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ABSTRACT. We extend the groundbreaking results of Gromov and Lawson, [GL83], to Dirac operators
defined along the leaves of foliations of non-compact complete Riemannian manifolds which admit invariant
transverse measures. We prove a relative measured index theorem for pairs of such manifolds, foliations and
operators, which are identified off compact subsets of the manifolds. We assume that the spectral projections
of the leafwise operators for some interval [0, €], € > 0, have finite dimensional images when paired with
the invariant transverse measures. As a prime example, we show that if the zeroth order operators in
the associated Bochner Identities are uniformly positive off compact subsets of the manifolds, then they
satisfies the hypotheses of our relative measured index theorem. Using these results, we show that for a
large collection of spin foliations, the space of positive scalar curvature metrics on each foliation has infinitely
many path connected components.
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1. INTRODUCTION

In this paper we extend some of the groundbreaking results of Gromov and Lawson to Dirac operators
defined along the leaves of a foliation F' of a non-compact complete Riemannian manifold M. In particular,
we extend their highly important relative index theorem, Theorem 4.18 of [GL83], to this situation, which
has been an open problem since the 1980s. That theorem has played a fundamental role in the development
and understanding of the existence and non-existence of metrics with positive scalar curvature, as well as
the structure of the spaces of such metrics. It is essential for the extension of results for compact manifolds
to non-compact manifolds. Our work is in the spirit of the transition from the Atiyah-Singer index theorem,
[ASGSIII], to Connes’ measured index theorem for foliations, [C79]. In order to overcome the problems
of dealing with non-compact manifolds, we assume that our objects have bounded geometry. This, and a
good deal of hard analysis, allows us to prove our first main result, the relative measured index theorem for
foliations. Our second main result is that if the zeroth order operator in the associated Bochner Identity
is uniformly positive off a compact subset of M, then (M, F') satisfies the hypothesis of our relative index
theorem. We then use these results to show that for a large collection of spin foliations, the space of positive
scalar curvature metrics on each foliation has infinitely many path connected components.

MSC (2010): 53C12, 53C21, 58J20
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The metric on M induces one on the leaves of F', and we assume that M and all the leaves of F' have
bounded geometry. We also assume that (M, F') admits an invariant transverse Borel measure A. We denote
by du the global measure on M determined by A and the leafwise metric. When the manifold is compact,
our results reduce to Connes’ index theorem for measured foliations [C79].

Any Clifford bundle E over the Clifford algebra of the co-tangent bundle to F, along with a Hermitian
connection V compatible with Clifford multiplication, determines a leafwise Dirac operator, denoted

DE . Cc*(E) - C*(E).
There is a canonical zeroth order operator ’Rg defined on C¥(E), so that the operators Df , Rg, V and its

leafwise formal adjoint V*, are related by the general Bochner Identity, [LM89],
(DF)? = V*V + RE.

Our first main result is the foliation relative measured index theorem. In particular, we assume that we
have two foliated manifolds (M, F) and (M’, F’) as above, with invariant transverse measures A and A’,
and Clifford bundles E and E’. So there are leafwise Dirac operators DF and DF’. We further assume
that there are compact subspaces K = M .V and K’ = M’ \ V' so that the situations on V and V' are
identical. Using parametrices, we can then define a relative measured index for the pair (D¥, DEI), denoted
Inda o (DF, DE.

The first half of the foliation relative measured index theorem is the following.

Theorem 4.6 IndAyA/(DILE,DE') is finite, and the following formula holds,

Inda o (DE,DF') = J AS(DEY,dA — f (ASDF') dN,
K<

’

where AS(DE)y, is the characteristic differential form on the leaves of F associated to D¥ by the local
Atiyah-Singer Index Theorem, and similarly for AS(Df/)L.

In general, it is not possible to express the relative measured index Inda /(DF ,Df/) in terms of the

leafwise projections Py and P} onto the leafwise kernels of (D¥)? and (DLE/)27 as occurs in the classical cases.

This is because, in general on non-compact manifolds of bounded geometry, the super-traces of the leafwise

—t(Df

Schwartz kernels of e )* and Py satisfy

tIL% trS(’Z{:e*t(Df)2 (I7 1‘)) = trs(kpo (x’ I))r
only pointwise, and similarly for e tPL)” and Pj. We give conditions here where such an expression is
possible.

Denote the leafwise spectral projection associated to (DF)? for the interval [0, €] by Pro,¢1, and its leafwise
Schwartz kernel by kp, ,. The A dimension of the image of Fjg ] is the element of [0, 0], given by

Dimy (Im(Pg.q)) = f ek , (2, 2)) dp
M

and similarly for (DF')? and Dimy (Im (P, 4))-

The second half of the foliation relative measured index theorem is the follgiving. For this theorem we
need Assumption 4.11, which is essentially that there is an open submanifold M of M \ K, with compact
complement, so that the projection P to the kernel of DE restricted to M satisfies ‘[N tr(kp(z,x)) dp is
finite. M
Theorem 4.12 Suppose that there is eg > 0 so that Dimy (Im(Pyg ) and DimA(Im(P[/o,eo])) are finite, and

that Assumption 4.11 holds. Then, for 0 < e < €,

Indy o (DF, DF') = f trs(kpyg (T, 7)) dp — J trs(kp[/()e](x,x))du’.
" :

’
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Thus,

J ey (kpy (2, 2))dps —J tra(py (2, 2)) ditd = J AS(DE), dA _J AS(DZ'), dN.
M ’ K ’

For other results which show that restrictions on the spectral measures near zero of elliptic operators on
foliations are necessary and sufficient to give index theorems, see [HL99, BHO8, BHW14].

Our second main result, an extension of Theorem 3.2 of [GL83], gives a condition which guarantees that
the hypotheses of the foliation relative measured index theorem are satisfied.

Theorem 5.2 Suppose the curvature operator RE is uniformly positive near infinity, that is, there is a
compact subset KK < M and ko = sup{x € R|RE — k1 > 0onM ~\ K} is positive. Then for 0 < € < ko,
Dimy (Im(Pjg ) is finite. More precisely,

MJ}Ctr(k[O,E](m,x)) dp < o,

where k1 = sup{s € R|RE — k1 > 00onM}. In addition, Assumption 4.11 holds.

0 < Dimy (Im(Pjg )

N

Prime examples are spin foliations admitting leafwise metrics with positive scalar curvature (PSC) near
infinity.

When f trs(kp, (z,x))dp is finite, the A-index of D, denoted Ind,(D¥), is well defined, and is given
M
by

Indy(DF) = JM trs(kp, (x, x))du.

Corollaries of Theorems 4.6, 4.12, and 5.2 are the following.

Theorem 5.3 Suppose that RE is uniformly positive on MK, so also ’Rg: is uniformly positive on M'~\K'.
Then

Inda o (D¥, DF') = Indp(D¥) — Indy (DF') = f AS(Df)LdA—f AS(DF), dN'.
K K’

Theorem 5.4 Suppose that E and E’ are two Clifford bundles over M which are isomorphic off some
compact subspace K of M, and that R, so also R?, is uniformly positive on M ~ IKC. Then

Indy A (D¥, DF) = Indy(DF) — Indy(DF') = JM(AS(DL)(ch(E)—ch(E’))L du.

For the next corollary, we say that the foliation F', and so also F”, is reflective if 0V is transverse to I,
so also oV’ is transverse to F’. Then we can “cut and paste” as in [GL83} to get the compact manifold

M = K U K’ with foliation F transverse measure A and leafwise operator D.
Theorem 5.12 Suppose that F is reflective and RE is strictly positive off K, so also F' is reflective and
Rg; is strictly positive off K'. Then

Indy o (DE, DE') = Indj( j AS(DE) dA — | AS(DF)LdA.
]Cl

The previous construction extends to the following more general situation, see again [GL83]. Assume
M~NK =V, uVsand M'\K' = V] U Vg, where the unions are disjoint, that there is compatibility on the
subsets Vo and VY, that F is reflective on Vg, so F” is reflective on VJ, and that ’Rfj: and Rg: are strictly
positive off K and K’. Then we may cut and paste to get the manifold M = (M N\ V) u (M'\Vy), with
the foliation ﬁ'7 the invariant transverse measure K, and the leafwise operator ﬁf . Because of the positivity

off K, K' and K = K U K, all three operators DE, D" and ﬁf have finite invariant transverse measure
indices, and we have our final corollary, the ® relative index theorem, which will be useful in Section 6.
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Theorem 5.13 Under the conditions above,

Ind; (DZ) = Inda(DE) — Indy (DF).

We now give a brief outline of the paper. In Section 2, we give the specific setup we consider. The
techniques used in [GL83] of the proof of the classical relative index theorem are not available to us in
general. In particular, they consider a single non-compact manifold and an operator which is strictly positive
off a compact subset. This allows them to prove that the kernel of the operator is finite dimensional and
there is a gap in the spectrum at 0. We consider a foliation F' of a non-compact manifold M and a leafwise
operator which is strictly positive off a compact subset I = M. The intersection of a leaf L of F with K
may be a non-compact subset of L, considered as a manifold in its own right. This causes problems, as the
kernel of the operator on L can then be infinite dimensional and there can be no gap in the spectrum at 0.
To overcome these problems, we make the additional (rather strong) assumptions of bounded geometry and
the existence of an invariant transverse measure. This allows us to use the results and arguments of [HL90],
extended in Section 3 from foliations of compact manifolds to the case of bounded geometry manifolds and
foliations.

Section 4 is the heart of the paper. It contains the definition of the relative measured index as well as the
proof of the foliation relative measured index theorem. The proof uses mainly the theory of parametrices,
analysis of Schwartz kernels of operators, as well as the Spectral Mapping Theorem.

Section 5 contains the proof of Theorem 5.2 and its corollaries. The proof of Theorem 5.2 involves applying
the leafwise Bochner identity to kp, ;.

In Section 6 we define an invariant for pairs of PSC metrics on spin foliations as in [GL83], and show that
if it is non-zero, then the metrics are not in the same path connected component of the space of PSC metrics
on F. We calculate this invariant for a large collection of spin foliations, and show that the space of PSC
metrics on each of these foliations has infinitely many path connected components.

In this paper, we work leafwise on M rather than on, say, the holonomy groupoid of F, since that would
require us to assume the graph of F' is Hausdorfl. This introduces some extra technicalities that we have to
deal with. When the monodromy groupoid of F' is Hausdorff while the holonomy groupoid is not, one can lift
all the data to the monodromy covers and state the similar expected results there. However the equivalence
between our results here and the ones on the monodromy covers is not insured in general. Indeed, even with
a single leaf whose fundamental group is not torsion free, some defect invariants can show up, see [Be20].
Moreover, as in the classical index theory for closed foliated manifolds, one may associate with the relative
index data of the present paper a higher index class, now living in the K-theory of a relative C*-algebra
and which does not need the existence of the holonomy invariant measures. So our results here compute the
image of this index class under a group morphism associated with the compatible pair (A, A’).

Finally, note that the results of this paper can be extended to the category of “bounded geometry foliated
spaces” by adapting the constructions of [MS06].
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use in the examples in Section 6.

MTB wishes to thank the french National Research Agency for support via the project ANR-14-CE25-
0012-01 (SINGSTAR).
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2. PRELIMINARIES

Denote by M a non-compact complete Riemannian manifold of dimension n, and by F an oriented
foliation (with the induced metric) of M of dimension p, (until further notice, we assume that p is even),
and codimension ¢ = n — p. The metric on the leaves of F' induces a leafwise volume form denoted dx .
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The tangent and cotangent bundles of M and F are denoted TM,T*M,TF and T*F. A leaf of F is
denoted by L. If E is a bundle over M, the smooth sections are denoted by C*(FE) and those with compact
support CX(FE). The smooth functions on M are denoted by C®(M) and those with compact support by
CP(M). If FE carries a metric hy : E; ® F, — R, the inner product map is abusively denoted

(:C®(EQ®FE) — C®(M), so it is given by {¢)(z) := hy(p(z)).
In particular, if p1, 2 € C*(E), then

(P1®@p2)(x) = halp1(z) ® p2()), also denoted {p1(x), pa(x))-

We assume that both M and F' are of bounded geometry, that is, the injectivity radius on M and on all
the leaves of F' is bounded below, and the curvatures and all of their covariant derivatives on M and on all the
leaves of F' are uniformly bounded (the bound may depend on the order of the derivative). Simple examples
of one dimensional foliations on R? show that bounded geometry on M does not imply bounded geometry
on the leaves of F. We further assume that any connection or any metric on F is uniformly bounded. See
[Sh92] for material about bounded geometry bundles and their properties.

Let U be a good cover of M by foliation charts as defined in [HL90]. In particular, denote by D?(r) = {z €
R?,||z|| < 7}, and similarly for D9(r). An open locally finite cover {(U;,1;)} of M by foliation coordinate
charts v; : U; —» DP(1) x D9(1) < R™ is a good cover for F provided that

(1) For each y € DI(1), P, = ¢; *(DP(1) x {y}) is contained in a leaf of F. P, is called a plaque of F.

(2) fU; n Uj # &, then U; nU; # &, and U; n U; is connected.

