1

Homotopy invariants of foliations

bу

*) S. Hurder and F. W. Kamber

1. In this note we propose to study the homotopy groups of Br_G^q , the classifying space of G-foliated microbundles [H1] A foliation F on a manifold X is a G-foliation if it is defined by local submersions into a q-dimensional model manifold B, such that the local transition functions preserve a G-structure on B. With respect to an adapted connection ω , the Chern-Weil homomorphism defines a map $h(\omega): I(G)_{\ell} \longrightarrow A^*(X)$, where $I(G)_{\ell}$ is the ring of invariant polynomials on G modulo the ideal of elements of degree $> 2\ell$. The index ℓ depends on G and whether the G-structure is integrable; it can always be taken $\leq q$ [B].

For any commutative DG-algebra A, we let $\varphi: M_A \longrightarrow A$ be a minimal model [S]. Let \overline{M}_A denote the augmentation ideal; the quotient $\pi^*(A) \stackrel{\text{def}}{=} \overline{M}_A / \overline{M}_A^2$ is called the dual homotopy of A. For any (semi-simplicial) manifold X, we set $\pi^*(X) = \pi^*(\Lambda^*(X))$ [D], [S], where $\Lambda^*(X)$ is the deRham algebra in the sense of Sullivan-Dupont. If X is 1-connected and of finite rational type, then there is a natural isomorphism $\pi^*(X) \cong \operatorname{Hom}(\pi_*(X), \mathbb{R})$. For a DG-algebra A, whose cohomology is of finite type, we define

$$\pi_*(A) = \operatorname{Hom}_{\mathbb{R}} (\pi^*(A), \mathbb{R}).$$

Let X be a G-foliated manifold. The following result is proved in [Hu1] 1.1. THEOREM. The Chern-Weil homomorphism induces a map $h^{\#}:\pi^*(I(G)_{\underline{\chi}}) \longrightarrow \pi^*(X)$ which depends only on the concordance class of the foliation. If X is of finite rational type, the map $h^{\#}$ induces by transposition a mapping

$$h_{\#}:\Pi(X) \longrightarrow \Pi(I(G)_{\varrho}),$$

^{*)}Partially supported by NSF grant MCS79-00256

where $\Pi(X) = s^{-1}(\pi_*(X) \otimes \mathbb{R})$ and $\Pi(A) = s^{-1}\pi_*(A)$ are the desuspended graded homotopy groups. It is known [B-L] that the functor Π has values in the category of graded Lie algebras. As $h(\omega): I(G)_{\lambda} \longrightarrow A^*(X)$ is a homomorphism of DG-algebras, $h_{\#}$ is a homomorphism of graded Lie algebras. This construction extends to G-microbundles in an obvious way and therefore defines a homomorphism of Lie algebras

$$hat{h}_{\#}: \Pi(B\Gamma_G^q) \longrightarrow \Pi(I(G)_{\ell}).$$

If $f:X \longrightarrow B\Gamma_G^q$ denotes the classifying map of the G-foliation F on X, the diagram

(1.3)
$$\mathbb{H}(X) \xrightarrow{h_{\#}} \mathbb{H}(\mathbb{I}(G)_{\ell})$$

$$\mathbb{H}(\mathbb{B}\Gamma_{G}^{q})$$

is commutative. It is the purpose of this note to determine the Lie algebra structure of $\Pi(I(G)_{\hat{\chi}})$ (Section 2) and to detect elements in the image of $\hat{h}_{\#}$ via appropriate choices of (X,f) (Section 4). In 3 we study the relationship of $h_{\#}$ with the characteristic homomorphism Δ_{\pm} for G-foliations [K-T 1], [K-T 2].

2. The structure of $\Pi(I(G)_{\ell})$

In this section we determine the structure of the graded Lie algebra $\Pi(I(G)_{\hat{k}})$. Let G be a reductive Lie group. In order to simplify the following discussion, we will assume that G is connected in which case $I(G) \cong \mathbb{R}[c_1,\ldots,c_r]$ is a polynomial algebra generated by the characteristic classes c_j of even degree. As before, we denote by

$$I_{\ell} = I(G)_{\ell} = \mathbb{R}\left[c_1, \dots, c_t\right] / (\phi(c_1, \dots, c_t) | \deg \phi > 2\ell)$$

the truncated polynomial algebra, where c_1, \dots, c_t denote the generators of degree $\leq 2l$.

