,

so has the same properties as x"*(0)~!.

Next, we have

Rl R e

So,

T - o) [ vv/atue yfz/a(lfcos(uzgmz»

JV 0/ (va@uy)ye 24 Cosuy” Dy +
f\/—w\/— _y2/282n uy«/

For t and z fixed, this is a smooth function of u.

Note that x*°(z) is well defined and equals J e’/ 2dy, which is independent of z. Thus, §*°(z) is also
R
well defined and equals 0. As ¢*'(D)" = Q;(D~ D), we have

~ 1 a’q't,u +

w0 =) o) - | [ Ty
0 u

o

(D) has finite propagation which is bounded by a multiple of 4/8(t)/a(t). Since

U
x5%(0) and % (Xt’“(O)_l) are independent of z, they give multiples of the identity map when evaluated at D,
t,u tu
x"(z) — x""(0)
22 ’

so we need to show that

so have propagation zero and may be disregarded. Thus, we may assume that §*“(z) =

Since x**(z) is an even function, it has Taylor expansion in z with integral remainder

t,u\(2) 24 1
Xt’u<2:) _ Xt,u(o) + (X )2 (0)22 + FJ‘ (1—v)3(xt’“)(4)(vz)dv.

0
tau _ Ltu 0
So the Taylor expansion in z with integral remainder of ¢"“(z) = X(Z)—2><() is
z
t,au)(2) 0 2 rl
X z
i2) = B0 S e @ oz,
0

The term Z((x**)(?(0)) is independent of z, so, as above, it may be disregarded. Using the fact that

¥(w2) = [ w/alin) pe 0 costy/BlE)ee) s
we have

() D (0z) = fﬂ’\ﬁy 244 —y/%cosyruz -

B(t)*v'pey | (V/B(t)vz),

~ 1 -

* B(t)*vteld tz) = | — *
Sk B | (VB) = | i
where p is a finite polynomial in u and z, since e, (z) = e~%"#*/2. Note carefully that £ (x**)®(vz) has the
same form.
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As pe, is a Schwartz function for non-zero u, so is (x»*)®* (vD), and the now usual argument shows
~tu

0
that it has propagation < v4/8(t)/a(t). As D? has zero propagation, Z—(D) has propagation which is a
ou
multiple of 4/3(¢)/a(t), so also do Q; and Q) .

For smoothness and bounded leafwise smoothing of S;Q); , first note that

[ £ (L) 0 - ([ £ ).

and S; has these properties. Finally, any positive power of D times an operator of the form

I~ 2,4
* B(t)“v pe, B(t)vD
[T(t)w\/ﬁ B(t) p](v() )
has these properties, (the function in the brackets is Schwartz), see for instance Theorem 2.1, [R87]. Thus,

1 D2 1 a
f ?f (1—u)3%(xtvU)<4>(vD)dvdu
0 0

has these properties. Therefore, 5;Q); has all the requisite properties, so A; does also.

The operator §A; is essentially a polynomial in A, 0, (A:) = [V¥, A¢], and @ = (V¥)2. Both V” and
are smooth and bounded in all variables and are differential operators. Since A; has finite propagation and
is smooth in all variables, 4; and (§A4;)? also have finite propagations and are smooth in all variables.

It remains to show that §A; is bounded leafwise smoothing, but this is a routine exercise. We give some
details for the convenience of the reader. Every term of §A; contains either A;, 0,(A;), or both. As A;
is bounded leafwise smoothing, we need only show that 0,(A;) = [V¥, A;] is bounded leafwise smoothing,
since 6 composed with a bounded leafwise smoothing operator is bounded leafwise smoothing. As d, is a
derivation, we need only show that ¢, applied to the individual elements of A;, save DT, yields a bounded
leafwise smoothing operator.

First,

3, (x'(D)) = 5u< )e(mDy)zﬂdy) -

1~
JR «/a(t)d}\/i(f» <
1

_lj ! Vs (y)f e~ (=) WBOD=)*/25 ((\/B(#)D — y))?)e~*WEOD=* 2y, gy

2 Jr \Ja(t) Ve 0

For the second equality, we refer to the proof of Proposition 3.5 of [H95], which is an extension of Proposition
2.8 of [B86] to foliations with Hausdorff holonomy groupoids. Now, 0,((1/B(t)D — y)?) is a differential
operator with smooth bounded coefficients, so 9, (x*(D)) has the same properties as x*(D), i.e. it is bounded
and leafwise smoothing. Thus 0, (S:) and 0, (R;) are bounded leafwise smoothing. Since 0, (D) is a differential
operator with smooth bounded coefficients, R.0, (D) is also bounded leafwise smoothing. Finally, as Q; =
Q+(D~D*)D~, it suffices to show that S;0,(Q:(D~D%)) is bounded leafwise smoothing. As above, this

follows if we show that Stﬁl,(ﬂ(D)) is bounded leafwise smoothing. For the terms

ou
| 2
S0, (O PO)D)) = 2 (£ (6EP(0) 81, and s,

1
0
this is obvious. As noted above, the term 0, (J (1- v)3au(xt’“)(4)(vD)dv) has the form
0

1 1 - ) B
oy (L (1-v)? lmwm * B(t) v‘*peu] (Vﬂ(t)vD)dv) =
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8V<J;(1103J;(\ﬁ;a)ivéu)@D)Bﬁ)%ﬁpﬁu\/ﬂﬁﬁd?zﬂeu“ﬁ%””D”QQdydv>-

The argument used for 0, (x*(D)) is also valid here, so we have the result. O

We have the same results for D’, and since A; and A} are constructed directly from D and D’ and have finite
propagation, they are ® compatible, as are §4; and §A}. Thus Tr (A; exp(—(64;)?) and Tr (A} exp(—(0A})?)
are  compatible. Now Theorem 4.2 will be deduced right away from the following
Theorem 5.5. Fort e (0,1), the ¢ compatible Haefliger forms Tr (A; exp(—(0A¢)?) and Tr (A} exp(—(54;)?)
are closed. In addition,

[Tr (A exp(—(64:)%)), Tr (Aj exp(—(6A})?))] € HX(M/F,M'/F'; )
is independent of t. So ch(Ind, (D, D")) is well defined, and
ch(Ind, (D, D")) = Ind,(D, D).

Proof. The Haefliger forms are closed by Proposition 3.1, which also gives that % Tr (At exp(—(éAt)Q) =
dg Wy, and & Tr (A} exp(—(0A4})?) = dgW/. To finish the proof of ¢ independence, we need only show that
Wy and W can be chosen to be ¢ compatible.