(3) Each v; extends to a diffeomorphism 1; : V; — DP(2) x D?(2), so that the cover {(V;,;)} satisfies
(1) and (2), with D?(1) and D?(1) replaced by D?(2) and D?(2).

(4) Each plaque of V; intersects at most one plaque of V; and a plaque of U; intersects a plaque of U; if
and only if the corresponding plaques of V; and V; intersect.

(5) There are global positive upper and lower bounds on the norms of each of the derivatives of the ;.

Bounded geometry foliated manifolds always admit good covers.

When we mention measurable in this paper, that means borelian, i.e. measurable with respect to the
Borel o-algebra generated by the open subspaces for the underlying topology.

For each U; € U, let T; = U; be a transversal (e.g. T; = t; '({0} x D(1))) and set T = | J T;. We may
assume that the closures of the T; are disjoint. Let (U;,T;) and (Uj, T;) be elements of U, and ~;;, : [0,1] —
M be a path whose image is contained in a leaf with v;;,(0) € T; and ~;je(1) € T;. Then ;;, induces a
local homeomorphism h.,, : T; — T}, with domain D, , and range R, ,. The space AJ(T) consists of
all uniformly bounded measurable functions on 7" which have compact support in each T;. The measurable
Haefliger functions for F, denoted A%(M/F), consists of elements in the quotient of A%(T) by the vector
subspace W generated by elements of the form a;j, — h:iﬂOéijg where oyj, € Ag(T) has support contained
in R, ,. We need to take care as to what this means. Members of W consist of possibly infinite sums of
elements of the form a;;¢ — hfm ,Qije, with the following restrictions: each member of W has a bound on the
leafwise length of all the ~;;, for that member, and each 7;;¢ occurs at most once. Note that these conditions
plus bounded geometry imply that for each member of W, there is n € N so that the number of elements of
that member having D, , contained in any T; is less than n, and that each U; and each U; appears at most
a uniformly bounded number of times. The projection map is denoted

[]: AAT) — AAM/F).
Denote by A} (M) the space of leafwise p-forms on M which are leafwise smooth, transversely measurable

and uniformly bounded. As the bundle T'F' is oriented, there is a continuous open surjective linear map,
called integration over F,

f L AP (M) — AY(T).
F
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This map is given by choosing a partition of unity {¢;} subordinate to the cover U, and setting

JFW - ;.[U viee

It is a standard result, [Ha80], that the image of this differential form, [f

w] e AY(M/F) is independent
F

of the partition of unity.

Note that is integration over the fibers of the projection U; — T;, and that each integration w — oiw
U; Ui
is essentially integration over a compact fibration, so J satisfies the Dominated Convergence Theorem on

F
each U; e U.

A graph chart U; x,,, U; € M x M, is a subset of the form

Ui X0 Uj = U Py x Pz

zEDﬂ,UlZ

It has a natural structure as a 2p+q dimensional manifold.

For a real or complex bundle & — M, the external tensor product bundle EX E* — M x M restricts to a
smooth bundle over U; x,,, U;. We denote the leafwise smooth, transversely measurable, bounded sections
k(z,y) with compact support of this bundle by T'.(U; x Uj, E). We extend them to all of M x M by
setting k(z,y) = 0if (z,y) ¢ Us x,,, Uj.

Yije

Definition 2.1. The space T's(F, E) consists of sections k of EXIE*, called kernels, such that k is a (possibly
infinite) sum k = Zije kije, with each kije € Te(Us %, Uj, E). For each k, we require that there is a bound
on the leafwise length on its vy;j¢, and that each index ijl occurs at most once. Thus each U; and each
U; appears at most a bounded number of times, so the sum converges locally uniformly and in particular
pointwise. We further require that for each k, each of its leafwise derivatives in the local coordinates given
by the good cover is uniformly bounded, with the bound possibly depending on the particular derivative.

Denote by Ej, the restriction of E to the leaf L.

Remark 2.2. Recall the algebra UV~ (L, E|1) defined in [Sh92], Section A1.3, Definition 3.1. Note that
elements of T's(F, E) are measurable families of elements of UV—%(L, E|1,) with the bounds being uniform
over M.

If ke Ts(F, E), it defines a leafwise operator

kiL2(EL) — L3(E) by  k(s)(x) = fL<k|LxL><x,y>s<y>dyF.

Because of the bounded geometry and the restriction on the lengths of the v;;¢, the operator corresponding to
k € T's(F, E) has finite propagation, is leafwise smoothing, uniformly bounded, and transversely measurable.
See Theorems 2.3.1 and 2.3.2 of [HLI0].

Recall the notion of a super, that is Zy graded, operator A. Then the space H which A acts on splits as
H =H"®H . Ais an even operator if A : H* — HE, and an odd operator if A : Ht — HF. If Ais an
even (super) operator, its super trace is denoted

trg(A) = tr(A|y+) — tr(A|x-).

If ke's(F,E) and z,y € L, then k(x,y) is a linear operator from E, — E,, the fibers over y and z. If it is
an even operator, we set

try(k(z,z)) = tr (k(:c,an;) Ctr (k(m,aﬁ)|E;) .
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Definition 2.3. The trace and Haefliger trace of k € T's(F, E) are given by
(k) = L tr(h(w, 2)) dop € A(T) and te(k) — HF te(k(z. 2)) dup| & AUM/P).
If k is even, its super-trace and Haefliger super-trace are given by
try(k) = JF tru(k(z, ) dep € ANT) and te,(k) = | L tr,(k(e.2) oy | & AVM/F),

We end this section by recalling the following.
Theorem 2.4. [HL90], Theorem 2.3.6. Suppose k1, ko € T's(F, E) are super operators. If both are even,
fts(kl ] k2) = fts(kg o kl),

and if both are odd,
tts(k‘l o kQ) = — tts(kz o kl),
in A2(M/F).

Note that while the functions try(k;y o ko) and trg(kg o k1) also exist in AY(T), in general they are not
equal.

Proof. We do only the even case. Because of the limit on the leafwise length of the +;;¢, for each i, j, there
are only finitely many k ;j, in the sum making up k;. Similarly, for each r, s, there are only finitely many
k2,rst in the sum making up ko. As

trg (Z k1 5e 0 2 ko rst) = 22 tes(k1,ije © k2 rst),
a5l rst igl rst

we may assume kl = kl,ijﬁ S FP(UZ X%ﬂ Uj,E) and kQ = ]{1277«“ € FC(UT Xyrst US,E) with Uj & Ur #* @ and
Us nU; # &, since otherwise tvs(k1,ij¢ © k2,rst) = 0.

Since try does not depend on the partition of unity, we may assume (¢; x ¢;)k1 = ki, and (¢, X ¢ps)ka = ko,
so the partition of unity will play no role here.

Suppose z € T;, with z € P, and y € P, ,(.), and € U; n Us and y € U; n U,.. Note that, in order to get
something non-trivial, we must have 'yrst'y”g( z) = z. Then

trs(kl Ok2) J f trs kl(z X y)k2(’71jf( ) Y,z ))ddexF =

f f tra (k1 (2, 2, ko (e (2), 0, 2)) dyrdap,
P, ije ()
since ki (z,y) = 0 unless x € P, and y € P,,_,(.).
Similarly,

trs(kQ Okl ’Yzjf f f trs k2 71]@ ) yal')kl(PYTst’YijZ(Z%may))ddeyFa
it

»y”e(z) rstVije(2

which has exactly the same value as trg(k; o kg)(z), but at 7,j.(z) € T}, since vps1vije(2) = z. Thus
trg(ky o ko) |, = h¥, (trs(ky o k2)|1,), so their images in A%(M/F) are the same. O

Yije

3. OVERVIEW OF LEAFWISE DIRAC OPERATORS

In this section we give extensions of some results from [HLI0], see also [H02], to our more general setting.
The proofs for the case considered here are essentially the same as in [HL90]. The main things to notice are
these.

(1) The space denoted C°(F, E) is replaced by the space I';(F, E).
(2) The bounds coming from the compactness of M still hold due to our assumption of bounded geometry.
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(3) The geometric endomorphism is just the identity map, the invariant transverse measure is ignored,

and J is replaced by f .
M F
(4) All the operators considered here are transversely measurable.

A leafwise Dirac operator D¥ consists of a Dirac bundle E, that is a Clifford bundle over the Clifford
algebra of T*F, and a Hermitian connection V on E, compatible with Clifford multiplication, so that the
operator

Df : CF(E) — CX(E)

is given by the composition
CP(E) S CP(T*M ® E) & CP(T*F @ E) 5 C*(E),

where p is the restriction and m is Clifford multiplication. For more details, see [LM89]. In particular, if we
identify T* F and TF using the metric, then locally

p
DE(s) = Z ej - Ve,s,
j=1

where ey, ..., e, is a local orthonormal basis of TF, and e;- is Clifford multiplication by e;. All the classical
complexes (de Rham, Signature, Dolbeault, and Spin) give rise to leafwise Dirac operators provided F
supports the necessary geometric structures for these complexes to be defined.

Since the leaves L are complete, DF is essentially self adjoint, [Ch73]. Thus any bounded Borel function
g on R applied to D¥ yields a well defined bounded leafwise operator g(D¥) : L?(EL) — L*(EL). The

. .. _ E\2
operator we are interested in is e tDL)”

I's(F, E). However, we do have,

Unfortunately, its Schwartz kernel ke,t(Df)z is generally not in

Theorem 3.1. [HLI0], Theorem 2.3.7. Suppose that g is a Schwartz function whose Fourier transform is
in CP(R), and that B is a differential operator on E along F with smooth bounded coefficients. Then the
Schwartz kernels of g(D¥), Bg(D¥), and g(DF)B are in Ts(F, E).

Schwartz functions can be approximated by elements in C®(R), and using the Fourier inversion formula
to define operators works well in our setting. For more on this see Section 4. If g is a Schwartz function,
then estimates by Schwartz functions whose Fourier transforms are in C°(R), as given in [HL90], along with
bounded geometry, show that k DE) (z,y) is uniformly bounded on M x M. The same holds for the Schwartz
kernels of Bg(D¥), and g(DF)B. In particular, tr(kypr)(z,2)), tr(kpype)(z,2)), and tr(kypr)p(z, )
are uniformly bounded on M. Thus we get,

Theorem 3.2. [HL90], Theorem 2.5.8. Suppose that g is a Schwartz function. Then tr(g(DF)) and te(g(DF))
ezist. If B is a differential operator on E along F with smooth bounded coefficients, then tr(Bg(D¥)),
te(Bg(DE)), tr(g(DE)B), and te(g(DE)B) exist. The same holds for the super traces provided the operators

are super operators.
Since for ¢ > 0, e~**" is a Schwartz function, tr,(e~*(P2)") and tr,(e~*(PL)*) exist. Classical local results
give the following. See [Ge86]. Denote by AS(DE) the characteristic differential form associated to DE by

the local Atiyah-Singer Index Theorem, [ABP73, Gi73]. Denote its restriction to C* (A T*F) by AS(DE)..
Theorem 3.3. lim;_, trs(ke,t(DE)z (z,7)) = AS(DE)(2) uniformly on M. Thus,

tlir%trs(e*t(fo) = J AS(DE), in AYNT), and
- F

lim teg (e ~1(PD)%) = U AS(DE)L] in AYM/F).
t—0 F

Denote the Schwartz kernel of the graded projection onto the leafwise kernel of (D¥)? by kp,. The rest
of Section 2.3 of [HL90] is taken up with the technicalities of proving the following.
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Theorem 3.4. [HL90|, Theorem 2.3.11. tlim trg(k . ppy2(x,2)) = trs(kp,(2,2)) pointwise on M.
—00
In general, this convergence is not uniform. However, since trs(ke,t( DE)2 (z,z)) is uniformly bounded on

M, and J is essentially integration over a compact fibration, it follows that for any finite collection of

v, T),
iy 3 [ on(o) o)) = X[ onto) i, (e.0) in T ANT) = A

t—0
Next, we have,

Theorem 3.5. [HL90], Theorem 5.1. The element try(e *PD)*) € AY(M/F) is independent of t.
The proof involves taking limits of approximations by elements of I'y(F, E).
Finally, we have two useful results from the Spectral Mapping Theorem.

Proposition 3.6. Suppose that the sequence of bounded Borel functions f(z) converges pointwise to f(z),
and for ¢ sufficiently large, ||(1 + 22)2f,||o is a bounded sequence. Then the Schwartz kernel kg, (pE)
converges to kf(Df) pointwise.

Proof. For x € M and v € E,, the fiber over z, with ||[v|| = 1, denote by ¢2 the distributional section of Ey,
given by (02,0) = {o(x),v). Because of bounded geometry, there is ¢ sufficiently large, which depends only
on the dimension of F', so that the Sobolev —¢ norm

16211-¢ = 111+ (DE)*) 262 lo
of 62 is uniformly bounded over all z and v. The norm || - ||o is the L? norm.

The Spectral Mapping Theorem says that if a sequence of bounded Borel functions g,, converges pointwise
to g and the sequence ||g,||o is bounded, then g, (D¥) converges to g(D¥) strongly, that is for any element
v, limy o0 [19n (DE) (v) = g(DE) (v)]]o = 0.

