
Local Connectivity of the Boundary of a Coxeter
System

Brad Groff

Department of Mathematics
University of Florida

Spring Topology & Dynamics Conference
Mississippi State University

March 2010

Brad Groff (UF) Coxeter Group Boundaries STDC 2010 1 / 20



The Basics

Assume that G is a right-angled Coxeter group.
The algebraic information of G is contained in the nerve K , a
simplicial complex with one n-simplex for each cardinality n subset
of S which generates a finite subgroup.
In this setting, K is a flag complex.
G acts geometrically on a particular CAT(0) complex called the
Davis complex X of G.
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X carries a natural
structure of a cubical
complex.
With this structure, the
Cayley graph of G can
be embedded into X
such that
vert(X ) = vert(ΓS(G)).
The link of every vertex
of X is K .
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The Boundary ∂X of a Coxeter system is the set of geodesic rays from
a fixed basepoint in the associated Davis complex X , topologized via
the shadows of open sets. The shadows of St(v) for vertices v of X
form a basis.
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Statement of Main Result.

Theorem
If K is the nerve of the right-angled Coxeter system (G, S) and has the
following properties for every vertex v

1 K is a graph
2 K is connected
3 K \ v is connected
4 K \ St(v) is connected

then the Davis complex associated to (G, S) has locally connected
boundary.

Related Known Facts
(2) and (3) imply that ∂X is connected. (1) is almost certainly
unnecessary and quite restrictive.
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Remark
(2), (3) and (4) cannot be omitted.

Example
Let G have nerve (a),
then G satisfies (1), (2)
and (3) but ∂G is the
suspension of a Cantor
set.
Let H have nerve (b),
then H satisfies (1), (2)
and (4) but H is infinitely
ended and ∂H is not
locally connected.
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Sketch of Proof

1 Select a set in ∂X and produce a cubical complex approximately
beneath it

2 Describe the appropriate notion of Morse function to work within
this set

3 Enumerate the possible types of critical point and show that they
pose no threats to connectivity

4 Converge to the boundary
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Useful Facts about K
With the conditions that K , K \ v and K \ St(v) are all connected, the
nerve has a particular form.

The link of each vertex in K is a discrete set of points
No vertex is connected to fewer than 2 other vertices
There are no 3-cycles

Figure: 1-skeleton of a cube
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The embedding of K induces connectivity in some important regions of
X .

Figure: The three connected subcomplexes of K embedded into X
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Cellular Approximation of a Shadow
We choose a basic neighborhood W of ∂X , so W is the set of all
geodesic rays through V and a basepoint for some set V ⊂ X .
Let U be the shadow of V .
U isn’t quite nice enough.
We approximate U by a nicer cubical complex, call this CU.
The inclusion condition for each cell is a ‘2-vertex’ rule. If two
vertices of a square are in U, we include the square in CU.
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U routinely includes odd portions of some cells while excluding
important portions of other cells, a property which CU avoids. The
lines in blue correspond to different levels of combinatorial spheres in
X .

Figure: U (left) compared with CU
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PL Morse Theory

Bestvina and Brady developed a Morse theory for affine polytope
complexes to investigate finiteness properties of groups. We adapt
their theory.

Definition
A Morse function f : X → R is one which is

affine - the restriction of f to any cell can be realized by an affine
function on a polytope in Rm

has no horizontal cells - f is only constant on vertices
separates vertices - f (v1) = f (v2) iff v1 = v2.
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Remark
Consequently, we have that

Critical points only occur at vertices
Vertices uniquely attain both the max and min values in their cells

Additional Structure
This is not enough for our purposes, so we make the additional
requirements that

f separates combinatorial spheres
In a given combinatorial sphere, critical points that are closer to
the boundary of CU have lower values than other critical points in
the same sphere.
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We apply this Morse theory to the complex CU and check to see that
level sets are connected after passing each critical point.

Figure: Level sets passing critical points.
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There are only 7 types of critical points, determined by only 3 criterion.
whether v is contained in U
whether all cells containing v are contained in U
the angle at which ∂U intersects St(v)
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The Easiest Case

The entire subcomplex St(v) is contained in CU.

Here the red lines are increasing level sets, and the green represents
K \ St(v) embedded in X , v is the lower point. Because this is
connected by hypothesis, we can see that passing the critical point
does not affect connectivity.
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A Different Type of Critical Point

If U intersects St(v) in an
acute angle and CU does not
contain all of St(v), then we
need to pass through a more
troublesome critical point.
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However, the previous
diagram looks almost exactly
like the following diagram, in
which the red represents
K \ St(v), which is assumed
to be connected. Hence, the
level set is connected after
passing the critical point.
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The level sets of f converge to W in the boundary. Since they are all
connected, W is connected, establishing the result.
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Thank you!

Brad Groff (UF) Coxeter Group Boundaries STDC 2010 20 / 20


	Background on Coxeter Systems
	Main Result