Recall that 74 is the grading operator 7+ = diag(ls+gm, —ls-@r) = ™+ — 7—, and similarly for 7.
When we identify the spin bundles and Dirac operators off compact subspaces, we also identify these gradings,
so they are ® compatible. In particular, 7_ and 7/ are ® compatible. Note that A; + 7_ and A} + 7’ are
idempotents. Using this fact, in [BH04], Corrigendum, it is shown that

d

pr (Tr ((A¢ + m_) exp(—(6(As + 7-))%)) , Tr ((A; + 7)) exp(—(6(4; + 7)?))) = du(Wy, W),
where (Wi, W/) € A¥(M/F,M’'/F’; ¢), in particular they are ¢ compatible. This follows from the fact that
the operators d,, 6,0, and ¢ all preserve ® compatability, and that W; and W] are constructed using those
operators, Ay, A}, 7_, 7" (and the identities T and I'), and their derivatives with respect to t. Since A;, A},
n_, 7, Tand I' are ® compatible, W; and W/ are ¢ compatible. As

di Tr ((A¢ + 7—) exp(—(6(A; + m)%) = dgTx (A} + 7" ) exp(—(6(A} + 7r’_)2)) = 0,
it follows that
[Tr ((A¢ + 7-) exp(—(0(A¢ + m-))?)) , Tr ((A} + 7") exp(—(0(A} + ©)%))]| € HF(M/F,M'/F';¢)
is independent of ¢.

Next, using Proposition 3.5 and Corollary 3.7 of [BH08|, with the reasoning above, (that is: all the
operators used in the proofs preserve ® compatibility, so if the input is ¢ compatible, the output is ¢
compatible), shows that

[Tr (At exp(—(éAt)2)) ,Tr (A; exp(—((sA;)Q))] =
[Tr ((A¢ + 7—) exp(—(6(Ar + 7-))?)) , Tr ((A} + ) exp(—(6(A; + ©)?))]| € HX(M/F,M'/F'; ).
For the equality ch(Ind, (D, D’)) = Ind;(D, D'), standard techniques used in [HL90, BHOS8], coupled with

Remark 5.2, show that
lim tr (4, exp(—(34,)2)) = AS(Dr),
uniformly pointwise on M, and we have the same for A}. As Tr (A exp(—(64;)?)) involves integrating over

compact subsets, we may interchange the limit with the integration. |

So we have Theorem 4.2.

Note that so far, we have not used the assumptions in Theorem 4.3 or 4.6. We now move on to the proofs
of Theorems 4.3 and 4.5. For the proof of Theorem 4.3, we need to show that

}gr% Tr (A exp(—(6A)%)) = Tr (mePoexp(—(0(m1F))?)) -
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Recall that A; is only defined for 0 < t < 1, that Py is the projection onto the kernel of D?, and that
Ay exp(—(5A;)?) has propagation bounded by ca/B(t)/a(t) for some c4 € RT. We recall below that

gri kP aiPlo.o) (T T) = kpy ri PP (T, T) = krypy(T,T),
uniformly pointwise which is sufficient for our purposes.
Denote by g[c o) the characteristic function for the interval [e, o).
Lemma 5.6. For { a non-neqative integer, there exists a constant Cp > 0 depending only on ¢, such that
\|zeg[67oo)xt(z)g[€7oo)\|oo < Cpe™ /04t e PO _, 0, exponentially ast — 1.
Proof. First note that,

et areolle < 11 tece) (X' = € m) ol + 12 etcme g trcm o <
—e2?
||Z£Q[E,OO) (Xt - €m) Q[e,w)HOO + cle 5(75)/2’

since the maximum for the second term for ¢ close enough to 1 will occur at z = €, as §(t) —> o as t — 1.
Next, ||2°0fe,00) (Xt —e ﬁ(t)) Ole,0)||oo is bounded by ||z* (Xt —e B(t)) |0, which in turn is bounded by
the L' norm of FT(z* (xt — em)). Up to a constant depending only on /£,

FT(:! (Xt’e ﬂ(t))) - %FT (Xt’e mt)) -

o* 1 1 - 1
o ﬂ@)Fﬂﬂ(x/au>¢”v@*0*e>lhﬂﬂt"\/ﬂa>e“~@W”

ot 1 o o )
M( B(t) <¢m€)1/m F 1/\/7> ( 50 (wm_l)> _

SN TN oA W
?J”w(rm )MW )
1

a(t)/B(t)’
a constant depending only on ¢. Thus the L' norm of FT (zé (Xt — e\/%)) is bounded by a constant,

The function m 1=0on|z| < and the norms of its derivatives are globally bounded by

depending only on ¢, times

¢ ¢
ok dz dz
> (el = 3 e/, /7B (e ) —e =
o L|>4 SR 2 (eyy) VB St (c1v7) VB()
¢ ‘
> VB, 2 e < e [ S (1), o) ez,
k=0"171> 17y R =0
Here py is a polynomial of degree k in both variables, so the integral is bounded by a constant depending
only on £. Since a(t) — 0 and §(t) — o as t — 1, we have the lemma. O

Denote by Q. the spectral projection for D* for the interval [e,c0), that is Qc = 0[c0)(D?). Since
I = Ppy,¢) + Qc, the operators Q. and 6Q. are transversely smooth and bounded, as the other two operators
are because of our assumption of transverse smoothness. The operators Plg ), Q¢, and A; all commute as
they are functions of D, so

Ay exp (—(6At)2) = Pio,)At Pjo,¢) exp (—(5At)2) + Q.AQ. exp (—(6At)2) )
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(040"
Recall that §A; is nilpotent, in particular, exp (—(5A;)?) = Z —

k=0
immediately that || D*Q.x*(D)Q.|| — 0 exponentially as t — 1. The fact that every element of A; contains
at least one x*(D), and that all the other terms are bounded, save D+ (but R; D™ is covered by Lemma 5.6),
give that || D*Q.A;Q.|| — 0 exponentially as t — 1. Thus, [|[D*Q.AQ. exp (—(64;)?) || — 0 exponentially
as t — 1. It follows from the proof of Theorem 2.3.9 and the statement of Theorem 2.3.13, both of [HL90],
that the Schwartz kernel of Q.A;Q. exp (—((5At)2) — 0 pointwise uniformly exponentially as ¢ — 1. So,

lim Tr Q. A/ Qe exp (—(341)?) ) = 0,

in A*¥(M/F) and similarly for Q. A;Q.. Thus we may ignore those terms. Note carefully that this is true for
fized € > 0.