Now, |[(k, (pey — ky(pey)(2,y)|] is bounded by a finite sum of elements of the form

|<(kfn(Df) - kf(DE))(xvy))(w)7U>|7
where w € I, and v € E, and both have norm 1. But, we have
KKy, (pE) = kpoE) (@ 9) (W), 0)| = [(fo(DE) = F(DE))(Gy),05)] <
1(fa(DE) = FDENGOell62] e = [1((1+ (DE))2(fu(DE) = FDENN S ol162] -2 =
11+ 222 (o = INDE G o 1621]—e-

As f, converges pointwise to f, (1 + 22)%/2f, converges pointwise to (1 4+ z2)%2f. Since |[(1 + 22)%2 f, ]| is
bounded, ((1 + 22)%2f,))(D¥) converges strongly to ((1+ 22)%2f)(DF), so

Tim [[((1+ 23)2(f, — DDEY o = 0. O
Proposition 3.7. Suppose that fy — f ast — 0 in the Schwartz topology on the Schwartz functions. Then,
%i_r)% kft(DE) = kf(Df) uniformly.

Proof. By the Spectral Mapping Theorem ||g(D¥)|| < sup,cg |9(2)|. Now f; — f as t — 0 in the Schwartz
topology gives that for all n > 0, sup,cg 2" (f:(2) — f(2))] = 0 as t — 0. As above, we have,

Kk, pE) = kppe)(@,9)) (W), )] < [[(F(DL) = FIDL)E)lelloz]|-¢ <

1f(DE) = FDD)=e.el 6 || =el7]] -,
where ||f;(DE) — f(DF)||-s is the norm of operator from the —¢ Sobolev space to the ¢ Sobolev space.
Now

1f:(DL) = FDDl-e.e < itelng\(HZQ)e(ft(z)—f(Z))I,
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which goes to zero as t — 0, independently of §;’ and d;. (]

4. THE FOLIATION RELATIVE MEASURED INDEX THEOREM

In this section, we assume that we have two foliated manifolds (M, F) and (M’ F’) as above, and two Zg
graded odd leafwise Dirac operators DF and D¥’ acting on Clifford bundles E — M and E’ — M’ with
Clifford compatible Hermitian connections V and V’. We further assume that there are compact subspaces
K=M~\Vand K' = M'\ V' of M and M’ with a bundle morphism ® = (¢, ¢) from F — V to E' —» V.
We assume that ¢ : V — V' is an isometry with ¢ =1 (F’) = F, that ¢ : E|yy — E’|y is an isomorphism, and
that ¢*(V'|v/) = V |i. Thus, the well defined (since they are differential operators) restrictions of DE and
Df, to the sections over V and V' agree through @, i.e.

(@71)* o DE o o* ‘V’ = DEI |V’-
Without loss of generality, we may assume that K and K’ are the closures of open subsets.

We may assume that the good open covers U and U’ on M and M’ are ¢ compatible on V and V’. That
is,

{UieU|UinK =2} = {p” (U) U] €U U] n K" = &5}

Set

Uy = U eU|TU;nK =g} and U, = {U el |U nK =g},
and

Ty = {T,eU|UinK=g} and T{, = {TeU'|U ~nK = F}.
Thus ¢* : AATY,)) — AY(Ty) is an isomorphism from the functions supported on the transversals in U,
to the functions supported on the transversals in Uy. Denote by Tic = T \ Ty, the transversals which are
not in Uy, and similarly for Ty, both of which are relatively compact.

Finally, we assume that we have invariant transverse measures A and A’ on (M, F') and (M’, F'), which
are ¢ compatible on Uy and U, that is, for any o € AYT") and (U}, T}) € Uy,
| e@impan = | aigan
o= H(TY) T
Recall that A is a measure on each T; so that if f;; : T; — Tj is a local diffeomorphism induced by the
holonomy of F', then it preserves the measure. By the obvious extension, A induces a Borel measure on any

transversal to F' which is o-finite, i.e. for any compact transversal f, J.A 1 dA is finite. The leafwise measure

T
drp and A combine to give a global measure denoted du. In particular,
J edy = J [J- .dJ]F:| dA.
M T LJF

Next, we introduce the p-relative space of Haefliger functions, along with their relative integration against
A and A’. Denote by g : M — [0,0) and ¢’ : M’ — [0, 0) two smooth exhaustions such that for any s > s
for some so > 0, the open subspaces, with compact complements, M(s) = {g > s} and M'(s) = {¢’ > s}
agree through ¢, that is ¢(M(sg)) = M'(s0) and g|ar(sy) = 9" © @|nr(sy)- For s = so, set

T, = {T; €T |T, n M(s) # T},

Similarly for A’.

and similarly for 7.

Recall the subspaces W < AY(T) and W' < A%(T’) from the definition of the bounded measurable
Haefiger functions A%(M/F) and A%(M’/F’) given in Section 2. Suppose that (w,w’) € W x W', with
w= Z(aﬁ) a—h¥aand W' = Z(a’,’y’) o/ —h%a/. For simplicity, we have dropped the subscripts. The vector
subspace W x, W' c W x W’ consists of elements (w,w’) which are ¢ compatible. This means that all but
a finite number of the («,~) and (o’,7’) are paired, that is
o).

a = ¢*() and 7 = pony, so a-hia = ¢*(a —hZ
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Definition 4.1. Given functions 8 € AYT) and 3 € A%T"), the pair (3, 3") is p-compatible if there exists
s = 89 so that = p*(B") on Ts.
Set
AUM/F,M'JF';0) = {(B,B') € AAT) x AAT")|(B,8') is ¢ compatible} /(W x, W').

Definition 4.2. For [(3,8")] € A2(M/F,M'/F’; ), set

A3, 8], (A, A)) = lim BdA— | pldr ).
SO N\JTNT, T'\T!
This is well defined because any representative (3, 8') is ¢ compatible, so the right hand side is eventually
constant. In addition, every (w,w’) € W x, W' is ¢ compatible, so satisfies

lim j wdh— | W'dAN | = 0.

SO\ JrT, T'\T!
To see this, recall that there is a global bound on the leafwise length of the v and 7' in w and w’. This,
and the fact that there are only finitely many unpaired (a,7) and (o/,7’), insures that for large s, every
unpaired («,~y) will have both D, and R, < T \ T}, so o — hf';oz dA will be zero, and similarly for every

T\Ts
unpaired (¢/,7"). Those (c,7) and (o/,7") which are paired and appear in the integration, will have D,

and/or R, c T\ T, with corresponding D, and/or R, < T\ T,. In both cases, their integrals will cancel.

Throughout the paper, we denote the leafwise Schwartz kernel of a leafwise operator A by ka(x,y), which
is a section of the external tensor product bundle F'X] E* ~ E X E over M x M. The restriction of k4 to
the diagonal in M x M is then a section of E® E* ~ E® E over M. Two sections ¢, and oy of E give the
section 1 [X] o of E [X] E, which acts on a section ¢ of E by,

(1 Rp2)(p) = (w2, 9)1.
The restriction of ¢1 [X] 2 to the diagonal is denoted ; ® o, and it is then clear that,

tr(p1 ® p2) = (p1,p2), thatis tr(p1 ® p2)(z) = {p1(x), p2(2)).
This extends to all sections k4, by first restricting to the diagonal, so we have the suggestive notation
kalz,zy = tr(ka(z,x)).
As DF and D¥" are odd super operators, we have

of = (opy ) maot = (opy 8

Let Q and Q' be leafwise parametrices for D¥ and DEI, respectively. That is, they are finite propagation
odd operators, (which are zero in the + to — direction), with ¢ compatible remainders

S =1-Q(DP)*, R=1—(DF)*Q, §' =1-Q'(D¥)*, and R = 1—(D¥)* Q"

The remainders have Schwartz kernels which belong to I's(F, E') and T';(F’, E’) respectively, and they are ¢
compatible. Thus each remainder has finite propagation, and for s > s¢ sufficiently large, they are identified
by ® = (¢, ). For example,
(@71)* 0 S0 ®* 1) = 5 [ar(s)

for s so large that S sends sections supported on M(s) to sections supported on M(sp), and similarly for
M’ (s). The same is true for their squares with a possibly larger sg. It is easy to check that such parametrices
always exist, and that, because of bounded geometry, they satisfy the properties we need. See [Sh92], and
the proof of Theorem 4.12 below. Set

Ind(D¥) = te(kge) — te(kge) € AY(M/F),
and similarly for Ind(DE/).
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Definition 4.3. The relative meam(ed indez of the pair (DE, Df') of leafwise Dirac operators js

Inda o (DF, DF') = lim JMkSz@%’ x) — kpa{w,xydp — L[ifs%iu)@kR/2<x,r>du’>-

Remark 4.4. We could as well use S, R, S’ and R’ in place of S?, R2, S’ and R'* above. Both are
convenient for different applications. The RHS still makes sense without the squares and is unchanged. One
just writes S = S — Q[(DE)*S] and R? = R — [(DE)*S|Q and similarly for S'* and R'?, and shows that
all the extra terms cancel out in the s limit. For a proof see the Appendiz. We use the squares here and the
non-squares in the proof of Theorem 4.12 below.

Proposition 4.5. Indy A/ (DE, Df/) does not depend on the choice of (Q, Q") with ¢ compatible remainders.

Proof. By an abuse of notation, we will replace the Schwartz kernels of operators by the operators themselves.
Suppose that (Qo, Q) and (Q1,Q)) are two pairs of parametrices with ¢ compatible remainders. Denote
the remainders for (DF)* by Sp, Rg and S1, Ry respectively. The expression

te(I-Qi(DE)*)?) — (I —~(DE)*Q:)?) = te(S7) — te(RY),
can be interpreted as te(e; — f) for idempotents e;, f in T's(F, E)®(Clg+ @CIg-) such that e; — f € T4 (F, E).

More precisely, set
& = ( R(DE 1y k2 )™= 0 1,

Notice that the Haefliger trace tv extends to a trace fr on

{k + ( A*g’f* ) (i )|keFS(F,E) and Ay € C},
— E*

which is defined to be zero on Clg+ @ CIg-. We thus have
te(S7) — te(RY) = te(ey).
For ¢ € [0,1], set
Qr = (1 -1)Qo + tQ1,

which is a one parameter family of leafwise parametrices from Qg to @1, with remainders S; = (1—1¢)Sy +1t5;
and R; = (1 — t)RO + tR;. Then

e, — St Q:(R: + R})
' Ry(DE)* lp- —RY
is a family of idempotents such that
te(S7) — te(R7) = te(e, — f) = fr(ey).

Taking the derivative with respect to ¢, we get
d ~. . . . .
% (tt(Sf) — tt(RtQ)) = tt(et) = tt(et) = tt(etet + etet) = 2ft(6t€t€t).
Since e; is an idempotent, e;éqe; = 0 for any ¢, and so tv(S?) — te(R?) is independent of ¢, that is, Ind(D¥)
does not depend on the choice of Q.
The same argument shows that Ind(Df/) does not depend on the choice of ’. An important point to
note is that all of the elements in the argument for Ind(D¥) are ¢ compatible with those in the argument

for Ind(D¥"). This implies that the element
(te(S7) — te(R}), te(S")) — w(R)) = [(tr(S}) — tx(RE), tr(S")) — tr(R'))] € ALM/F, M'[F'; )
is independent of ¢, that is does not depend on the choice of (Q, Q).

The function of s whose limit defines IndA,A/(DE7 Df/)7 is constant for all s > s1 > s, for large enough
s1, so the limit exists. Indeed,

ks> (z,x) = kg (p(x), o(x)) and  kpe(z,7) = kpe2(p(z), o(2)),
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outside M (s1), for large enough s1, so
Indp A/ (D¥ DFY = | kglw, ) — kpela, xydp — f kgi2dz,x) — kpelz,z)ydy,
M~ M(s) M/~ M’ (s)

for any s > s7.
Finally,

§—00

IndA7A/(Df,Dfl) = lim (J kg2{x,x) — kpe{x,zydu — Jks,z<x,z>—k3,2<x,$>du’> =

M~ DM(s) M'~\M'(s)

J J kg:{x,2) — kp2{z,2) dvpdA — J kg2lx,x) — kpelr,x)drpdN =
T~T,, JF 11, JF

J tr(kgz) — tr(kgz) dA — f tr(kgr2) — tr(kpz)dN =
T T

NT. 'NT,,
s1 sh

([(6x(S?) = (), tr(S") = tr(R™)], (A, M),
which is independent of the choice of (Q, Q’). |

Recall, Section 3, that AS(D¥) is the Atiyah-Singer characteristic differential form for D¥ and similarly
for AS(DE,). By Theorem 3.3, the Schwartz kernel ke‘“Df)z of the leafwise heat operator et PL)” and the

leafwise characteristic form AS(D¥),, satisfy
lim tr, (ke,twg)g (m,x)) — AS(DE)(z).
uniformly on M. Since

AS(DE) L [k = @*(AS(DE ) | i),
the pair (AS(DF)r, AS(DF'), satisfies

([ aswpi, [ asoEn)| e Arar e
F ’
The theorem below is the first half of the foliation relative measured index theorem. It and Theorem 4.12

comprise a generalization of Theorem 4.18 of [GL83], see also [LM89], IV, Theorem 6.5.