Let $A_{\ell} = AP_{(2\ell)} \otimes I_{\ell}$ be the DG-algebra introduced in section 3. The inclusion $0 \longrightarrow I_{\ell} \longrightarrow A_{\ell}$ dualizes to give an epimorphism of DG-coalgebras, $A_{\ell}^* \xrightarrow{j} I_{\ell}^* \longrightarrow 0$. Applying Quillen's L construction [Q], [B-L], we get an exact sequence of free DG-Lie algebras

$$(2.1) 0 \longrightarrow \ker j^* \longrightarrow L(A_{\ell}^*) \longrightarrow L(I_{\ell}^*) \longrightarrow 0,$$

where $L(C) \equiv IL(s^{-1}\overline{C})$ is the free DG-Lie algebra generated by a suspended reduced DG-coalgebra C [B-L], [N-M]. Passing to cohomology we get an exact sequence

$$0 \longrightarrow H_{\bullet}(L(A_{\underline{\ell}}^{*})) \longrightarrow H_{\bullet}(L(I_{\underline{\ell}}^{*})) \xrightarrow{\delta} H_{\bullet-1}(\ker j^{*}) \longrightarrow 0$$

$$(2.2) \qquad ||| \int ||| \int ||| f(A_{\underline{\ell}})| \xrightarrow{j\#} \Pi(I_{\underline{\ell}})$$

2.3. THEOREM. There is an extension of graded Lie algebras

$$0 \longrightarrow \Pi(\Lambda_{\ell}) \longrightarrow \Pi(I_{\ell}) \longrightarrow P_{(2\ell)} \longrightarrow 0,$$

where $P_{(2k)}^*$ is an abelian Lie algebra and $\Pi(A_k) \cong L(H^*(A_k)^*)$ is a free Lie algebra.

We remark that the Lie algebra structure of the extension $\Pi(I_{\hat{L}})$ is uniquely determined by the induced representation of $P_{(2\hat{L})}^{*}$ in the Lie algebra of outer derivations of $\Pi(A_{\hat{L}})$. This follows from the fact that the free Lie algebra $\Pi(A_{\hat{L}})$ has trivial center and from the general theory of extensions of Lie algebras (compare [Ho] for the ungraded case). The proof of this theorem, culminating in the determination of this induced action, will occupy the rest of this section.

First note that by taking a Λ -minimal model of the KS extension $0 \longrightarrow I_{\ell} \longrightarrow \Lambda_{\ell} \longrightarrow \Lambda_{\ell} \longrightarrow \Lambda_{\ell} \longrightarrow 0$ [Ha], there is a long exact dual homotopy sequence with injective coboundary δ^* and therefore a short exact sequence

$$(2.4) 0 \longrightarrow \partial^* P_{(2\ell)} \longrightarrow \pi^* (I_{\ell}) \longrightarrow \pi^* (A_{\ell}) \longrightarrow 0.$$

Dualizing this sequence gives the exact sequence of the theorem. The elements of $P_{(2\ell)}^{}$ all have odd degree, so as a Lie algebra this must be abelian. We want to analyze how the elements in $P_{(2\ell)}^{}$ act on the image of $\Pi(A_{\ell})$, and this will show that $\Pi(A_{\ell})$ is an ideal in $\Pi(I_{\ell})$.

The algebra A_{ℓ} admits a subalgebra $Z_{\ell} \subseteq A_{\ell}$ with trivial differential and products, which induces an isomorphism in cohomology $Z_{\ell} \xrightarrow{\cong} H^{\bullet}(A_{\ell})$ [K-T3]. Therefore A_{ℓ} is biformal and we have isomorphisms

(2.5)
$$L(Z_{\ell}^{*}) \stackrel{\cong}{=} H_{\bullet}(L(Z_{\ell}^{*})) \stackrel{\cong}{\longrightarrow} H_{\bullet}(L(A_{\ell}^{*})) \stackrel{\cong}{=} \Pi(A_{\ell}).$$

It follows that $\Pi(A_{\ell})$ is a free graded Lie algebra generated by $s^{-1}Z_{\ell}^*$.