, see [BHO8]. Lemma 5.6 gives

For the terms coming from Pyg APy, note that for ¢ near 1, 209 ¢ (z) dominates oo )X 0[0,¢)(2)-
This follows from Remark 5.2, since lim_,1 x*(z) = e=*/20=1) in the Schwartz topology, and for ¢ near 1,
sup, e~ /20-1) — 1, Thus, for £ a fixed positive integer and for ¢ near 1,

265\|g[07£)(z)||00 = 2||ZKQ[0,e)(Z)||oo = ‘|Z€Q[0,e)XtQ[0,e)(z)||oo-
The fact that ||6A4,|| and ||exp (—(6A¢)?) || are bounded and the argument above imply that a multiple of
tr (]fp[oye) (T, E)) dominates || tr (kP[OYE)AtP[Oﬁe) exp(—(544)?) (T, E)) ||. Since we can ignore Q. A:Q. exp (—(514,5)2)7

the Dominated Convergence Theorem implies

lim T (4 exp (—(040)2) ) = lim Tr(Ppo.0 A4 Plo.oy exp (—(64,)%) ) =

lim | tr (P[o,E)AtP[o,e) exp (—((5At)2)> = J- lim tr(P[()’e)AtP[O’e) exp (—((5At)2)),
F F

t—1 t—1

and similarly for Aj.

The proof of Theorem 4.2 in [BHO8], which requires that F' be Riemannian, shows that, under our
conditions on the Novikov-Shubin invariants, in degree 2k for 0 < 2k < 2/ we have,

lim(Pio.c) At Po.e) = Ploom+FoPoe = m=l,

uniformly pointwise, and similarly for Aj. So, in degree 2k for 0 < 2k < 2¢,

J %in%tr(P[O)e)AtP[o,e) exp (f(éAt)2)> = J tr(wiPO exp (—(5(774_rP0))2)) = chy(P).
Ft= F
So, we have proven Theorems 4.3 and 4.5.
It remains to prove Theorem 4.6, and we thus need to compute the limits as t — 0 and ¢t — 1 of
lim j Tr (Apexp(—(6A¢)?) Awp — J Tr (A exp(—(6A})%) AWl | .
SO\ JrT, T'\T!

For lim,_,o, we may assume that the two integrands agree on M(0) = Vis and M’(0) = Vj,, (actually on
fixed penumbras). Then we have,

lim lim J Tr (A exp(—(644)°) Awr — J Tr (A} exp(—(5A2)2)> A | =
t—=0s—0 \ JpT, TI\T!

~M(0) 'N\M’(0)

}iﬁr% <JM tr (Ayexp(—(6A¢)%) Aw — fM tr (A eXp(—(5A2)2)) A w’) =

[ aswrnw= [ aswraw = ((|[ ase). [ asoe)| @) ).

K’
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As above, limy_,q tr (4, exp(—(éAt)2)> = AS(Dp), uniformly pointwise on M, and we have the same for

A,. As we are integrating over compact subsets, we may interchange the lim;_,o with the integrations.

For lim;_,1, note that the operators have propagations bounded by ca+/8(t)/a(t) for some c4 € RT. As
they are ® compatible, we may assume that the two integrands agree on T, (;_4)-1 and TC’A(l_t),l. Thus,

lim lim J Tr (At exp(—((SAt)Q) Awp — ‘[ Tr (A:e eXp(—(5A2)2)> Awhp | =
t—1 s—00 T, T'\T]

lim f Tr (Ayexp(—(0Ay)?) Awp — f Tr (4] exp(—(éA;)Q)) A Wi
t=1\ Jpor N

ca(l—t)—1 cqa(1—t)—1

Since the Schwartz kernel of Q. A;Q. exp (—(5At)2) — 0 pointwise exponentially as ¢t — 1, the fact that wr
is bounded, and the assumption that M has sub-exponential growth, give that

tlgg (JT\T Tr(QeAth exp (_(51415)2)) A LUT> - Oa

ca(l—t)—1

and similarly for QL A,Q".. Thus we may ignore those terms.

Next, we have that for ¢ near 1, a multiple of J tr (kp[o‘e)) dominates
M

|| JM tr (kP[o,e)AtP[o,e) eXP(—(5At)2)> | |

But this latter equals HJ tr(k:p[o At Ppo.o) exp(—(5A1)2) P E))||, since J tr = J J tr = J Tr, and Tr is a
M ' " ' M TJF T

trace. Thus, we need only show that a multiple of
tr (Pjo,¢) (%, 7)) dominates || tr (P[O’S)AtP[oﬁ) exp (—(64;)?) Ppo,o) (7, T))H

This is due to the fact that, for a smoothing operator A, tr(ka((Z,T)) = >,(A(d7 ), 07 ). Here v; is an
orthonormal basis of the fiber over the point Z, and §f is the Dirac delta section of the bundle supported
at T. Furthermore, everything is well defined on bounded geometry manifolds. See, for example, [HLIO]
for details of such arguments. As the operators we are concerned with are bounded leafwise smoothing, we
have,

1{Ppo0,e)At Plo,¢) exp (—(8A¢)%) Ppo.e)(6%.), Se )|l = [[{AtPjoe) exp (—(64¢)?) Plo,e)(07,), Plo,ey (05 Il <

[|AiProc) exp (= (040)%) [ [ Pro,e) (6517 = [1A¢Pro.e) exp (—(04:)%) [| (Pro,e) (65,), 65, )-
Summing over 4, gives the result.

The fact that ||w]|| is bounded and the assumption that J tr (P[O,e)) dr < oo, imply that
M

f tr (Po) lwllde < o0,
M

Thus
J ||tr<P[0,e)AtP[O,e) €Xp (_(5At)2) (faf)> A LU|| dr < 0,
M

so the integral J tr (P[O7E)AtP[07€) exp (—(5At)2)) A w converges. Notice that
M

J‘ tr(P[O,e)AtP[(),e) exp (—(5At)2)) ANW = J Tr(P[O,e)AtP[O,e) exp (—(5At)2)> AN Wr.
M T
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This fact, the fact that we can ignore Q. A;Q. exp (f(éAt)2), and the Dominated Convergence Theorem
imply,

lim Tr(At exp (—(5At)2)) AWp = thrr%f
T

TI‘(P[O e)At [0,€) exp( (5At)2)) ANwp =
e, Ny

\T (1 t)— 1
lim Tr(P[O)G)AtP[Oye) exp (—(5At)2)> Awp = f lim Tr(P[07E)AtP[O)€) exp (—(5At)2)) A wr,
t—1 Jp Tt—1

and similarly for A}. The proof of Theorem 4.2 in [BHO8| shows that, as above, under our conditions on the
Novikov-Shubin invariants in Theorem 4.6,

%gr% Tr(At exp (—(5At)2)) Awp = TI‘(ﬂ'J_rPo exp (—(5(7riP0))2)) A wr,

and similarly for A}. So,

lim J Tr( Agexp (7(5At)2)> /\waJ\ Tr(A' exp (f(éA;)Q)) Awp | =
T\T, Al—t)—1 T’\TC’ 101

JT Tr(wiPo exp (_(5(7TiP0))2)> Awp — J / TI‘(ﬂ'lJ_rPé exp (—(5(7rﬁ_rP(’)))2)) A Wy =

((cha(Po), cha(Fp)), (wr, wr))-
That is, {chInd, (D, D"), [wr,w |y = {(che(Po), chqe (Fp)), (wr, wh)). So we have proven Theorem 4.6.