Theorem 4.6. The following index formula holds:

’

Indy a(DE, DY) = f AS(DE), dA — f AS(DF'), dN.
K

Note that the right hand side equals <[(J AS(DE)L,J AS(DEY D], (A, A)).
F

Proof. We begin by constructing parametrices Q; and Q} with ¢ compatible remainders, which satisfy
1-Q,DF = 1-DFQ, and I1-Q,DF =1-DF Q..
It follows immediately that
k5t2<$, $> - kR%<xv :U> = trS(k(l —Q.DF)2 (xv 1‘)),

and we will show that as t — 0, trs(kq _q,pr)2(2,x) converges uniformly to AS(DE)L(z). Of course, the
same holds for (I-Q,DF")2.

For a real function g, set gx(z) = g(Az), for A € R, denote its Fourier Transform by g and FT(g), its
inverse transform by § and FT~!(g), and the convolution of g and h by g h. We have the following facts:

1
FT(gx) = XFT(g)%; FT(g*h) = V2rnFT(g)FT(h); and FT(3) = FT~*(3) = g, if g is even.
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Fix a smooth even non-negative function ¢ supported in [—1, 1], which equals 1 on [—1/4,1/4], which is
non—lncreasmg on R, and whose integral over R is 1. Note that F' T(w) 1 since v is even. The family
\[1/1 1 is an approximate identity when acting on a Schwartz function f by convolution, since, up to the

constant v/27 which we systematically ignore,

~
~ X

Zha e = FTNFT(0y + ) = FT Wyl = T = 1,

in the Schwartz topology as t — 0. In fact more is true.

Lemma 4.7. hm ([\/w 1ok f] fﬁ> = 0, in the Schwartz topology.

Proof. We need only prove that the difference of the Fourier transforms goes to zero in the Schwartz topology.
But,

T <[1$ *f] > P [f ] = —~FT(f) 3 (6 — 1).
VEIVE T VTV Vi

Write p for FT(f) € S(R). Then, since ¢ —1 and all its derivatives are identically 0 on (—1/4,1/4) and are
bounded over R with the bound which can depend on the degree of the derivatives (this is not a problem),
there are constants Cj, depending on non-negative n, m € Z, so that

Lom 1 n 0™ |1
15w et e = o i [t

< sup |2"

m
|z]=1/4 k=0
m

1 k+1 *) >
L
|z|=1/4 k—0 \/E \/Z
m 1 k+1
‘Z|> Vi k=0 t

For any non-negative k € Z, the function z — 2"p® (2) is Schwartz. But for any Schwartz function f, any
N >0 and any n > 0,

1 em 1
i 7 s S =0, sl A [ o

Set e(z) = e=*"/2, and for ¢ > 0, set

Then, by Lemma 4.7,
}in(l) (Xt(z) — e_tz2/2) =0, in the Schwartz topology.

Note that x*(D¥) has propagation < 1. To see this, since € = e, we have that up to a constant,
(\[1/’% ) ¢ﬁ€,
and by Theorem 3.1, x*(D¥) e I'y(F, E). In fact, up to a constant,

X{(DE) = FT (4 3¢)(WiDF) = waMﬁ)e(&) cos(EVEDE) de,
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since ¢, ;e is even. Setting 7 = V€, the fact that Suppy < [—1,1] gives,

xX'(Df Je(n/V't) cos(nDE )dn.

R R

The operator cos(nDF¥) has propagation < |n|, see [Ch73, R87]. Thus x!(D¥) has propagation < 1.

Set
o = (U OY g g - (LN gy

z

These are parametrices with ¢ compatible remainders for the operators D¥ and Df/. Indeed,

1-DFQ, = <1 < (0))1Xt(z))>(DE) -

(1_ (1_( ) ) = 1-Q,DF = (x'(0)"*x'(Df) € I4(F,E).
Note that, x!(z) = FT(Q/J\[e)(\/z) = e and v e is even. Thus

0 < X'(0) = FT(4;e)(VE-0) = \/77 wa(\/%g)e—f2/2 de < \/% fRe—fW e — 1

In addition,

. dx*
— i = t 19 —_— =
lim . O¢(0)7 lim —>(2) =0,
t

d
since di is odd. For simplicity of notation, we will ignore (x*(0))~*
2

in what follows. Thus

ks2(@,x) — kpela, @) = tro(bq_q,pey(2, 7)) = trs(ky(pey(z, @),
as claimed, and similarly for Q.
Since x*(D¥) and x*(DE’) have propagation < 1, kye(pey2 (2, ) and ki per)s (2, 7) are completely de-
termined by what (DF)? and (DF')? are within a distance 1 of z. Since (D¥)? and (DF")? are ¢ related off
K and K, the pair tr,(x*(DF)?), trs(x*(DF)?) is ¢ related off the 1 penumbras of K and K’. Thus,

| (b DF)D), r (W (DE)) | € A2M/E M F ),

and, we may express the measured relative index as

Indaa (DF, D) = ([ (00 (DE)D) tr (0 (DEVD) ) | (A1) ).

The right hand side is independent of ¢, because of its independence of the choice of the pair (Q:, Q) by

Proposition 4.5.
Now, t(nE\2 t \2 /
([ (b DER), 1 (A DE D) | (A ) ) =
lim J trs(x'(DE)?) dA —f trs(xt(Df/)Q)dA’ =
S0\ JT\T(s) T'\T'(s)

| mcofas - | moiof)

T~\T(s1) T'\T"(s1)

for s; sufficiently large. The same sy works for all ¢ > 0. Note that 7'\ T'(s1) and 7"\ T"(s1) are relatively
compact, so have finite volumes.

Let > 0 be given. There is ¢ty > 0, so that for all 0 < ¢t < ¢, and all x,
| trs(kye(pey2 (2, 7)) — trs(k__ipp)2 (z,2))| < 6/2.

4.8.
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This follows from Proposition 3.7 and Lemma 4.7 and their proofs. These give
[Kkye(ppy2 (2, 2)(0), 0) =k _ipp)2 (2, 2)(v),0)] <
E
X" (DE)? = e P |l —l|63] | —ell62]| - <

— 22
sup(|(1+2%)"(x'(2)* = e DI[87]12, —0ast—0,

zeR
independently of 6. Finally, trs(ky¢(pe)2 (2, 2)) is a finite sum of elements of the form k. pr2(07,07), as
is trs(ke,twf)z (z,x)).
From Theorem 3.3 we have,
tl% trs(ke,t(Df)z (z,z)) = AS((DE)*)(z) uniformly.
Choose t € (0,t9) so that
| trs(k_opy2 (2,2)) — AS((DE)*)1(2)] < §/2.
Then for all z,
| try(kyepey (2, 2)) — AS((DE)?)r()] < 6.
We may assume that the same holds for
[ty (ko s (,2)) — AS((DE)2) ().
Thus
J tre (Xt(th)z) dA — f trs (Xt(tDILE’)2> dA’
T T

~T(s1) 'NT'(s1)
differs from

[ asogpan - [ as(oF P an

(s1) T'\T'(s1)
by at most §(vol(T \T(s1)) + vol(T" \T'(s1))), where § is as small as we please, so they must be equal. [

Denote by x[q,5) the characteristic function of the interval [a,b]. For € = 0, denote by Pg,q the leafwise
spectral projection X[O,G]((Df)z) of (DF)?, with leafwise Schwartz kernel kP, .-

Definition 4.9. The A dimension of P ) is

Dimy (Im(Pp 7)) = J kpyy (T 2y dp = J [J kp[0,€]<.73,33‘>d$1:‘] dA.
M T LJF

In particular,
Dimy (Ker((D¥)?)) = Dimy (Im(Py)) = fM kp,(x,xydy = L Uka0<a:,x>dxF] dA.

Since Pg ¢ is a projection, it is automatically a positive operator. It is a standard result that the function
kp, ,{(z, ) is non-negative and leafwise smooth.

Lemma 4.10. Pjg ) is transversely measureable.

Proof. First note that x(o,q((Df)?) = X[,\@\/a(Df). Next, recall the approximate identity %ﬂ@% from
t
the proof of Lemma 4.7, where v is a smooth even non-negative function supported in [—1, 1], which equals

1 on [—1/4,1/4], which is non-increasing on R, and whose integral over R is 1. Then %@ = FT(Y ),

so ¥(x) is Schwartz, and

Jae sy 2wy

is uniformly bounded independently of t. Indeed, we may assume 0 < ¢ < 1, then setting y = v/tx we get

j(mﬂ)%«z (y)dy < f(lﬂﬂ‘\%& ()] dy = j(um?)ﬂwndm f<1+x2>%<x>\dx<+oo,

1
VT

S
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since &(x) is Schwartz.

Let p,, be a sequence of smooth compactly supported non-negative even functions taking values in [0, 1].
We require that p, be supported in |y| < 4/€ + 1/n, be equal to 1 on |y| < 4/€, and converges pointwise to
X[—v/et+v/e asn — 0. For £>0,0 < (1+ v on(y) < (1+ (Ve + 1)2)%. Peetre’s inequality says that for all
y, z, and £,

(1+2) < 201+ (=)0 142
Thus, for £ = 0, the family

(4 UG )@ = || 1+ 20 =)yl <

%

20+ =P+ i = i)l <

|j2"1+z— >>7 (2 — )1+ (Ver D) dy| =

él/\

a(z
z

p JR—
251+ (We+1 J +y%) \/%z/)ﬁ Yy
is also uniformly bounded independently of .

By Proposition 3.7, the Schwartz kernel of (id; Lk pn)(DE) converges uniformly to the Schwartz kernel
of p,(DE) when t — 0. As the Fourier transform of \[T/J L # pp is in CP(R), the Schwartz kernel of
(ﬁw% # pp) (DE) belongs to T's(F, E). It follows from results in [HLI0], Section 2, that the Schwartz kernel
of (%ﬁﬁ  pp)(DF), so also the Schwartz kernel of p,(DE), is measurable for all n.

Now, p,, converges pointwise to x_ /¢, /) and using again that for £ > 0, (1+3?)‘|pn(y)| < (1+(v/e+1)2)",
Proposition 3.7 gives that the Schwartz kernel of p,, (D¥) converges pointwise to the Schwartz kernel of Po.q,
so the Schwartz kernel of Py is also measurable. O

Thus, Dima (Im(Pyo,)) is well defined as an element of [0, 0], and can potentially be oo.

Recall the sequence M (s) of open subspaces, with compact complements, of M defined at the beginning
of this section. Let sg be such that K < M ~ M(sg). Recall that ¢ restricts to a foliated isometry which
identifies M (sg) and its foliation, with M’(s¢) and its foliation. Moreover, we have the identification

& Elprsy) = E'|M,(SO) and also the conjugation of the Dirac operators.

The restriction ﬁf of the operator DE to M(sy) n L can be defined as in [GL83] by simply restricting to

dom(DE) n L*(M(sg) n L, E). However, we shall rather define ﬁf so that it is a closed operator acting
from the Hilbert space L?(M (sg) n L, E) to itself. This is achieved by setting

dom(D¥) := {¢ € L*(M(so) n L, E) | D¥¢ € L*(M(s0) n L, E)}.

Since DE| with its maximal domain (= its minimal domain) is closed and self-adjoint, the resulting operator
ﬁf is a closed symmetric operator from L?(M (sg) n L, E) to itself.

The above conjugation over M (sg) then allows the identification of ﬁf with the restricted operator ﬁ’f'
of DF" to M’(sy). Denote by Py(so) the orthogonal projection onto Ker(ﬁf). Similarly, we have Pj(so),
which we can identify with Py(so).

Assumption 4.11. For s > sq, J kpy(so){m, 2y dp < 0.
M(s)

This assumption is satisfied for instance when the foliation admits PSC near infinity as we shall see shortly.

The following is the second half of the foliation relative measured index theorem.
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Theorem 4.12. Suppose that there is g > 0 so that Dima (Im(Pyg 1)) and DimA(Im(P[’0 co]
and that Assumption 4.11 holds. Then, for 0 < e < €,

IndAyA/(DE,DE’) = J trs(kp[o’e](z,x))d,u — J
M

)) are finite,

trs(kp[fw] (@, ) dy'.

’

Thus,

f ugk%cax»du-Ja try(kpy (z, @) dy = f AS(DE)pdA — | AS(DE')pdA.
M / K K’

Remark 4.13. Note that AS(DE), satisfies J AS(DEY, € AXT), while in general the integral of the global
F
form J AS(D¥) e AX¥(T), and may include higher order terms. One might hope that Theorem 4.12 extends
F

to these higher order terms (and the higher order terms of the Chern characters of Py and Pj), without
additional restrictions on the spectral measures. The examples in [BHW14] show that this is not the case,
since they satisfy the hypothesis of Theorem 4.12, but not its conclusion for one of these higher order terms.
We show in [BH22] that the restrictions given in [HL99] and [BHO8] do allow for the extension to the higher
order terms.