The algebra Z_{ℓ} and the isomorphism $Z_{\ell} \cong H(A_{\ell})$ have been described in [K-T1], [K-T3]. We use here a slightly different notation, which is more convenient in the present context. For ordered sequences $I = (i_1 < \cdots < i_s)$, $J = (j_1 < \cdots < j_m)$, the symbol (I/J) is called admissible if it satisfies

(2.6)
$$\deg c_{J} \leq 2\ell, c_{J} = \prod_{\alpha=1}^{m} c_{j\alpha};$$

(2.7)
$$\deg c_{i_1} c_{J} > 2l;$$

$$(2.8) i_1 \leq j_1.$$

For an admissible symbol (I/J), the cochain

$$z_{(I/J)} = y_I \otimes c_J = y_i \wedge \cdots \wedge y_i \otimes c_j \cdots c_j \in A_{\ell}$$

is clearly a cocycle and the product of any two such cocycles = 0. The algebra z_{ℓ} is then given by the linear space spanned by 1 and the cocycles $z_{\ell}(I/J)$ for (I/J) admissible.

Let $I = \mathbb{R}[c_1, \ldots, c_t]$; the canonical quotient map $I \longrightarrow I_{\ell}$ dualizes to an inclusion $L(I_{\ell}^*) \subseteq L(I^*)$. Since I^* has a canonical Hopf algebra structure and trivial differential, we find easily that

$$H_{\cdot}(L(I^*)) \stackrel{\sim}{=} P_{(2\ell)} = span\{Y_1, ..., Y_{t}\},$$

,

where $Y_j = s^{-1}c_j^*$, j = 1,...,t. Hence all the cycles in $L(I^*)$ of degree $\geq 2\ell$ are boundaries. Thus all the cycles in $L(I_\ell^*)$ of degree $\geq 2\ell$ are boundaries in $L(I^*)$. With this observation in mind, we produce explicitly a set of cycles in $L(I_\ell^*)$, which will generate $H(L(I_\ell^*))$.

For any monomial c_K , $K=(k_1\leq\cdots\leq k_m)$ in I, we set $Y_K=s^{-1}c_K^*\in I^*$. The diagonal Δ in I^* is given by

(2.9)
$$\Delta(c_{K}^{*}) = c_{K}^{*} \otimes 1 + 1 \otimes c_{K} + \frac{1}{2} \sum_{(\alpha,\beta)} (c_{\alpha}^{*} \otimes c_{\beta}^{*} + c_{\beta}^{*} \otimes c_{\alpha}^{*}),$$

where (α,β) runs over all ordered proper partitions of the set $\{k_1,\ldots,k_m\}$. By definition, the differential d_L of $L(I^*)$ is determined by the formula

(2.10)
$$d_{L}Y_{K} = \frac{1}{2} \sum_{(\alpha,\beta)} [Y_{\alpha}, Y_{\beta}] \in L(I^{*}).$$

For an admissible symbol (I/J) with I = (i), it follows that $d_L^Y(i,J) \in L(I_\ell^*)$ is a cycle of degree $\geq 2\ell$, and we define

(2.11)
$$s^{-1}u_{(i/J)}^* = -d_LY_{(i,J)} = \frac{1}{2} \sum_{(\alpha,\beta)} [Y_{\alpha}, Y_{\beta}]$$

If (I/J) is an arbitrary admissible symbol, we set

(2.12)
$$s^{-1}u_{(I/J)}^* = ad(Y_{i_s}) \circ \cdots \circ ad(Y_{i_2}) s^{-1}u_{(i_1/J), s > 1,}^*$$

where $\operatorname{ad}(Y) = [Y,-]$ denotes the adjoint representation. Clearly the Y_j and the $\operatorname{s}^{-1}\operatorname{u}^*_{(I/J)}$ are cycles in $L(I_{\ell}^*)$. Their corresponding homology classes in $\operatorname{H}_{\bullet}(L(I_{\ell}^*))$ are denoted by the same symbol. Observe that the elements $\operatorname{s}^{-1}\operatorname{u}^*_{(i/J)}$ correspond exactly to a minimal set of relations $\operatorname{c}_i\operatorname{c}_J\sim 0$ for the quotient algebra I_{ℓ} . For $\operatorname{z}_{(I/J)}\in\operatorname{Z}_{\ell}$, denote by $\operatorname{z}_{(I/J)}^*$ the corresponding dual basis element of $\operatorname{Z}_{\ell}^*$.

2.13. LEMMA. The injective homomorphism $j_{\#}\colon \Pi(A_{\ell}) \longrightarrow H(I_{\ell})$ of Theorem 2.3 is induced by the homomorphism of free DG-Lie algebras $L(Z_{\ell}^{*}) \longrightarrow L(I_{\ell}^{*})$, which is determined on the generators by $s^{-1}z^{*}_{(I/J)} \longrightarrow s^{-1}u^{*}_{(I/J)}$ for (I/J) admissible.