Remark 5.7. Note that if M, so also M', grows exponentially, there are constants co,cpr € RT, so that
vol(My) < coe™t. This follows from the Bishop-Gromov inequality. Thus, if we used Lemma 5.6 as above
and integrated over M ~ M B /am We would get an estimate of the form,

(C£6—1/64a(t) +€ee—e25(t)/2)COecMcA B(#)/a(t)

For the proof to work, we need this to — 0 as t — 1. Now ~/S(t)/a(t) =1/a(t), ast — 1. Thus
the two terms must — 0 individually. This only happens if cMcA < mln( /2, 64), That is, the exponential
growth is not too robust.

6. INVERTIBLE NEAR INFINITY OPERATORS
In this section, we assume that (M, F) is as in the first two paragraphs of Section 2.
6.1. Invertibility near infinity. Our new assumption here is that the zero-th order contribution RE in

the Bochner formula defined below is strictly positive on M near infinity. As RE is locally defined, this
implies that the same for RE,.

For the leafwise Dirac operator D = (Dy,), the canonical operator RE on sections of Ey|, is given by
1 &
= 5 Z Rxl,x (©),
where RFis the curvature operator of the Hermitian connection V5 on Ey|y, X1, ..., X, is a local oriented

orthonormal basis of TL, and p(X;) is the Clifford action of X;. Note that R is well defined, smooth, and
that it is globally bounded because of the assumption of bounded geometry. The operators Dy, and RE are
related by the general leafwise Bochner Identity, [LM89]

6.1. D? = (VEEyyEE 4 RE



24 MOULAY TAHAR BENAMEUR AND JAMES L. HEITSCH

As we work on G rather than M, D = r*(Dp) also satisfies Equation 6.1, which, being local, is the same,
namely, D? = V*V + r*(RE). Note that in general, if RE is strictly positive near infinity, r*(RE) is
not, due to the fact that r is not a proper map in general. However, r*(RZX) is G-invariant strictly positive
near infinity off some G-compact subspace, in particular when restricted to M < G, since it coincides with
RE there.

We have the following result from of [BH21]. Note that it does not need Plo,¢] to be transversely smooth.
It does need it to be transversely measurable, which it is by Lemma 4.10 of [BH21].

Theorem 6.2. (Theorem 5.2 of [BH21]) Assume that F admits a holonomy invariant transverse measure A.
Suppose RE is strictly positive near infinity. In particular, we may assume that ko = sup{x € R|RE —x1 >
0 on M ~ Ky} is positive. Then, for 0 < € < Ko,

(fio - Hl)

tr( P T,7))drpdA <
JM I'( [0,6](x7$)) TR (KZQ—E)

f tr(P[07E](f,f))dmpdA < 00,
K

where k1 = sup{k € R|RE — k1> 0 on M}.

Note that if F' is Riemannian, it does admit holonomy invariant transverse measures, and we can insure
that dx is of the form dxpdA.

Proof. The proof of Theorem 5.2 in [BH21] works equally well here, mutatis mutandis. The changes in
notation needed are

5 L ~
DL - Dv kP[07g] (ZL',.’,C) - kPl:O,g] ($7$), L - LIa JL e 0I7 f - J~ )
L x
and so on. O

Proposition 5.5 in [BH21] still holds here, namely the following.

Proposition 6.3. Suppose the curvature operator Rg is strictly positive on M, that is k1 > 0, so Rg >kl
on M. Then for 0 < e < k1, P =0.

The relationship with the index bundle is not insured in general, [BHW14], and one needs to impose
additional spectral assumptions. We have, as in [BH21], the following immediate corollaries of Theorems
4.3, 4.6 and 6.2 which relate the pairings there to pairings with the index bundles.

Theorem 6.4. Suppose that (M, F,Kpr) and (M', F', Kpp) are bounded geometry foliations which are iden-
tified outside the compact subspaces Ky and Ky as before and let (w,w’) be a @-compatible pair of closed
holonomy invariant forms of degree £ < q. Assume the following:

e M, and so also M’', has sub-exponential growth, and F and F' are Riemannian;

e the leafwise operators Py, Py, P, and P(’ ) (for e sufficiently small) are transversely smooth;

e NS(D) and NS(D') are greater than (;

e RE. s0 also Rf:;, is strictly positive near infinity in M and M’ respectively.
Then

0,e

<[ [ aswe. | AS(DF»] Jwrswip]) = ((ch(P), ch(BL), (wrs ).
F F/

Recall that (chy(Pp),chq(F)) is not an element of A*(M/F,M'/F’;¢) in general. Since AS(Dp) and
AS(Dp) are ¢ compatible, AS(Dr) A w and AS(D%,) A w are ¢ compatible, say off the compact subsets K
and K’, and then we have

<[JF AS(Dp), - AS(DF’)] Jwr, Wi ]y = f’% AS(Dp) nw — . AS(Dpr) AW

For a single foliated manifold we have the following, compare with [GL83].
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Theorem 6.5. Suppose that E and E’ are two Clifford bundles over the foliated manifold (M, F), which
are isomorphic off the compact subset Ky, with associated Dirac operators D and D'. Let w be a bounded
closed holonomy invariant transverse form (or current) of degree £ < q. Suppose that

M has sub-exponential growth, and F' is Riemannian,;
the leafwise operators Py, Py, P,y and P(lo,e) (for € sufficiently small) are transversely smooth;
min(NS(D), NS(D")) is greater than {;
e RE and hence also RI{”:/, is strictly positive near infinity.
Then, since ch(E) = ch(E") off K,

{ch(Ind, (D, D")), [wr,wr]) = J;C (AS(Dp)(ch(E) — ch(E")) A w = {(ch(Py),ch(P)), (wr,wr))-
M

Remark 6.6. Note that if E is a leafwise almost flat bundle (actually a K-theory class) on M, then we

may twist the operators D and D' by Ey to get the operators Dg, and D, . Uniform positivity near infinity

is preserved when this is done, so we have the extension of Theorem 6.5 to Dg, and D}El. Theorem 6.4 also

extends in this way if we have leafwise almost flat bundles By — M and E} — M’ which are isomorphic

near infinity.