Proof. For € > 0, denote by (. : R — R the bounded Borel function given by

@) = Txem(@®) andset G = (G5) = (D)),

which is a bounded leafwise operator with norm < ﬁ Extend its leafwise Schwartz kernel kge(x,y) over
M x M, by defining it to be zero if x and y are not on the same leaf.

Lemma 4.14. kge is measurable and leafwise smooth off the diagonal.

Proof. Since (M, F') has bounded geometry, the operator P, is a leafwise smoothing operator, that is, it
is bounded between any two leafwise Sobolev spaces, with a uniform global bound. If @ is a uniform finite
propagation leafwise pseudodifferential parametrix of D, then I—D¥(@Q = R is a finite propagation leafwise
smoothing bounded operator, so its kernel is in I';(F, E). Then

G =Q-PpgQ+GR

where —Pjg @ + G°R has a smooth uniformly bounded kernel. Since @ has a measurable leafwise smooth
Schwartz kernel off the diagonal, kg« is also measurable and leafwise smooth off the diagonal. O

Recall the good cover U = {U;,v;} of M, and its associated good cover {V;,;}. Let zz M x M — [0,1]
be a smooth bump function supported on | J; V; x V;, a bounded open neighborhood of the diagonal AM,
which is equal to 1 on the smaller open neighborhood | J, U; x U; of AM. We require that all its derivatives

8§65@Z(x, y) in these local coordinates be uniformly bounded over M x M. Denote by ¢ : M x M — [0, 1]

the transversely measurable leafwise smooth function with ¥ = 12 on | J; Vi x4, Vi, where ~; is the constant
path at some point in U;, and v is zero otherwise. Then ¢ belongs to I's(F, M x R) and is equal to 1 on
\U; Ui %+, U;. In particular, its leafwise derivatives are uniformly bounded over M x M. In addition, for any
leaf L, 1) restricted to L x L is supported in an open bounded neighborhood of AL, and is 1 on a smaller
open neighborhood of AL. Denote by be the leafwise operator with leafwise Schwartz kernel

koe, (x,y) = ¥(z,y)ka (z,y),
which is supported on | J,; Vi %, Vi.
Lemma 4.15.

e The operators Qy,, DEQZ} and Q;Df are uniformly bounded operators on the spaces L*(L, E).
o The operators Ry, = Ifopr and Sy, = Ifopr have leafwise Schwartz kernels in T's(F, E).
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Proof. We may choose a leafwise pseudodifferential parametrix ) for D¥ which is supported in the leafwise
neighborhood of the diagonal where the function 1 is identically 1, and we may assume that it is in the
uniform bounded calculus of each leaf, see [K91]. Then R = 1—-D¥Q and S = I -QD¥ belong to I's(F, E),
and
kqs (z,y) = kq(z,y) — (@, 9)kp, 40 (@,y) + ¥(, y)kcer(z, y).

By [K91] we know that @ is a uniformly bounded operator on the spaces L?(L, E). As noted in the proof
of Lemma 4.14, Py is a leafwise smoothing operator, so also is Pjg @, see for instance [K91]. Therefore,
the restriction of the Schwartz kernel ¢ (z,y)kp, (¥, y) to any L x L belongs to the class of uniform finite
propagation smoothing operators, that is it satisfies [Definition 3.1] of [Sh92]. In particular, it is supported
in a uniformly finite distance neighborhood of the diagonal, and is uniformly bounded with all its derivatives
in local normal coordinates. But such a kernel defines a leafwise smoothing operator, see again [K91, Sh92],
S0 it is uniformly bounded.

Finally, by the Spectral Mapping Theorem, the operator G€¢ is uniformly bounded between any Sobolev
space and itself, so the operator G°R is a uniformly smoothing operator. The bounded geometry assumption
then implies that kger is measurable and leafwise smooth with uniform L*-bounds on all its derivatives in
local normal coordinates. Using the properties of ¢, this implies that ¥ (z,y)kger(x,y) is also measurable
and leafwise smooth with uniform L*-bounds on all its derivatives in local normal coordinates. In addition,
this latter kernel has uniform finite propagation and therefore belongs to I's(F, E). This proves in particular
that @, is uniformly bounded and that Qf — @ belongs to I's(F) £).

As

DFQy = 1-R + DF(Q, —Q) and QyD7, = 1-5 + (Q} —Q)D7,
we also have that DEQf/) and Q;Df are uniformly bounded operators on the spaces L?(L, E), and both R,
and S, have leafwise Schwartz kernels in I's (F) E). O

Denote by mg multiplication by the characteristic function of M(sg), which we identify with M’(so).
Set G¢ = myG*my. We also have the operators G'¢ = moG/fmo, moI'my = mgImg, Po,q) = moPjg,emo,
13[’076] = mOP[’07€]m0, Ple.ooy = mo(Pe,0)) Mo, and P(’E’OO) = mo(P(’E’OO))mO. Note carefully that these operators

are acting on the Hilbert spaces H(so) = (Hr(s0)) = (L*(L n M (s0), E|pan(so)» dx|Lan(s))-

A~

Proposition 4.16. For s > sq, J- kg, ) — kg lx, )| dp < 0.
M (s)

Proof. We begin with the following.

Lemma 4.17. Let A = (AL) be a A-essentially uniformly bounded family of self-adjoint operators, acting on
the Hilbert spaces H(s) = (Hr(s)). Suppose P = (Pr), where each Pr, is a self-adjoint projection on H with
smooth leafwise Schwartz kernel. Then the Schwartz kernel of PAP satisfies |kpap{x,z)| < ||Allkplz, x),
where ||A]| is the A-essential supremum over M (s) of the operator norms of the operators Ay,.

Proof. The operator ||A||I, —AL is a self-adjoint non-negative operator for any L. Therefore, the operator
PrL(||A|| I —AL) Py is also a selfadjoint non-negative operator, and its leafwise Schwartz kernel ||A||kp, —
kp, A, p., when restricted to the diagonal is a non-negative section whose trace is a non-negative function.
Therefore the local trace function is non-negative. But this is equal to ||A||kp{z,z) — kpap{z,z). Since
kpap{z,z)is areal function, we can use the same argument with —PAP and get ||A||kp{z, z)+kpap{z, ) >
0 and hence the conclusion. |

=~

Next, we adapt the proof of Lemma 4.28 in [GL83], and the material on its preceding page.
Consider Im[(Ge — C:“G)(ﬁ[o,e] -, 6])], the closure of the range of (G¢ — 6’5)(]3[0,61 - ]3[’0 q)- Since we

are identifying M (so) with M’(sq), we can identify DF  restricted to M’(sq) with ﬁf = D¥ restricted to
M (sp). Denote by P the orthogonal projection onto the closure of the subspace

W = Ker(Df) + Im[(G< — G*)(Po.q — Py )]
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Then
G- G“=P(G —-G*)=P(G -G)P.
Indeed, one has (acting on H(sy)),

DF(G* — G*) = mo(DEG)my — mo(DF G Ymy = mo(Peoy)mo — mo(P, ,))mo =

(€,00

/

mo(I—P(E,w))mo — mo(ll _P(/e,oo))mo = mo(P[075]>m0 — mo(P[07E])m0 = ﬁ[loyé] _ﬁ[O,e]-

TherefOre, (éﬁ - éle)(Ker(ﬁ[ove] - ﬁ[love

(G — G) (P, — Blop) + (G5 — G (Ker(Ppo g — Py.op)) = W.

)< Ker(ﬁf), so the range of G¢ — G’ is contained in

ljext, Adenote by pe the orthogonal projection onto the closure of the range of the self-adjoint operator
G¢ — G'*. Then
peP = Pp. = p. and p.(G° — G'°) = G* — G,
and so,
Ge _ G/e — pE(GE _ G/e) — Ppe(Ge _ Gle) — P(Ge _ GIE).
The equality P(C\r’6 - é”e) = P(CAT’6 - (A}"E)P follows from the fact that all the operators are self-adjoint.
Now the norms of G, and G.. are bounded, and by Lemma 4.17,
kg _a <, w)| < ||Ge — Gellkp(x, ).

Thus, we only need to show that for any s > s,
f kplz,x)dp < +o0.
M (s)

Recall that Py(sp) is the orthogonal projection onto Ker(ﬁ{J ), so by Assumption 4.11, this inequality follows
provided we show that,

J kp_py(so){x; ) dp < +00,
M(s)

since Im(Py(sp)) < Im(P).
To this end, consider the von Neumann algebra W* = W*(M(sg),A) of F' and E restricted to M (so)
with respect to the trace 74 associated with the restriction of A to the Borel transversals in M (sp). Denote

=~

by r. the leafwise orthogonal projection onto Im[((A}'E — é”f)(f’[o)e] — P[’0 e])]. By the parallelogram law for

projections in W*, the orthogonal projection P—Py(s) is Murray-von Neumann equivalent to the orthogonal
subprojection r.. As 75 is constant on the Murray-von Neumann classes and non-negative, we have the
estimate

f kp_py(so) T, ) dp < f ky (x,x)d p.
M (so0) M (so0)

Since the image of (ée - @;)(}3[0’6] - P

0 6]) is contained in

i ((G. - G0 Py.q) + 1w (G - G0 B ).

by the parallelogram law for projections, we are reduced to proving that the orthogonal projection onto the
closure of each of these subspaces is Tp-trace class.

As the proofs are the same, we only prove the first. The subspace Im ((CAT‘E — éé)ﬁ[07€]> is contained in
Im ((CA}’6 - CAJ’G)P[07E]), where the operator (G, — éle)P[(Ld is now acting leafwise in the whole manifold M,
obtained by extending G, and CA?’E by zero off M(sg). Thus, we are reduced to checking that the orthogonal

projection onto the closure of Im ((C:’6 — CAT"E)P[O,e]) is Ta-trace class, and has integrable leafwise Schwartz

kernel.
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Recall that, by assumption, Py . (as well as P[’0 q in M’) is leafwise smoothing with finite 7o-trace. On

the other hand there exists an isometry with dense range between Im (P ¢) N Ker(C:'6 - CAY"E)l and the closure

of the image of (CA?€ — CA?’E)P[O’G], acting in the L2-spaces of the leaves of M. A classical argument, [BF06],
using normality of the trace 74 then implies that the 7p-trace of the projection onto the closure of the image
of (G, — CA?’E)P[07E] coincides with that of the projection onto Im(Pjg ) N Ker(G. — G.)*. This latter is a
subprojection of Pjg (], so it has finite 75-trace and is also smoothing. Thus, the p-integral of its local kernel
trace is finite. The conclusion follows. R R

The same argument works for (G — G’E)P[’OH by considering G. — G. in M’(s¢) and extending it to M.
This completes the proof of Proposition 4.16. ]

By Lemma 4.15 applied to D and DEI, the operators @7, and Qi; are finite propagation parametrices
for (DE)* and (D’LE')Jr respectively. For simplicity, we denote these by @Q and @', and by S, R and S’, R’ the
corresponding remainders.

Following the proof of Theorem (1.17) in [GL83], we let (f, : M — [0,1]),>1 be an increasing sequence
of measurable compactly supported functions, which are leafwise smooth and such that:

e for any compact subspace B in M, the functions f,, are identically 1 on B for large enough n;
o for all n and any leaf L, [|[D¥, f.]|| < 2.

We may assume that each f, is equal to 1 on a relatively compact open subspace U containing K, such
that the finite propagation operator @) sends sections supported in M ~\ U to sections supported in M \ K.
Then the leafwise operator (1 — f,, o ¢~ 1)Q’, which is well defined in ¢(M \ U), can be transferred using
the isomorphism ® = (¢, ¢) to a leafwise operator on M ~\ U. We denote it by (1 — f,,)Q’. We extend it to
an operator on (M, F') by making it 0 where it is not already defined. We then define new parametrices for
(DEY* by setting

Qn = an + (1 - fn)Q/

The advantage is that each pair (Q,,Q’) is p-compatible.
Since the relative measured index can be computed using any pair of ¢-compatible finite propagation
parametrices modulo T's(F, F), we may use the remainders R,, S,, R’ and S’ obtained in this way, i.e.

