Solving a quadratic equation a case study

Steven Hurder

University of Illinois at Chicago www.math.uic.edu/~hurder

Math 589 Presentation - October 30, 2007
(1) The Problem
(2) Picturing the Solution
(3) Some Algebra

4 The Formula

A pesky problem

Your paycheck has been held up, and they keep asking, "Are you really a mathematician?"

A pesky problem

Your paycheck has been held up, and they keep asking,
"Are you really a mathematician?"
How to convince them?

A pesky problem

Your paycheck has been held up, and they keep asking,
"Are you really a mathematician?"
How to convince them?
What to do?

A pesky problem

Your paycheck has been held up, and they keep asking,
"Are you really a mathematician?"
How to convince them?
What to do?
And then the idea hits you - you'll show them you can solve a quadratic equation!

A pesky problem

Your paycheck has been held up, and they keep asking,
"Are you really a mathematician?"
How to convince them?
What to do?
And then the idea hits you - you'll show them you can solve a quadratic equation!

If that doesn't convince the admin type, what will?

Choosing a quadratic equation

Now, it is only a matter to select a quadratic equation which will impress them.

Choosing a quadratic equation

Now, it is only a matter to select a quadratic equation which will impress them.
(1) $x^{2}=0$

Choosing a quadratic equation

Now, it is only a matter to select a quadratic equation which will impress them.
(1) $x^{2}=0$ (nah, too obvious. it would be shameful if this worked)

Choosing a quadratic equation

Now, it is only a matter to select a quadratic equation which will impress them.
(1) $x^{2}=0$ (nah, too obvious. it would be shameful if this worked)
(2) $x^{2}-2 x+1=0$

Choosing a quadratic equation

Now, it is only a matter to select a quadratic equation which will impress them.
(1) $x^{2}=0$ (nah, too obvious. it would be shameful if this worked)
(2) $x^{2}-2 x+1=0$ (more of the same)

Choosing a quadratic equation

Now, it is only a matter to select a quadratic equation which will impress them.
(1) $x^{2}=0$ (nah, too obvious. it would be shameful if this worked)
(2) $x^{2}-2 x+1=0$ (more of the same)
(3) $x^{2}-3 x-1=0$

Choosing a quadratic equation

Now, it is only a matter to select a quadratic equation which will impress them.
(1) $x^{2}=0$ (nah, too obvious. it would be shameful if this worked)
(2) $x^{2}-2 x+1=0$ (more of the same)
(3) $x^{2}-3 x-1=0$ (sort of fancy... just right!)

Grab your calculators:

A picture may be worth a thousand words, but is it worth a thousand bucks?

Grab your calculators:

A picture may be worth a thousand words, but is it worth a thousand bucks?
Let's try! If they buy this, we are done. So plot $y=x^{2}-3 x-1$

Grab your calculators:

A picture may be worth a thousand words, but is it worth a thousand bucks?
Let's try! If they buy this, we are done. So plot $y=x^{2}-3 x-1$

Not even close...

"You want money for your one lousy graph?"

Not even close...

"You want money for your one lousy graph?"
"Give the solution to 10 decimals, and we'll show you the money!"

Not even close...

"You want money for your one lousy graph?"
"Give the solution to 10 decimals, and we'll show you the money!"
"Oh, for @\#\%\& sake!"

factor, factor, complete...

$$
0=x^{2}-3 x-1
$$

factor, factor, complete...

$$
\begin{aligned}
& 0=x^{2}-3 x-1 \\
& 0=x^{2}-3 x+(-3 / 2)^{2}-(3 / 2)^{2}-1
\end{aligned}
$$

factor, factor, complete...

$$
\begin{aligned}
& 0=x^{2}-3 x-1 \\
& 0=x^{2}-3 x+(-3 / 2)^{2}-(3 / 2)^{2}-1 \\
& 0=(x-3 / 2)^{2}-9 / 4-4 / 4
\end{aligned}
$$

factor, factor, complete...

$$
\begin{aligned}
& 0=x^{2}-3 x-1 \\
& 0=x^{2}-3 x+(-3 / 2)^{2}-(3 / 2)^{2}-1 \\
& 0=(x-3 / 2)^{2}-9 / 4-4 / 4 \\
& 0=(x-3 / 2)^{2}-13 / 4
\end{aligned}
$$

Progress

Now let's solve it:

$$
0=(x-3 / 2)^{2}-9 / 4-4 / 4 \quad \Longrightarrow \quad(x-3 / 2)^{2}=13 / 4
$$

Progress

Now let's solve it:

$$
\begin{aligned}
0=(x-3 / 2)^{2}-9 / 4-4 / 4 & \Longrightarrow \quad(x-3 / 2)^{2}=13 / 4 \\
& \Longrightarrow \quad(x-3 / 2)= \pm \sqrt{13 / 4}
\end{aligned}
$$

Progress

Now let's solve it:

$$
\begin{aligned}
0=(x-3 / 2)^{2}-9 / 4-4 / 4 & \Longrightarrow(x-3 / 2)^{2}=13 / 4 \\
& \Longrightarrow(x-3 / 2)= \pm \sqrt{13 / 4} \\
& \Longrightarrow x=3 / 2 \pm \sqrt{13 / 4}
\end{aligned}
$$

Progress

Now let's solve it:

$$
\begin{aligned}
0=(x-3 / 2)^{2}-9 / 4-4 / 4 & \Longrightarrow(x-3 / 2)^{2}=13 / 4 \\
& \Longrightarrow(x-3 / 2)= \pm \sqrt{13 / 4} \\
& \Longrightarrow x=3 / 2 \pm \sqrt{13 / 4}
\end{aligned}
$$

Think this is enough to get the money?

Progress

Now let's solve it:

$$
\begin{aligned}
0=(x-3 / 2)^{2}-9 / 4-4 / 4 & \Longrightarrow(x-3 / 2)^{2}=13 / 4 \\
& \Longrightarrow(x-3 / 2)= \pm \sqrt{13 / 4} \\
& \Longrightarrow x=3 / 2 \pm \sqrt{13 / 4}
\end{aligned}
$$

Think this is enough to get the money?
Not likely...

Pay Up!

There are two solutions:

Pay Up!

There are two solutions:
$x=3 / 2+\sqrt{13 / 4}$, or
$x=3.30277563773199464655961063373524797312564828692262310635522$

Pay Up!

There are two solutions:
$x=3 / 2+\sqrt{13 / 4}$, or
$x=3.30277563773199464655961063373524797312564828692262310635522$
and $x=3 / 2-\sqrt{13 / 4}$, or
$x=-0.3027756377319946465596106337352479731256482869226231063552$

Mathematical Proof

The final proof that we are Mathematicians?

Mathematical Proof

The final proof that we are Mathematicians?
Give them the Magic Formula,

$$
a x^{2}+b x+c=0 \Longrightarrow x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Mathematical Proof

The final proof that we are Mathematicians?
Give them the Magic Formula,

$$
a x^{2}+b x+c=0 \Longrightarrow x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

and tell them to try this first next time...