6.2. Reflective foliations. We now relate our definition of the relative index to the cut-and-paste definition
considered in Section 4 of [GL83]. For this paper to be self-contained, we paraphrase from [BH21]. For
simplicity, we assume that w and w’ are ¢ compatible off Kp; and K.

We say that (M, F,Kys) as above is reflective if there exists a compact submanifold H < M such that
Ky < H and OH is transverse to F.

So F is also reflective with corresponding H’. Then there is 6 > 0, and a neighborhood of 0H which is
diffeomorphic to 0H x [—d,d], and so that F restricted to 0H x [—d,d] has leaves of the form (L n 0H) x
[—9,6]. We may assume that the foliation preserving diffeomorphism ¢ extends to 0H x [—4,d], and that
©(0H x [—4,4]) is diffeomorphic to dH' x [—4, §], and that it has the same properties as 0H x [—4,]. Then
we may form the compact foliated manifold

M = Hug H,

where ¢ : 0H x [—4,0] — 0H' x [—0,d] is given by @(z,s) = (¢(z), —s). We change the orientation of
F’ to the opposite of what it was originally. The resulting foliation F' us F” is denoted F'. Denote by 7 :
0H x [—0,0] — 0H the projection and note that E |sp«[—s,5] ~ 7*(E|on), and TF |gpx[—s,5] = 7*(T'F |om).
(Note that dim(TF |sg) = dim(TF), not dim(TF) —1 = dim F|sz.) We may assume that V and Dp
are preserved under the maps (z,s) — (v,—s) and E, s — E(; 5. This implies that Dp and D%, are
identified under the glueing map. In addition, w and ' fit together, giving &. This construction is the exact
translation of the Gromov-Lawson construction to foliations.

Finally, denote the leafwise operator on F by ﬁﬁ (and its associated projections by 130 and ]3(075)). Then
we have the following extension of Alain Connes’ celebrated index theorem, see [C79], which is very useful
in Section 7.

Theorem 6.7. With the above notations, suppose that F (and so also F') is reflective, but not necessarily
Riemannian. Suppose further that (C,C") is a compatible near infinity pair of closed holonomy invariant
currents, with associated current C. Then

{ch(Indy (D, D), (C,C")) = {ch(Indy(D3)),C).
Proof. We prove the case where (C,C") = [wr,w/.], since it is notationally simpler. The general case is left

to the reader. Theorems 4.2 and 5.5 give

{ch(Ind, (D, D")), [wr,wp]) = AS(Dp) A w — AS(D/) AW,

!
Km K
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since the differential forms AS(Dp) A w and AS(D%/) A w’ are ¢ compatible off Ky, and K. Next,

AS(Df) A w — AS(Dp) AW = f AS(Dp) Aw—| AS(Dw) Aw' =
Kam K:/JVI’ H H'

A~

JA AS(Dp) A& = <ﬁ AS(Dp),&z) = (ch(Indy(Dp)), &z
M F

The last equality is from Theorem 6.2 of [BH04] applied to the closed foliated manifold (M, F'). The others
are obvious. 0

Note that, since the integrands AS(Dp) A w and AS(D’%) A w’ are ¢ compatible off Kp; and K, this
result is actually independent of the choice of the transverse compact hypersurface 0 H and for simplicity we
may assume that H = ICp;.

Theorem 6.8. Suppose that (M, F,D), (M',F',D') are as in Theorem 6.7. Suppose furthermore that F
is Riemannian, that Py and Py .y are transversely smooth, and the Novikov-Shubin invariants of Dp are
greater than £/2, for some 0 < £ < q. Then for any £ homogeneous @-compatible pair (w,w’) as before,

(ch(Inda(D, D)), [wr,wi]) = ((ch(Py), &)
Moreover, if we impose on (M, F,D) and (M',F',D’) the assumptions of Theorem 4.6, then we have
{(eh(Po), ch(By)), (wr )y = ((ch(By), Bp).

This is a consequence of Theorem 6.7 using Theorem 4.1 of [BHO8] to deduce the second equality, with
{(ch(Pp),&5) being well defined under our assumptions.

Remark 6.9. This result raises some interesting questions.

(1) Suppose that R, so also Ry, is strictly positive near infinity, then {ch(Fp),wr) and (ch(P})),wr )
ezxist. Under what more general conditions than those in Theorems 4.6 and 6.8 does

{ch(Py),wr) — (ch(Py),wi> = {ch(Pp), )7

(2) In general, suppose that {ch(Py),wr)y—{ch(Py), wh ) — <ch(130),@f> # 0. What can be said about the
geometry or topology of (M, F,D), (M',F',D"), and (M,ﬁ’,f))?
(3) How are the Novikov-Shubin invariants of D and D’ related to those of D?

The previous construction extends to the following more general situation to yield the so called higher
® relative index theorem, see again [GL83]. In particular, we assume that (M, F) and (M’, F’) satisfy the
hypotheses of Theorem 4.6, with the following changes. In particular, M ~ K =V, U Vg and M' ~\ K’ =
VI u Vg, where the unions are disjoint. For this case, ® = (¢, ) is a bundle morphism from F — Vg to
E’' — V{ as in Section 2, our good covers U and U’ are compatible on Vg and VY, and w and " are ¢
compatible on Vg and V. We assume that F' is transverse to dVg, so F” is transverse to dVy. Finally,
we assume that RE and Rgi are strictly positive off K and K’, so we do not need the assumptions on the
integrals being finite.

Next, consider as above the manifold M = (M N\ Vg) ug (M’ \ V), with the foliation
P = (Fluva) vg (F'larvg),

where the orientation on ﬁ’|M\V¢ is the one on F, and that on ﬁ|M/\\4g is the opposite of the one on F”.
We also have the bundle £ — M induced by E and E’, the leafwise operator D 7 induced by Dp and D%,
and the differential form & induced by w and w'.

Because of the positivity off compact subsets, all three operators have finite indices, and we have the
following.
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Theorem 6.10. [The higher foliated ®-index formula/
<ch(Inda(lA))),@7:> = (ch(Ind,(D)),wr)y — {(ch(Ind,(D")),wr ).
The proof follows from our results here, by easily adapting the proof of Theorem 4.35 of [GL83].

7. APPLICATIONS

7.1. Leafwise PSC and the higher Gromov-Lawson invariant. We further extend the Gromov-Lawson
construction in [GL83], Section 3, see also [LM89], IV.7, to get an invariant for the space of PSC metrics on
a foliation F' whose tangent bundle admits a spin structure. We calculate this invariant for a large collection
of spin foliations whose Haefliger A genus is zero, so the results of [BH21] do not apply. Using the higher
index results here, we show that the space of PSC metrics on each of these foliations has infinitely many path
connected components, thus verifying our claims that higher order index theorems allow for the extension of
results for manifolds with non-zero A genus to arbitrary manifolds, and that the higher order terms of the
A genus also carry geometric information.