Rn = foR+ (1= fu)R and Sy = foS + (1~ fa)S" — [DL, fa](Q — Q),
with
R=1-Q(DP)"), S=1-((DP)")Q, R =1-Q((D{)*), and §' =1-((DF)")Q".
By Remark 4.4, we can compute Inda o (DZ, DEI) by the formula below, namely using R,, S,, R’ and S’
in place of their squares. Note that the formula is independent of n, and that, for example, kg, {z,z) —
kg, {x,z) = ks, _pr,{x,x), etc., which simplifies the notation.
Now

Inda o (D¥, DF) = lim f ksn,Rn<x7x>du—J ks —_px, aydy' | =
S0\ JMM(s) M/~ M’ (s)

lim < fu(@)ks—rx, ) dp — fn(x’)ksuRKx,@du’—fM M(k)wf,fn](Q—Q»@$>dﬂ> =

S0\ MM (s) M~ M’ (s)

| n@hsrodn= [ fu@bs-ntowdd - | (Tuf)@hko-a o dn
M M’ M

~NK
Here f,, is defined on M’ by the transport using ¢ and by defining it to be 1 where it is not already defined.
We also used that for large enough s, the support of f,, is contained in M ~ M(s). Finally [DE| f,] is the
zero-th order differential operator which is Clifford multiplication by the leafwise gradient V, f,, of f,, and
the compact support of Vp, f,, is contained in M ~\ K.
Note that by our choice of parametrix defined by cutting off G¢ and G'¢, we have that on the diagonal

ks_plx,x) = try kpy (x,2) and kg _p{x,x) = try k:p[/o ; (z,x).
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Thus, by the Dominated Convergence Theorem,

i, [ fo(o)bsnGoaydn = | tnu(hn g (o2) di
M M

and

tin, [ e ks no)dil = [ tnoke (o) di
M’ Wi [0.€]

n—00

Finally, for large enough n, the support of Vy, f,, is a subset of M (s) with s > s, as large as we please.

So, we need only show that, lim f (Vifa)(@)kg—g{z,x)ydpu = 0. Recall that the restriction of k¢ to the
n—0o0 (S)
diagonal coincides with that of kg, so for large s, it coincides with that of k5. and similarly for kq/. Thus,
by Proposition 4.16 , we have

f lkq-q <@, x)| du < .
M(s)

As ||V fa|| < 2 the proof is now complete for the [0, e]-projections.

The second statement with e = 0 follows immediately using the Dominated Convergence Theorem and
the fact that each integrand decreases as € decreases to zero.

This completes the proof of Theorem 4.12. O

5. OPERATORS WITH A FINITE SPECTRAL PROJECTIONS

We now give examples of operators which satisfy the hypotheses of Theorem 4.12.
For a leafwise Dirac operator DE, the canonical operator Rg on sections of E, is given by

1 p
RE() = 5 D5 & en RS, (9),
jik=1

where RF is the curvature operator of the connection V on Ep, e;, ...,ep is a local orthonormal basis of
TF, and e;- is Clifford multiplication. Note that R% is well defined, leafwise smooth, and that it is globally
bounded because of our assumption that V is of bounded geometry. The operators D¥ and RE are related
by the general leafwise Bochner Identity, [LM89], which is

5.1. (DF)? = V*V + RE.

This is the main result of this section.

Theorem 5.2. Suppose the curvature operator RE is uniformly positive near infinity, that is, there is a
compact subset K = M and ko = sup{x € R|RE — k1 > 0onM ~\ K} is positive. Then for 0 < € < ko,
Dimp (Im(Pyo 1)) is finite. More precisely,
0 < Dima(Im(Py,)) < MJ (koo (z, ) du < o,
(ko —€) Jx
where k1 = sup{x € R|RE — k1 = 00onM}. In addition, Assumption 4.11 holds.

Prime examples are spin foliations which admit leafwise metrics with PSC off a compact subset of M,
with F = S the spinor bundle associated to T'F', or more generally, its tensor product F = S ® Fy by any
Hermitian bundle Ey which is leafwise flat near infinity. In fact, all that is needed is that E; defines a
K-theory class which is leafwise almost flat near infinity.

When the A-dimension of P, is finite, we denote by Inda (D¥) the well defined measured index given by

Indy(DF) = JM trs(kp, (z, x))dp,

and similarly for Ind, (DF").
Immediate corollaries of Theorems 4.6, 4.12, and 5.2 are the following.
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Theorem 5.3. Suppose that (M, F,K) and (M', F',K') are compatible foliations as defined at the beginning

of Section 4. Suppose further that RE is uniformly positive on M ~ K, so also RII?:: is uniformly positive on
M'\K'. Then

Indy o (DE, DF) = Indy(DF) — Indp (DEF) = f AS(DE)LdAfJ AS(DE), dN'.
K

’

Theorem 5.4. Suppose that (M, F) is a foliated manifold as explained in the Introduction. Suppose further
that E and E' are two Clifford bundles over M which are isomorphic off some compact subspace K of M,
and that RE, so also RI{”:/, is uniformly positive on M ~ K. Then

Indy A (D¥, DF) = Indp(DF) — Inds(DF) = fM(AS(DL)(ch(E)fch(E’))L du.

Note that ch(E) = ch(E’) off K.

Returning to Theorem 5.2., note that k; < ko, and since K is compact and RE is bounded, r; is

automatically finite. Note also, that Pf = Py|r, so also P[Id q= Pro, |, is not necessarily of trace class in

the classical sense. If a leaf L passes through K an infinite number of times, the classical trace of P* may
be infinite. However, if it passes through /C only a finite number of times, its classical trace must be finite
by the result of Gromov and Lawson, Theorem 3.2 of [GL83].

In the case where k1 > 0, we get an even stronger result.

Proposition 5.5. Suppose that k1 > 0. Then for 0 < e < k1, Pjg,q = 0.

Proof. Suppose that Pjg ¢ # 0 for some 0 < € < 1. Let o # 0 be in the image of Pjg . Then there is a
leaf L = M so that of, = 0|z, # 0 on L. We may assume that the L? norm ||o|| of o, is 1. Then, since the

operator (€ — (DE)Q)P[% ¢ 1s non-negative, we have

€ = <(DE>20'L,O'L> = J<V*VO'L,O'L>CZ$F + J<’R§0L,UL>dxF =
L L

| IvoulPdze + | REovonyder = | REovowydor = w,

L L L

an obvious contradiction. O
We begin the proof of Theorem 5.2 with some lemmas.

Lemma 5.6. For0<e< o, 0 < f kpiy q{Ts2)dp < .
K

Proof. The first inequality is because kp, , (z,z) > 0.
Our bounded geometry assumption implies that for each leaf L and k € Z, the Sobolev space H*(Er) is
the completion of C¥(EyL) in the norm

llorlls = [1(1+ (DE)*)*arllo
where || - ||o is the L? norm on C®(EyL). If A: HI(EL) — H*(EL) is a bounded operator, its operator norm
is denoted ||A||j k. The Spectral Mapping Theorem says that for any bounded Borel function g on R,
lg(Diw = 111+ (DEY)*ED29(DE)loo < sup (1 + 2?2 g ().
xTE

It is thus immediate that ||P[6 qlljk is finite for all j, k, so standard arguments in Sobolev theory give that
P[LO . is a smoothing operator on each leaf L. So, kp[07€]<.13, x)y is leafwise smooth.
Given a vector u of unit length in the fiber of Ey, at z, define the Dirac delta section 6% of Ey, by

Oiron) = C(uor()),
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Bounded geometry also implies that the Sobolev norms ||d%||_j are bounded for = € M and k large enough.
Then we have

[kpgy o (2, 2) (), w)] = [(Po.q(03): 601 < |Ix0.a (D)) =krl 151 |-&l[65]] -
is uniformly bounded on M. Since K is compact, we are done. O

The proof of Theorem 5.2 involves applying the leafwise Bochner identity to kp, . When we apply an
operator to the first variable, we will indicate that by the subscript (1), and for the second variable by the
subscript (2). For example, V1)V (2)kp, (%, ) is shorthand for tr(V*VYkp, (7,9) [y=z)-

The kernel kp, ;(,y)|Lx1 = 2, ok (z)@ck (y), where o1, 0%, ... is an orthonormal basis of Im(Pjo |z« ),
and the expression on the right is independent of the choice of the basis. The Spectral Mapping Theorem

gives that (e — (D¥ )Q)P[%) (] 1s a non-negative operator, so we have immediately,

Lemma 5.7. For0<e< o, 0 < J (e — (DE)2)(1)]€P[O,€]<.'I},$> dys.
M

The proof of the following is standard in the classical case, see [LM89], p. 155. Its proof in the foliated
case is a consequence of the holonomy invariance of A, and is given in the Appendix.

Lemma 5.8. For 0 < e < o0, J (V*V)(l)kp[o’d@,@du = f V)V kpy () dp.
M M

Note that the function V1)V (9)kp,, ,{(z, ) is non-negative, since >, (Vo}(z), Vol (x)) converges locally
uniformly on each leaf to V1)V (2)kp, ,{(x, 7). See [A76], and the proof of Lemma 7.4 below.

Proof of Theorem 5.2. Assuming that 0 < € < kg, and using Lemmas 5.7 and 5.8, we have

0 < JM(G — (DE)) ke o (o) dp = JM —V)Vykp (2, x) + (€ = RE) 1)kpy (2, ) dp.

Suppose that the non-positive integral J —VayVykp, {(z,z)dp = —o0. By Lemma 5.6 and because K is
M

compact, Rg is bounded and Rg >k1lon K,
5.9. -0 < f (eng)(l)kp[oye]@,x}du < (efnl)f kpy o{T 2y dp < 0.
K K

Since RE > koI > 0 on M \ K, the operator ¢ — RE is non positive on M ~\ K, so (e — R%)(l)kp[oye] (x,x)is
also non positive on M ~\ K, and

| e RB ke < 0

Thus
0 < fM ~V1)Vykpg. (@) + (e = RE)ykpy (. 2y dp =

JM _v(l)v@)kp[o,e]<$7$>d/‘ + (E_Rg)(l)kp[o,g]<xﬂx>dﬂ + J;(E_Rg)(l)kp[o,e]<x7x>d/‘ <

M~K
JM Yy Vekee (oo dp + |L(€—Rg)(l)kP[o,s]<x,x>dM| = —oo,
a contradiction. So,
—0 < J ~ViyVieykpy, o (z,a)ydp < 0.
Similarly, assuming that M
JM\K(e—R?)a)kpm@,@du I

leads to a contradiction. Thus —o0 < J (e — R’;ﬂ)(l)kp[o,d@;, zydp < 0, and we have
M~K
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5.10. 0 < J(*V(l)V(g) + (e — Rg)(l))kp[oyfﬁx,x} dp <
M

fM(e)C— R{i)(l)kp[oyﬁ]@, xydu + J}C(e — Rf:)(l)k;p[gye] {x,x)ydu,

~N

and all of the integrals are finite.

Again since RE > koI > 0 on M \ K, we have

| e RBwhn @ adn < (= r0) | ki loydu < 0
MK K

~N

sincef kpy o (z,2)ydp = 0.
M~K '

Combining this result with Equations 5.9 and 5.10, we get for 0 < € < kg,

0 < f (e—Rg)(l)kp[oyﬁ]@:,@du + ‘[(e—R%:)(l)kp[O,e]@,x}du <
MK K
(e—lio)J kpyy 4z, 2y dp + (e—m)J kpyy q{z 2y dp =
M~K K

(e — K,o)f kpyy g{xsz)ydp + (ko — k1) f kpy o<, ) dpt.
M K
Thus for all 0 < € < kg,
0 < DimA(Im(P[O e])) = J k‘p[o E]<J},J)>du < MJ kip[o e]<$,$>dﬂ < 0.
’ Mo (ko —€) J 1

To finish, we show that Assumption 4.11 holds, namely

Lemma 5.11. For s > sq, f kp,(so){w, z)ydp < oo.
M(s)

Recall that Py(sg) is the orthogonal projection onto Ker(ﬁf), where ﬁf = D¥ restricted to M(sg), as
in the proof of Proposition 4.16. For simplicity of notation we denote the leafwise Schwartz kernel kp, (s,

by k, and lA)f by D.
Proof. Let so < s’ <'s, so M(s") ~ M(s) is relatively compact. Let f : M(sq) — [0,1] be a smooth cutoff
function, such that
Flm(so)msy = 0 and flays) =1.
Since (D?)(1y(k){x,z) = 0, we have
0 = (/) (V*V)a) + Ray) (k){z, z).
Since R is a zero-th order differential operator,
() @R (k)(z,x) = (Rf)ayfe) (F){z,2) = ro(fayfia)(k){z,z).
By Lemma 7.4, there is a smooth leafwise vector field Vj, ¢, so that
(f) ) (V*V) 0y (k) x, &) = (V*V) () (F) @ k), @) = V(1) Vo) (F) 2 (k) ) — dive (Vi p) (2).

Moreover, Vj, r is supported in M(s’), since foy(w,y) = f(y) = 0 on M(sg) x (M(s0) ~ M(s")).
Now,

(V1) @) (k) 2) + () 2) V 2y (k) )
2(fV(f) ® o)) (k){w,x) + (f*)(2)V (2) (k) ),
where V(f) ® e is Clifford multiplication by the one form V(f). Applying V ;) we get

ViV (f) @) (k) z) = 2(fV) 1) (V(f) ® o) 2y (k){z, z) + (fV) (1) (f V) (2) (k){x, ).

V) (f*) ) (k)(z, )
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Combining these computation shows that on M (s’),

= ro(f)f) (k) z,z) + 2(fV) 1) (V(f) ® &) ) (k)(z,z) +
(V) (V)@ (k){z,2) — dive(Vi,f)(@).