It follows that the homology classes $s^{-1}u_{(I/J)}^*$ generate a free subalgebra in $L(I_{\ell}^*)$. The formulas in the following Proposition have to be understood with the convention: Whenever a symbol (I'/J') is not admissible, the term in which the symbol occurs must be replaced by 0.

2.14. PROPOSITION. Let (I/J) be admissible and $k \le j$ in $\{1, ..., t\}$. Then the following formulas hold in $H_{\bullet}(L(I_{k}^{*}))$:

(2.15)
$$ad(Y_k)(Y_j) = s^{-1}u_{(k/j)}^*$$

(2.16)
$$ad(Y_k)s^{-1}u_{(I/J)}^* = s^{-1}u_{(i_1\cdots i_s k|J)}^*$$
, for $k > i_s$;

(2.17)
$$\operatorname{ad}(Y_{k}) s^{-1} u_{(I/J)}^{*} = \sum_{\beta=\alpha}^{s} (-1)^{s-\beta} \operatorname{ad}(Y_{i_{s}}) \circ \cdots \circ \operatorname{ad}(Y_{i_{\beta+1}}) [s^{-1} u_{(k/i_{\beta})}^{*}, s^{-1} u_{(i_{1} i_{\beta-1}|J)}^{*}]$$

$$+ \; (-1)^{s-\alpha+1} s^{-1} u^*_{(i_1 \cdots i_{\alpha-1} k i_{\alpha}^* i_s | J)}, \quad \text{for} \quad i_{\alpha-1} < k < i_{\alpha}, \; 1 < \alpha \leq s;$$

$$(2.18) \operatorname{ad}(Y_{k}) s^{-1} u_{(I/J)}^{*} = \sum_{\beta=\alpha}^{s} (-1)^{s-\beta} \operatorname{ad}(Y_{i_{\beta}}) \circ \cdots \circ \operatorname{ad}(Y_{i_{\beta+1}}) [s^{-1} u_{(k/i_{\beta})}^{*}, s^{-1} u_{(i_{1} i_{\beta-1}|J)}^{*}]$$

$$+ (-1)^{s+1} \operatorname{ad}(Y_{i_{s}}) \circ \cdots \circ \operatorname{ad}(Y_{i_{2}}) \circ \operatorname{ad}(Y_{k}) s^{-1} u_{(i_{1}|J)}^{*}, \text{ for } k < i_{1};$$

(2.19)
$$\operatorname{ad}(Y_k) s^{-1} u_{(i/J)}^{*} = \sum_{\beta=0}^{m} s^{-1} u_{(k,j_{\beta}/j_{0}\cdots \hat{j}_{\beta}\cdots j_{m})}^{*}$$
, for $k < j_{0} = i$.

Together with corresponding formulas for $k=1_{\alpha}$, $\alpha=1,\ldots,s$, (2.15) to (2.19) completely determine the Lie algebra extension in Theorem 2.3 and hence the structure of $\mathbb{N}(\mathbb{T}_{k}) = \mathbb{N}(L(\mathbb{T}_{k}^{*}))$. They also show that the subalgebra $L(\mathbb{T}_{k}^{*}) \subseteq \mathbb{N}(L(\mathbb{T}_{k}^{*}))$ is an ideal. We denote by $\mathbb{D}(\mathbb{Y}_{k})$ the derivation on $L(\mathbb{Z}_{k}^{*})$ induced by $\mathbb{D}(\mathbb{Y}_{k})$, $k=1,\ldots,t$. (2.15) implies

$$(2.20) [D(Y_k),D(Y_j)] = D(Y_k) \circ D(Y_j) + D(Y_j) \circ D(Y_k) = ad(s^{-1}z^*_{(k|j)}).$$

D therefore induces a representation \overline{D} of the abelian Lie algebra $P_{(2k)}^*$ in $Der(L(Z_k^*))/IntDer$. This is the representation canonically associated to the extension (2.3).