For simplicity, we assume that M is compact. Denote by M the space of all smooth metrics on F with
the C* topology, and by M < M the subspace of metrics with PSC along the leaves.

Scalar curvature and the so called Atiyah-Singer operator are intimately related. Recall that Sg is the
bundle of spinors along the leaves of F, with the leafwise spin connection V¥. The leafwise Atiyah-Singer
operator is the leafwise spin Dirac operator D9 = (D}f), which acts on Sp, as usual, by

P
Df = ) p(X)Vk,,
i=1
where X3, ..., X, is a local oriented orthonormal basis of T'L, and p(X;) is the Clifford action of X; on the
bundle Sg|L. Denote by « the leafwise scalar curvature of F, that is

P
k= - Z <RXi,Xj (Xi)7Xj>a
ij=1
where R is the curvature operator associated to the metric on the leaves of F. In this case the Bochner
Identity, Equation 6.1, is quite simple, see [LM89], namely

7.1. (D) = (VF)*VF + jr.
Consider the foliation Fr on Mr = M x R with leaves Lr = L x R and with the leafwise volume form

dep x dt. If U is a good cover of M, Ug = {(U,T)) = (U; x (3n —2,3n + 2),T;)| (U;,T;) € U,n € Z} is
a good cover of Mr. Denote by m : Mg — M the projection. Suppose that go,g1 € M{., and (g¢)se[0,1]
is a smooth family in M from gy to g;. On Fg, set G = go +dt?> for t < 0, G = gy + dt? for t > 1, and

G=g;+dt?> for 0 <t <1.

The leafwise spin Dirac operator Dg extends to the leafwise spin Dirac operator Dr on Fg. Following
Gromov-Lawson, [GL83], Equation (3.13), we set

7.2. i(90,01) = ch(Ind,(Dgr)) € HX(Mg/FR).

Theorem 7.3. i(go,g1) depends only on go and g1. If i(go,q1) # 0, then go and g1 are not in the same
path connected component of M.

Proof. Suppose that ¢g; and g; are two smooth families of metrics in M from gg to g1, with associated
metrics G and G and associated operators Dg and Dg. A byproduct of Theorem 4.2 is that i(gg,q1) =

[J A(TFg, G)]7 where A(TFg,G) is the Atiyah-Singer characteristic differential form, the so-called A-hat
Fr

form of F', on My associated to the metric G, and similarly for G. Thus we have

L(OA(TFR, G) — A(TFg, @) |,

Fr R

(90, 1)(C) — i(g0.91)(G) = [ [@rro) - ﬁ(TFR,é»] - [
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where Fy is the foliation on | J; U?. The forms /Al(TF]R, G) and A\(TFR, CAT‘) are locally computable in terms of
their associated curvatures. Thus, off the compact subset M x [0, 1], they agree, which justifies the second
equality. By abuse of notation, we may write

J(A(TFR,G)_A(TFR,G)) :f (A(TFg,G) — A(TFg,Q)).
F, F'x

® [0,1]

Since the cohomology classes of the two forms are the same, A(TFR, G) —E(TFR, CA}’) is an exact form das«r ¥,
which is locally computable in terms of the curvatures and connections. In particular, ¥ = 0 on the closure
of open sets where the connections agree. So off M x (0,1), ¥ is zero, since the connections agree there.
Thus

j (A(TFp,G) — A(TF,G)) = dyxp¥ = dHJ v,
FQ Fx[0,1] Fx[0,1]

A~

and i(go, 91)(G) — i(g0,91)(G) = 0 in H¥ (Mg/FR).

For the second part, assume that gg and g; are in the same path connected component of M., and that
gt, is a smooth family of metrics in M7, from gg to g;. Then G restricted to each leaf of Fg has PSC, and
since the family of metrics is smooth, it is strictly positive. Then, Proposition 6.3 gives that PE%’E] = (0, for
some positive €, so the Novikov -Shubin invariants are infinite and Remark 4.4 (1) gives that i(gg,¢1) = 0. O

Remark 7.4. Theorem 7.8 remains true if we consider concordance classes of PSC metrics, which a priori
is stronger. Recall that leafwise metrics are concordant if there is a metric G on TFr so that it agrees with
go % dt? near —co and with g1 x dt? near +00. The conclusion is that if i(go,g1) # 0, then go and g1 are
not in the same concordance class of metrics in MZ,. The proof being essentially the same.

Remark 7.5. We could also extend this theory to concordance classes of leafwise flat connections V on
an auziliary bundle E. The invariant would become i((go, Vo), (91, V1)). See [Be20]. The theorem would
then be that if gy and g1 are concordant, and Vo and V1 can be joined by leafwise flat connections, then

i((90, Vo), (91, V1)) = 0.
Next, we have a corollary of Theorem 6.10.
Corollary 7.6. Suppose go, g1, 92 € MZ,. Then
(90, 91) +i(g1,92) = i(go,92), so i(go,91) +i(g1,92) +i(g2,90) = O.

Proof. In the notation of Theorem 6.10, take (M, F), (M',F') and (J\//.f7 F) to be (Mg, Fr), K = K/ =
M % [0,1], Vo = Vi = M x (—0,0), and V4 = V] = M x (1,0). To compute i(g;, g;) take

Gij=gi+ dt? for t € (—0, 0], and Gij=g9;+ dt? for t € [1,0).
For the first, we have
(g0, 91) — i(90, g2) = ch(Ind,(Dgr(Go,1))) — ch(Ind,(Dr(Go2))) =
ch(Inda(Dr(G2,1)) = i(g2,91) = —i(g1, 92)-
The second equality is from Theorem 6.10, where ﬁLE = Dg(G21), D¥ = Dg(Go 1), and Df/ = Dg(Go2).

The second equation is then obvious, as i(go, g2) = —i(g2, g0)- O

Now suppose that M is the boundary of a compact manifold W with a spin foliation F which is transverse
to M, and which restricts to F' there. Extend F as above to W Uy (M x [0,0)). Given a metric g of PSC
on F, extend it to a complete leafwise metric g on F by making it g+ dt? on M x [—¢,0), where M x [—¢, 0]
is a collar neighborhood of M < W, and extending it arbitrarily over the rest of the interior of W.

Definition 7.7.  i(g,W) = ch(Ind,(D3)).
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Note that Theorem 4.2 and the proof of Theorem 7.3, show that i(g, W) does not depend on the extension
of g over W. It does however depend on W in general.