This equation is in fact valid over all of M since the RHS extends smoothly by zero off M(s’).
Both k{z,r) and V1)V (9)(k){x,z) are non-negative functions on M(so) which coincide with the non-
negative functions (f(1)fr2))(k){x,z) and (fV)1)(fV))(k){z,z) on M(s). Thus we have

HoJ. Kz, xydp < Hof Kz, x)ydp + J V1yVig)(k){x, z)dp <
M(s) M(s) M(s)

o fM<f o Fey k(a2 dp + f (V) (V) (k) ayds <
J, e @dn o] | (90 (V)@ o))

(s") \M(s)
since V(f) is supported in M (s") \ M(s). But,

f dive (Ve s) (@) dp = 0,

see proof of Lemma 7.4. Since |f| < 1 and V(f) is uniformly bounded (say by Cy ), being zero off the
relatively compact subspace M (s') \ M (s), we have

0 < ko j K,aydu < 2| j (Ve )y (K)o, 0| di < Cor | 2V ) (k) a0 dp.
M (s) (s")NM(s) M(s")NM{(s)
Write k(z,z) = > (cF(z),0 (x)>, where ol 0k ... is a leafwise orthonormal basis of Im(Py(s¢)). Then
using the inequality 2|(V(cF)(x),0l(2)]) < |[V(eF)(@)|> + ||(cF(z)|?, and summing over i, we get

2|V(1)( )<£E,l’>‘ < V(l)V(g)(k)<x,w>+k<:c7x>.

Thus,
Cy
0 < J kr,zydp < J VayVig (k){z,z) + k{z,z)dp < oo,
M (s) Ko JM(s')~M(s)
since p is a Borel measure (so finite on compacts) and V1)V (o) (k){z,z) + k{(z,x) is non-negative and
bounded on M (s') \ M(s). O
This completes the proof of Theorem 5.2. O

We devote the rest of this section to two corollaries of Theorem 5.2. In particular, we relate our definition
of the relative index to the cut-and-paste definition considered in Section 4 of [GL83]. We consider compatible
foliations (M, F) and (M’, F’) as defined at the beginning of Section 4.

For the first corollary, we say that the foliation F, and so also F’, is reflective if there is a compact
hypersurface which is transverse to F, and which separates off the infinite part of V. For simplicity we
will assume that this submanifold is just JKC, and similarly for dK’. Then we can “cut and paste” as in
[GL83]. In particular, there is § € R, and a neighborhood of 0K which is diffeomorphic to oK x [, d],
and so that F restricted to 0K x [—d,d] has leaves of the form (L n dK) x [—§,0]. We may assume that
the foliation preserving diffeomorphism ¢ extends to 0KC x [—4d, §], and that ¢(9K x [—4,d]) is diffeomorphic
to 0K’ x [—6,0], and that it has the same properties as 0K x [—d,d]. Then we have the compact foliated
manifold -

M = Kug K,
where ¢ : 0K x [=§,8] — 0K’ x [—6,0] is given by @(z,s) = ¢(x,—s). We change the orientation of F”
to the opposite of what it was originally. The resulting foliation F' ugs F’ is denoted F. Denote by 7 :
0K x [=6,6] — 0K the projection and note that E |pcx—s56) =~ 7*(E |ox), and TF |acx[—s,5] = T (T'F |ox).
(Note that dim(T'F |oxc) = dim(T'F), not dim(TF) — 1 = dim F' |5c.) We may assume that V and D¥ are
preserved under the maps (z, s) — (z, —s) and E(, 5y — E(; ). This implies that DE and Df/ are identified
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under the glueing map used in defining M and the objects on it. In addition, A and A’ fit together giving
A. Finally, denote the leafwise operator on F by D and the projection onto the kernel of D2 by Po Given

this situation, Alain Connes defined the measured index, Indz (D D) = fA trs (kp, (2, %)) djt, which satisfies
M

his celebrated index theorem, see [C79], relating Indﬁ(ﬁ) to the pairing of the usual characteristic classes
with the Ruelle-Sullivan current. That is

Ind; (D) = f AS(Dyp)dA
M
We have the following immediately.

Theorem 5.12. Suppose that F is reflective and RE is strictly positive off K, so also F' is reflective and
Rg: is strictly positive off K'. Then

Indy o (DE,D¥) = Ind;(D) = J AS(DE)LdA—J AS(DE') dA.
K K

Note that, since (AS(DF)z)ly = @*((AS(D¥')1)|v), this result is independent of the choice of the
transverse compact hypersurface.

The previous construction extends to the following more general situation to yield the so called measured
® relative index theorem, see again [GL83]. In particular, we assume that (M, F) and (M’, F’) satisfy the
hypotheses of Theorem 4.6, with the following changes. In particular, M ~\ K =V, U Vg and M’/ N K’ =
VI u V4, where the unions are disjoint. For this case, ® = (¢,0) is a bundle morphism from E — Vg to
E’' — V{ as in Section 4, our good covers U and U’ are compatible on Vg and V, and A and A’ are ¢
compatible on Uy, and Z/l{/q,). Finally, we assume that F' is reflective on Vg, so F” is reflective on VJ, and

that RE and RE, are strictly positive off K and K'.
Next, consider the manifold M = (M \ Va) u, (M’ \ V{), with the foliation

F = (Fluwva) v (F'larvy),

where the orientation on ﬁ’|M\V¢ is the one on F', and that on ﬁ|M'\v¢/, is the opposite of the one on F”.

We also have the bundle £ — M induced by E and E’, the leafwise operator lA)E induced by D¥ and Df/,
and the invariant transverse measure A induced by A and A’

Because of the positivity off compact subsets, all three operators have finite invariant transverse measure
indices thanks to Theorem 5.2. We then have the ® relative index theorem.

Theorem 5.13. Under the conditions above,
Ind; (D) = Inda(DE) — Indy (DF).
The proof follows easily from Theorem 5.2 by adapting the proof of Theorem 4.35 of [GL83].

6. SPIN FOLIATIONS, PSC, AND SPACES OF PSC METRICS

We now show how to extend the Gromov-Lawson construction in [GL83], Section 3, see also [LM8&9], IV.7,
to get an invariant for the space of PSC metrics on a foliation whose tangent bundle TF admits a spin
structure. We calculate this invariant for a large collection of spin foliations, and show that the space of
PSC metrics on each of these foliations has infinitely many path connected components.

We still assume that (M, F') admits an invariant transverse Borel measure A, and for simplicity, we assume
that M is compact. Denote by R the space of all smooth metrics on F with the C® topology, and by R, « R
the subspace of PSC metrics. In this section, contrary to previous sections, we assume that the dimension
of F is odd.
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Scalar curvature and the so called Atiyah-Singer operator are intimately related. Denote by S the canonical
spin bundle associated to the spin structure on T'F, with connection V. The leafwise Atiyah-Singer operator,
namely the leafwise spin Dirac operator Df,

P
Dy : L*(S) — L*(Sy) is given by Dy (o Z

where ey, ..., e, is an orthonormal local framing of T'F'. Denote by ~ the leafwise scalar curvature of F', that
is

P
- 2 <Rei,ej (ei)a ej>7
i,j=1
where R is the curvature operator associated to the metric on the leaves of F'. In this case the Bochner
Identity is quite simple, see [LM89], namely

6.1. D} = V*V + ik

Consider the even dimensional foliation Fr on M x R with leaves Lr = L x R. If U is a good cover of
M, Ug = {(Ux (n—1,n+1),T)|(UT) € U,n € Z} is a good cover of M x R. Ag = A is an invariant
transverse Borel measure for Fg, with associated global measure dug = du x dt. Suppose that go, g1 € RY.,
and (g¢)e[o,1] 18 a smooth family in R from go to g1. On Fg, set G = go + dt* for t < 0, G = g1 + dt? for
t>1,and G =g, +dt? for 0 <t < 1.

The leafwise spin Dirac operator Dy extends to the leafwise spin Dirac operator Dgr on Fg. Denote
projection onto the kernel of D3 by Py. We define ix(go, g1) € R by

in(g0,g1) = f b (py (2, 7)) dpg.
M xR

This is well defined thanks to Theorem 5.2, since the metric on Fg has PSC off the compact subset M x [0, 1].

Theorem 6.2. ix(go,g1) depends only on go and g1. If ix(go,g1) # 0, then go and g1 are not in the same
path connected component of R,

Proof. Suppose that g; and g; are two meOth families of metrics in R from gg to g1, with associated metrics
G and G and associated operators Dr and DR Since, G and G have uniformly PSC off M x [0,1], Fg is ®
related to itself there. Theorem 5.3 gives

A~

ia(60,:01)(G) — ialg0,g1)(@) = fM | ATE)G — ATF) o)1, dis

where A(TFR)G = AS(Dg) is the Atiyah-Singer characteristic differential form, the so-called A-hat form,
on M x R associated to the metric @, and similarly for G. The forms A(TFg)¢g and /Al(TF]R)é are locally
computable in terms of their associated curvatures. Thus, off M x [0,1], they agree, which justifies the
last equality. In addition, their difference is an exact form dW¥ which is locally computable in terms of their
curvatures and connections. In particular, ¥ = 0 on the closure of open sets where their connections agree.
So off M x (0,1), ¥ is zero, since the connections agree off M x [0,1]. Applying Stokes’ Theorem, we get
ia(90,91)(G) — ia(g0,91)(G) = 0.

For the second part, assume that gg and g; are in the same path connected component of RY,, and that

gt, is a smooth family of metrics in R, from g to g1. Then G restricted to each leaf of Fg has PSC, so
Proposition 5.5 gives that Py = 0, and i5 (g0, 91) = 0 also. |

Remark 6.3. Theorem 6.2 remains true if we consider concordance classes of metrics, which a priori is
stronger. Recall that leafwise metrics are concordant if there is a metric G on TFEg so that it agrees with
go near —oo and with g1 near +00. The conclusion is that if ian(go,g1) # 0, then go and g1 are not in the
same concordance class of metrics in RY,. The proof being essentially the same.
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Remark 6.4. We could also extend this theory to concordance classes of leafwise flat connections V on
an auziliary bundle E. The invariant would become ia((go, Vo), (91, V1)). See [Be20]. The theorem would
then be that if go and g1 are concordant, and Vo and V1 can be joined by leafwise flat connections, then
ia((90, Vo), (91, V1)) = 0.

Next, we have a corollary of Theorem 5.13.

Corollary 6.5. Suppose go, 91,92 € RY.. Then
ia(90, 91) +ia(g1,90) = 0, and ia(go, g1) +ia(g1,92) = in(go,92), so,
ia(90, 91) +ia(91, 92) +ia(g2,90) = O.
Proof. In the notation of Theorem 5.13, take (M, F), (M’,F') and (]\7, F) to be (M x R, Fg), K = K =
M x [0,1], Vo = Vi = M x (—00,0), and V; = V] = M x (1,00). To compute is(g;, g;) take
Gij = gi+dt* for t € (—0,0], and G; ; = g; + dt* for t € [1,0).
The first equation is obvious since ia(go, g1) = Inda, (Dr(Go,1)), while i4 (g1, go) is the same, except with

the orientation of R reversed, which changes the sign of the resulting index.
For the second, we have

iA(90,91) — in(g0, 92) = Inda, (Dr(Go,1)) — Inda, (Dr(Go,2)) = Inda, (Dr(G2,1)) = ia(g2,91) = —ia(g1,92)-

The second equality is from Theorem 5.13, where ﬁLE = Dg(G21), D¥ = Dg(Go 1), and Df/ = Dg(Go2).
The third equation is now also obvious. O

Now suppose that M is the boundary of a compact manifold W with a spin foliation F which is transverse
to M, and which restricts to F' there. Suppose further that A extends to an invariant transverse measure A
on W. Extend the foliation F' and the metric A as above to W Uy, (M x [0,00)). Given a metric g of PSC
on F, extend it to a complete leafwise metric g on F by making it g + dt? on M x [0,0) and extending it
arbitrarily over the interior of W. Then the kernel of the leafwise Atiyah-Singer operator D? on F , which is
an even operator, has finite A dimension. Denote the super projection onto this kernel by Py = Py" @ P .
Then Dy, has a finite A index, namely

Ind;(Dr) = Dim;(ImP;") — Dimg(ImFy ).
Definition 6.6. irn(g, W) = Indz(Dpr).
Note that Theorem 4.12 and the proof of Theorem 6.2, adapted, show that iz (g, W) does not depend

on the extension of g over W, and that if g extends with PSC, then ix (g, W) = 0. We have the following
corollary of Theorem 4.12.

Corollary 6.7. Suppose that go, g1 € RY.. Then

ia(go, W) + ia(go,91) = in(g1, W).
Proof. Consider the foliated manifolds

M=MxR and M =My M,
which satisfy the following.

e M has the metric g+ above, giving i (go, g1)-

e My =Wy upy (M x [0,00)) with the metric go + dt? on M x [0,0), and the metric § on Wy = W.
Take the opposite orientation on My by reversing the orientations on [0,00) and Wy, so this gives
—ia(go, W).

o My =W, upy (M x [0,00)) with the metric g; above on M x [0,00), and the metric g on W; = W.
Note that Wy uar (M x [0,1]) = W uas (M x [0,1]) ~ W, and the metric on M x [1,00) is g1 x dt?,
giving i (g1, W).
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o Note that M has the compact subset K = M x [0, 1], that M’ has the compact subset K/ = Kyu K1,
where Ko = Wy and Ky = Wy upy (M x [0,1]), and that there is PSC off these compact subsets.