In this situation, we have the following two corollaries of Theorem 4.2.

Corollary 7.8. Suppose that go, g1 € MT,. Then

i(gOagl) = Z(glaW) - i(907W)a
as Haefliger classes. In addition, if go has PSC, then i(go, W) = 0.

The reader may wonder how the classes in the first equality can be compared, since they are on different
manifolds. This is explained below.

Proof. Consider the following

o (Mg, Fr) with the metric Go 1 above, giving i(go, 91)-

e My =Wy un (M x [0,00)) with the metric go + dt? on M x [0,00), and the metric go on Wy = W.
Take the opposite orientation on My by reversing the orientations on [0,00) and Wy, so this gives
_i(gov W)

o My = Wy uy (M x [0,00)) with the metric Gg 1 restricted to M x [0,00), and the metric go on
W1 = W. As the metric on M x [1,00) is g; x dt?, this gives i(g1, W).

The meaning of the first equality is that representatives of the classes on My U M7 \ Wy U W7 equal
the representative on Mg, while what remains on Wy and W; cancel. It is useful to have a picture of the
situation. The arrows indicate the orientations.

i(90,91) : Mg go + dt? gt g1 + dt?
M x {0} M x {1}

(g1, W)« My g Wi gt g1 + dt?
—i(go, W) : My g Wo go + dt?

We may use the A-forms associated to the terms, since they are arbitrarily close to differential forms in
the Haefliger classes. We indicate them by A(Mg), A(Mp), and A(M;). Then,

. A(Ml) restricted to M7 ~ W7 equals A(MR) restricted to M x (0, c0);
. A(MO) restricted to Mo \ Wy equals A(Mg) restricted to M x (—o0,0];
. A(MO) restricted to Wy cancels A(Ml) restricted to Wj.

For the second statment, Propsition 6.3 gives that there is € > 0 so that Py q = 0. Then Theorem 4.5 gives
i(go, W) =0. O

Corollary 7.9. Suppose that gy has PSC, and that g1 extends to g1 with PSC over a compact manifold Wl
with the spin foliation Fy extending F. Set

Xy = Wuar (M x[0,1]) un Wi

with the metric @(0’1) which is o on W, Go1 on M x [0,1] and g1 on Wl. Denote the leafwise operator on
the foliation Fo 1y of X(0,1) by D,1)- Then

i(g0,91) = ch(Inda(Dyg.r))) = f A(TF).

Fo.1)
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Proof. For i(go, g1) = ch(Ind,(D(o,1)), set M, = Wiuw (M x [0,0)) with the metric g1 +dt? on M x [0, 0),

and the metric g; on V/[71, so the metric has PSC everywhere and (g1, I//[\/'l) = 0. Then, we have,

i(90,91) = (g1, W) —i(go, W)) = i(g1, W) = (g1, W) —i(g1,W1) = ch(Ind,(D(g,1)))-
The first three equalities are obvious. For the last, procede as in the first part, noting that
o A(M)) restricted to Wy Uy (M x [0,1]) equals E(X(OJ)) restricted to W Uy (M x [0,1]);

o~

. -/Al(M\l) restricted to I//I\/l cancels E(X(Oyl)) restricted to Wi;
o -A(M)restricted to M; ~ Wy cancels A(M;) restricted to M; ~ (M; x (1,0)).

Finally, the fact that ch(Ind,(D(o,1))) = J A(TF(OJ)) is a result from [BHO04]. O
Fo,

7.2. Some examples. To finish, we construct a large collection of spin foliations whose space of leafwise
PSC metrics has infinitely many path connected components.

Suppose we have the following data.

~

e A closed foliated manifold (M, F), with F' spin and f A(TF) #0in H*(M/F).

F
e A closed manifold S and a family (g;) of PSC metrics on it, and compact spin manifolds X; with
boundary S and metric §;, which is g; x dt? in a neighborhood of S, and §; also has PSC. Set

where the metric on S x [0,1] is g x dt?, and g¢; is a path of metrics from g; to g;. Assume further
that i(g,, g;) is non-zero.

Proposition 7.10. The foliated manifold (M x S,TF x T'S) has a family of PSC metrics (g;), so that for
any i # j, gi and g; do not belong to the same path component of the space of PSC metrics on TF x T'S.

Proof. Since M is compact, F admits a metric g of bounded scalar curvature. Set g; = g X ¢;g;, where
c; € (0,00) is such that g; has PSC. For the manifold M x X(; j, with the foliation ' x X; j, Corollary 7.9
gives
i(gi,95) = f ATF xTX,j)-
FxX(i)
If g; and g; were in the same path component of the space of PSC metrics on TF x T'S, then we would have
i(gi, 9;) = 0. However, if 4 # j, then

J A(TF x TX(i ) :f A(TF)A(TX ;) :f A(TF)J ATX i) =i(gi,gj)J A(TF) # 0.
FxXg, FxX 5 F X(i,5 F

Here are examples of this type.

Example 7.11. We adapt Example 1 of [H78]. In particular, let G = SLaR x -+ x SLaR (q copies) and
K = SOy x -+ x SOy (q copies). G acts naturally on R?? ~ {0} and is well known to contain subgroups T’
with N = T\G/K compact, (in fact a product of q surfaces of higher genus). Set

M =T\G xg (R*~ {0})/Z) ~T\G x g (S*77! x S),

where n € Z acts on R?4 {0} by n-z = e"z.

M has two transverse foliations, F which is given by the fibers S?4~1 x S of the fibration M — N, and
a transverse foliation coming from the foliation T of Example 1 of [H78]. More precisely, T is defined on the
vector bundle T\G x x R?4, and the zero section is a leaf of it. In addition, the action of Z preserves T, fizing
the zero section, so it descends to a foliation on M, also denoted T.
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We work with F', noting that TF is orientable and spin since R?¢ — {0} has these structures and the
actions of K and Z preserve them. It also happens to admits a metric with PSC, namely the product of
the standard metrics on S?¢~! and S', which is preserved by the action of K. The following proposition is
proven in the appendix.

~

Proposition 7.12. J A(TF) is a nowhere zero 2q form on N. In particular, there is a non-zero constant
F

C, so thatf J A(TF) = C,vol(N).
NJF
Thus, f A(TF) # 0 in H¥(M/F). Note that this also shows that the Haefliger A genus of TF, i.c.
F

0
[J ﬁ(TF)] € HY(M/F), is zero, which is why we cannot use the results of [BH21] here.
F

In [C88], Carr constructs examples of “exotic” PSC metrics g;, i € Z, on S**~1, for k > 1, and compact
Riemannian 4k dimensional spin manifolds X; with boundary S*~1, so that the metric g; on X; is g; x dt?
in a neighborhood of S**~!, and g, also has PSC. Set

Xaj = X (8™ x[0,1]) U X;,

where the metric on S*~1 x [0, 1] is g; x dt?, and g; is a path of metrics from g; to g;. These examples have
the property that i(g,,g;) # 0. Thus we have all the elements required to apply Proposition 7.10

Remark 7.13. Note that the calculations in the examples in [H78] can be used to provide examples associated
to the groups G = SLoy,Rx---xSLay R, and K = SOgp, x---xS0a,,, and G = SLa, Rx---xSLa, RxR
and K = SOqp, X -+ x SOqy, x Z. We leave the details and further extensions to the reader.