On M and M’ respectlvely7 we have the operators denoted D and D’ and the invariant transverse measures
A and A. Note that M~ K in ® equivalent to M M K’ , Wy is @ equivalent to W7, except that the orientations
are opposites, and K7 \ Wy is @ equivalent to K. T hen, Theorem 4.12 gives

Indy, 3(D/, D) = f AS(D")pdA’ — f AS(D) dA =
7 K

’

f AS(D")p dA' — J AS(D')p dA' — J AS(D)p dA =
K; Ko K

f AS(D") dA' — J AS(D)p dA =
Kl\Wl K
But, Ind;, (D', D) = Inds, (D) — Ind; (D), and Inds, (D) = ix(g1, W) — ia(go, W), while Ind; (D)) =

in(90,91)- O

Examples. Suppose that M is a compact 4¢ dimensional spin manifold with /Al(M ) # 0, and that its
fundamental group I' acts smoothly on a compact oriented Riemannian manifold, preserving its volume
form. Such manifolds abound. (The following is thanks to Stephan Stolz.) In particular, take any finitely
presented group I" which acts smoothly preserving the volume form on a compact oriented Riemannian
manifold N. Any finitely presented subgroup of SO,, will do. Use a presentation of I' to produce a finite
2-dimensional CW complex with fundamental group T'. Embed the complex in R**! and thicken it into a
compact manifold of dimension 4¢ + 1 with boundary M;. Then 7 (M;) = I'. It is a framed manifold, so
its /Al—genus is zero. Let M be any simply connected spin manifold of dimension 4¢ with non-zero ﬁ—genus,
e.g., take M5 to be the product of ¢ copies of the Kummer surface, which has A—genus 2, so M5 has A—genus
2¢. More generally, Lemma 5.1 of [GHS18] and its proof show that for any positive integer ¢ and any integer
k, k even if £ is odd, there is a closed simply connected spin manifold Ms of dimension 4/ with ﬁ—genus k.
Then the connected sum M = M; # M has the required properties.

Denote the universal cover of M by M , and consider the flat fiber bundle
Y = M xr N,

with its natural flat foliation F. Since I' preserves the volume form on N, it descends to an invariant
transverse measure A for F. It follows immediately that

J A(TF),dA = A(M)vol(N) # 0.
Y

Recall the sequence of SOy vector bundles 7 : E — S* from [GL83], given after their Corollary 4.45.
Using the standard metric on the base S*, an orthogonal connection on Ej, which gives a splitting TE), =
TR* @ 7*(TS*), and an SO, invariant metric on the fibers R*, they construct a “torpedo” metric on the
total space of E}, as follows. The metric on 7*(T'S*) is the pull-back from the base. The fibers R* are totally
geodesic and the metric on them is a smoothing near the equator, which is the same on all radial lines, of the
S* hemispherical metric on D%, attached along the equator dD* = S?, to the cylindrical metric on S3 x (0, o0).

Denote by X, and X = 0X}, the unit disk and unit sphere bundles of Ej. Note that on 3j x (1 — €, 0)
the metric is gi x dt?, where gi on ¥ has PSC, which we can make as large as we please by multiplying gy
by a small enough constant. Note also that g, extends over X with PSC.

The bundle E% is chosen so that it has Euler number 1, which implies that ¥ is homotopy sphere, and
that the Pontrjagin number p;(Ey) satisfies p;(FEg)? = 4 + 896k. There are an infinite number of such
integers k so that 4 + 896k is a perfect square. In particular, for m € Z, set k = m + 56m?.

Denote by )?k = X} Uy, D® the compact manifold obtained by attaching an 8 disk along the boundary
Y. Classical results of Milnor, [M56, M65], imply that the signature of X;,C = 1, that p; (Ek) = pl()A(k)Q,
that ¥, is diffeomorphic to the standard S7, (the Milnor invariant (S, s) = 0), and that A(Xy) = k.
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Now consider Y x S7 with the foliation 7 = F@TS”. Multiply the metric g, on S7 by a constant so small
that the metric G on F has PSC everywhere. Thus we have a countable family of PSC metrics on F. Now,
Y xS”T =Y x 0X}, and we have the foliation ﬁk =F®TXy of Y x Xj, along with the transverse measure
induced by A. Since Gj, extends over ﬁ'k with PSC, the invariant i (Gg,Y x Xi) is zero.

Theorem 6.8. For k; # ko, the metrics Gk, and Gy, are not in the same path connected component of the

metrics of PSC on the foliation F of Y x S7. Thus the space RY, of PSC metrics for F has infinitely many
path connected components.

Proof. Note that G is associated to the canonical constant curvature metric go on S7. Since i (G, Y x X) =
0, we have by Corollaries 6.5 and 6.7,

iA(Go,YXXk) = iA(Gk,YXXk) + iA(Gk,GQ) = iA(Gk,GO).

Theorem 4.12 applied to Y x (X}, ugr (S7 x [1,00)) and Y x (Xo usr (S7 x [1,90)), using the metric G on
Y x S7, shows that
iA(GQ,Y X Xk) = iA(Go,Y X Xk) — iA(GQ,Y X XO) =

A(TFy)pdA = A(M)vol(N)A(Xy) = A(M)vol(N)k.

YXXk
For the proof that J A(TXk) = ﬁ()A(k), see [GL83], the proof of Theorem 4.47. Thus, for k; # ko,
Xk
iA(levag) = iA(levG()) - iA(GkgaG()) =
ia(Go,Y x Xp,) — ia(Go,Y x Xp,) = A(M)vol(N) (ki —kz) # 0. O

7. APPENDIX

We first justify the claim in Remark 4.4.
The following is standard, see [T81, R88]. Note that they work on compact manifolds, but the extensions
to the bounded geometry case are straightforward.

Lemma 7.1. Assume that the manifold M, the foliation F', and the bundle E have bounded geometry.
Then there exists a family (Je)ee(o,1) of leafwise operators on sections of E, which are leafwise smoothing,
with kernels in T's(F, E) such that:

(1) The families (J¢)ee(o,1y and ([Je, DE])EE(OJ) are uniformly bounded operators on any leafwise Sobolev

space of E with an e- mdependent bound;
(2) Ase— 0, J. — 1 weakly on every L*(L,E|L).

Proposition 7.2. For any s € R, the commutator [J., (D¥)?] is uniformly bounded as an operator from any
leafwise s Sobolev space to the leafwise s — ¢ + 1 Sobolev space, with a bound which is independent of €.

For any leafwise smoothing operator A with kernel inTs(F, E), and any £ € N, the family (AJE(DE)Z)SE(O,U
has uniformly bounded leafwise L?-operator norm, with the bound being uniform in €.

Proof. Note that

ea DL Z JevDL](DE)Zijilv

which proves the first statement. For the sccond we have

AJ(DE)" = (ADE)) e + A[Je, (DE)],
which is a leafwise smoothing operator, since A and A(DF)¢ are. That the leafwise L?-operator norm of
AJ.(DE)! is uniformly bounded independently of € is now clear. O

Corollary 7.3. For any smoothing operator A with kernel in I's(F, E) and any finite propagation leafwise
0-th order operator B, the Schwartz kernel of AJ.B converges uniformly to the Schwartz kernel of AB when
€ — 0. The same holds for the Schwartz kernels of J.BA and J A.
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This immediately implies that
liII(l) te(kasp(z,x)) = te(kap(z,z)), and lir% te(kypa(z,x)) = te(kpa(z, ),
in A%(M/F), the space of Haefliger functions.

Proof. As in the proof of Proposition 3.6, we have the following for any ¢ > 0.

(kasp(z,y)(w),v) = (AJB(4,),0;)
= (I+(DDH AT+(DE)*) (A+(DL)*) B8y, T+(DL)*)~(85))

The operator (I+(D¥)2)* A satisfies the assumptions for A in Proposition 7.2, so the family
(I+(DE)*) AT +(DL)?)"

has uniform bounded leafwise L?-operator norm which is uniform in e. This implies in turn by a 3¢ argument
with the Schwartz inequality that (I +(D¥)?)¢AJ.(1+(DE)?2)* converges weakly to (I1+(DE)2)* A1+ (DE)?)*.
On the other hand, bounded geometry implies that the delta sections live in some Sobolev space, so also
does the section B ((5;” ), since B is bounded on every Sobolev space. Hence, there exists ¢ > 0 such that
(I+(DF)*)~*B(6y) and (I+(DF)?)~(6%) both belong to the Hilbert space of leafwise L? sections. In ad-
dition, their L? norms are globally bounded. Therefore, (k4.5 (z,y)(w),v) converges to {kap(x,y)(w),v)
and this convergence is uniform over M. The same sort argument works for J A and J.BA. ]

We can now justify Remark 4.4.

By Definition 4.2 and the remark right after that definition, the s-limit only depends on the Haefliger
functions, as far as the pair of functions is a compatible pair. Now, the pairs composed of the integrals
over the leaves of (S — 52,5 — §2) and (R — R?, R’ — R'?) respectively, are compatibles pairs of Haefliger
functions. Thus we only need to prove that the integral over the leaves of the traces of the Schwartz kernels
of § — 82 and R — R? agree in A.(M/F), since that will also hold for S’ — $"? and R’ — R'? in A.(M'/F").

To simplify the notation, we will write D for D¥. Then,

S—-8% = (1-5)S = QDS, R—R*=(I-R)R = DQR, and SQ = QR,
and we have,
ki.ops — kops and kpsj.g — kpsq uniformly as € — 0.

This follows from Corollary 7.3 by setting A = DS and B = @Q, (recall that @ has finite propagation).
Therefore, as Haefliger functions, we get

te(ks—s2) = te(kgps) = limte(ksops) = limte(kpssq) =
te(kpsq) = te(kpgr) = te(kp_pe),
in A2(M/F). The third equality follows from Theorem 3.1 as J.Q and DS are in I'y(F, E).
Finally, we prove Lemma 5.8, and for that we need the following.
Lemma 7.4. Define the measurable section V. of TF by setting
Ve, WHz) = (Vw)ykpy (7, 7),

for any smooth section W of TF. Then the following pointwise relation between measurable leafwise smooth
functions on M holds,

(V*V)ykp o (r, ) = VyVigykp, (x,2) — dive(Ve)(2),

where for any leafwise vector field V, divp (V) is its leafwise divergence.
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Proof. Cousider kp, (z,9)|xr = 2 ol(z) ® ol (y), where o, 0% ... is a leafwise orthonormal basis of
Im(Pjg,¢)). By standard arguments, [GL83], proof of Theorem 4.18, the series )., ol ®@ ol converges locally
C*-uniformly to kp,, over L x L. Therefore, the series Y}, V*Vo} ® af (resp. Y}, Vo ® Vo)) also
converges locally uniformly to the kernel (V*V) ) kp, ., (resp. V(1)V(2)kp, ;) over L x L. Both limits are
independent of the choice of the orthonormal basis 0. As a consequence, the series of smooth functions
on L, x — Y (V*Vol(x),0l(z)) (resp. x — X, (Vol, ,Vok(z))) converges locally uniformly on L to the
smooth function z +— V*V 1 kfy 5{z,2) (resp. & > V(1) V() k{y 4{z,y)). Using a classical local computation
on L, see [LM89], p. 155, we have that as smooth functions on L,

7.5. (V*Vol(x),0f(z)) = Vol (2), Vo () = dive(Vir o1)(2),

where Vi,z ;1 is the section of T'F satisfying (Vi r 5oy, W)(2) = (Vw) (o (x),oF(x)), for any smooth
section W of TF.

For any leafwise tangent vector field W, the series Zi<VWJiL, Vol converges locally uniformly to the
smooth function on L given by = — (Vw)2)(Vw)1)kp, ,(z, ). Therefore, summing Equation 7.5 over i,
we get, for all x € M,

(V*V)(l)k‘p[o’e] <l‘, l‘> = v(l)v(Q)kP[o,e] <l‘, .13> — diVF(Ve)(x).
Note that all the terms in this equality are transversally Borel and leafwise smooth. O

Proof of Lemma 5.8. To prove that for 0 < e < o0,

fM(V*V)(l)kp[o‘e] <{E, £L'> du = JM V(1)V(2)kp[0,€] <£L’, £L'> dp,
we need only observe that for any leafwise vector field V', the top degree leafwise form dive(V)dzp coincides

with the leafwise exact differential form dp(ivdrp) with 4y contraction with V', and that it is a standard

result in foliation theory that J dp(ivdzp) = 0in HO(M/F). Thus we have
F
J <V*v>(1)kp[o,e] <$7 '75> dp = J v(l)v(Q)kP[07€]<x7 $> - diVF(Ve)(x) dp =
M M

J V(l)V(g)kp[oﬁe]<fL',l’>dlu, - f (J dp(ivdIL'F)> dA = J V(l)V(g)kp[Oﬂe]<l’,x>d‘LL,
M T P M

and so Lemma 5.8. O
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