The next example is an easy corollary of the Kreck-Stolz result from [KS93][Corollary 2.15].

Proposition 7.14. Suppose that (M, F) is a closed foliated manifold with F' spin. LetY be a closed connected
spin manifold of dimension 4k — 1 > 3 with vanishing real Pontrjagin classes and such that H*(Y;7/2) = 0.
If Y admits a PSC metric, then the foliated manifold (M x Y, TF x TY) admits a sequence (g;) of leafwise
PSC metrics such that for any i # j, g; and g; are not in the same path component of PSC metrics on
TE xTY.

Notice that if Y is for instance simply connected, then it always admits a metric of PSC by [St92].

Proof. In [KS93], Kreck and Stolz produce an infinite sequence g; of PSC metrics on Y such that for any
i # j, the Gromov-Lawson invariant gy (g;, gj) # 0. Note that igr(9s, g;) is the difference of the dimensions
of the positive and negative parts of the kernel of Dy on the manifold Y. Thus, there is a non-trivial L?
element ¢ in the kernel of Dg. On the foliated manifold (M x Y,TF x TY') there is the sequence of PSC
metrics (g;), where g; is as in Proposition 7.10. For ¢ # j, these metrics are not in the same path component
of leafwise PSC metrics. For if they were, then the foliation TF x TYg, would have PSC everywhere. So,
by Proposition 6.3, there would not be any non-trivial L? elements in the kernel of Dg. But this is patently
false as (0, () is such a non-trivial L? element. O

APPENDIX A. PROOF OF PROPOSITION 7.12

We follow the proof of Theorem 5.4 in [H78]. Denote by (21,1, .., %4, yq) the coordinates on R??. Choose
nonzero numbers A, ...A; € R, and set

q
Xx = D) Ni(@id/om; + yid/ dys).

i=1
This vector field has an isolated singularity at the origin and it commutes with the actions of K and Z on
R?9 ~ {0}. Thus it induces a nowhere zero vector field also denoted X on the bundle M.
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Denote by wy the one-form on R2? < {0} defined by

q
i
wx = Z m(l’zdrﬂz + yzdyz)

Note carefully that this is different from the wy of [H78]. This change is necessary so that w) is invariant
under the action of Z. Note also that dwy = 0 still holds. The actions of K and Z on R?? \ {0} preserve wy,
so it induces a one-form wy on M.

Let S be the sphere bundle in M = N\G x i ((R%? \ {0})) given by the image of

{(9, (21,91, g, 59)) € G x RPN AOY) | D) Nl +y) = 1},

i=1
S is invariant under I' and K so it is well defined. Set
So=8=0-5 and S =16
Note that the condition on Sy is D)7, Aj(z? + y?) = €2, so its radius is e. Then we may write,
M = T\G xx (S*7! x [1,¢€]),
where we identify the boundary components, Sy and S, on the right, and we may do our computations, as
in [H78], using the coordinates on G' x S2971 x (1,¢).

Denote by 6 the unique basic connection (for the foliation 7!) on T(S?¢~! x (1,¢)), which is the normal

bundle of 7, whose covariant derivative V satisfies, for all Y € T(S?¢~1 x (1,¢)),
Vya/afbl = W)\(Y)[X)\, &/&xl], and Vya/ayl = CU)\(Y)[X)\, 8/83/1]
The proof in [H78] works just as well here to show that 6 is well defined.

The computation of the curvature  of V proceeds just as in [H78]. In particular, we may assume that we
have a neighborhood U in N whose inverse image in M is of the form U x (S??~! x (1, ¢)), and coordinates on
it, so that the local form of  with respect to the local basis d/0x1, d/dy1, ...0/dx,, /0y, of T(S?*171 x (1,¢€)),
is given by

Q501 = Q5 = Ad(M),
and all other terms are zero. Here, for i = 1,...,¢q,
® A6 = Aid1 + -+ + Aglyg;
o 8 = ziyw; + 5(2? — y2)vi
® Wi,V1, ..., Wq, Vg is & basis of the one-forms on U with dw; = —w; A 7; and dvy; = 0.

2q
7 §i/2
Recall that A(&q, ..., &) = —=——_ We want to compute
a 1:[1 sinh(&;/2)

f A(T(S?P 1 x §Y) = | A(T(S* ' x §Y)) = A(Q).
F S2e4—1x S1 S2a4-1x(1,e)

As (d;)3 = 0 and (d6;)? = 2(22 + y;)2dx; A dy; A w; A7, the only term of A(€2) which will be non-zero when
integrated over F is, just as in [H78],

q

AQ(I(Q) = AQQ()\h)‘l?'-'7)‘Q7)\q)(d()\6>)2 A2q<>\la)‘1a"' 'H )‘2 I‘ +yz dml /\dyz AN Wi N iy
=1

where /Algq(fl, ..., €2¢) is the term in A\(fl, ..., &aq) of degree 2¢g. Thus,

q q
J A2q(Q) = A2q()\1; A17 ceey >\Q7 A ) l(2q f 1_[ A2 J? + yz dl‘z A dyz 1_[ Wi N 'Y'L =
S S i=1

2‘1*1><(1,e) 2q— 1>< 18 i=1
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m9(e* — 1) Agg (A1, A1,y ooy Agy Ag) T
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by Lemma 5.8 of [H78], which is a nowhere zero 2¢ form on N. Note that /ng(/\l, A, ..y Ag, Ag) 1S & non-zero
constant times (A; -+ A;)%. Thus, there is a non-zero constant C, so that

[A76]
[AS68III]
[Be20]
[BHO4|
[BHOS]
[BHW14]
[BH18]
[BH21]
[BH23]

[B36)

[Cs8]
[Ch73]

[C79]
[C81]
[CS84]
[C94]
[Do87]
[GL83)
[Ha80]
[H78]
[H5]
[HLIO]
[HLYY]
[KS93]

[LM89]
[NWX96]

[RS7]
[Sh92]

[St92]
[Vi67]

A@) = JN L A(TF) = C,vol(N).

N JS294-1x(1,e)
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