As an example, we describe $\Pi(I_2)$ for $I = I(\underline{gl}(2)) = \mathbb{R}[c_1, c_2]$. We have $I_2 = [c_1, c_2]/(c_1^3, c_1^2, c_2^2)$. The Lie algebra $\Pi(I_2) \cong H(L(I^*))$ is generated by $Y_j = s^{-1}c_j^*$, j = 1, 2 and $s^{-1}u_{(1/11)}^* = [Y_1, Y_{(1,1)}], dY_{(1,1)} = [Y_1, Y_1]$. The free subalgebra $L(Z_2^*) \subset H(L(I_2^*))$ is generated by $s^{-1}u_{(1,11)}^*$ and the elements $s^{-1}u_{(1/2)}^* = [Y_1, Y_2], s^{-1}u_{(2/2)}^* = [Y_2, Y_2], s^{-1}u_{(12/11)}^* = [Y_2, [Y_1, Y_{(1,1)}]]$ and $s^{-1}u_{(12/2)}^* = [Y_2, [Y_1, Y_2]]$. The non-zero brackets in Prop. 2.14 are given by

$$[Y_{1}, s^{-1}u_{(2/2)}^{*}] = -2s^{-1}u_{(12/2)}^{*},$$

$$[Y_{1}, s^{-1}u_{(12/11)}^{*}] = [s^{-1}u_{(1/2)}^{*}, s^{-1}u_{(1/11)}^{*}],$$

$$[Y_{1}, s^{-1}u_{(12/2)}^{*}] = [s^{-1}u_{(1/2)}^{*}, s^{-1}u_{(1/2)}^{*}],$$

$$[Y_{2}, s^{-1}u_{(12/11)}^{*}] = \frac{1}{2}[s^{-1}u_{(2/2)}^{*}, s^{-1}u_{(1/11)}^{*}]$$

and

$$[Y_2, s^{-1}u_{(12/2)}^*] = \frac{1}{2} [s^{-1}u_{(2/2)}^*, s^{-1}u_{(1/2)}^*].$$

Theorem 2.3. has the following consequence

2.21. THEOREM. The minimal algebra $M(I_g)$ appears as an extension of DG-algebras

where $C^{\bullet}(L) \equiv S^{\bullet}(sL)$ denotes the cochain complex of a graded Lie algebra. As Λ_{ℓ} is biformal, the isomorphism $M(A_{\ell}) \cong C^{\bullet}(L(Z_{\ell}^{\star}))$ preserves differentials. For I_{ℓ} , which is only formal, the cochain differential $d_{\mathbf{C}}$ describes only the quadratic terms of $d_{\mathbf{M}}$.

The 1-cochains $u_{(I/J)} \in M(I_{\ell})$, dual to the basis elements $u_{(I/J)}^{\kappa}$ described earlier, are mapped to the cocycles $z_{(I/J)} \in Z_{\ell} \subseteq A_{\ell}$. The obvious relation in $M(I_{\ell})$

$$d_{M}u_{(i/J)} = c_{i}c_{J}$$

shows that d_M has non-quadratic terms (for c_J decomposable); hence I_{ℓ} is not coformal for $\ell > 1$. The minimal algebras of the form $C(L(Z_{\ell}^*))$ have the homotopy type of a finite wedge of spheres, and their study goes back to P. J. Hilton (compare e.g. [H1], [H2]). By contrast the minimal algebra $M(I_{\ell})$ appears to be quite complicated as far as the differential is concerned. Details of these constructions will appear elsewhere [K-T4].

3. The relationship of $h^{\#}$ with Δ_{\star}

Let X have a G-foliation; we assume that the G-frame bundle F(Q) of the normal bundle admits an H-reduction, where $H \subseteq G$ is closed and (G,H) is a reductive, CS-pair [K-T2]. Let $P \subseteq \Lambda_{\underline{R}}^*$ be the space of primitives: $P \cong \operatorname{span}\{Y_1,\ldots,Y_r\}$ where Y_j is the cohomology suspension of c_j . Let $P = \hat{P} \oplus \tilde{P}$ be a Samelson decomposition. Denote the image of the transgression mapping by $V = \tau_g P = \hat{V} \oplus \tilde{V} \subseteq I(\underline{g})$, so that $Ideal(\hat{V}) = \ker(i^*:I(\underline{g}) \longrightarrow I(\underline{h})$. We denote by $V^{(2\ell)}$, resp. $V_{(2\ell)}$ the subspace generated by the elements of degree $P = P^{(2\ell)} \oplus P_{(2\ell)}$.

The complex A_{ℓ} used in section 2 is defined by $A_{\ell} = \Lambda P_{(2\ell)} \otimes I(\underline{g})_{\ell}$, with differential defined by the transgression. A similar relative complex is defined by $\hat{A}_{\ell} = \Lambda \hat{P}_{(2\ell)} \otimes I(\underline{g})_{\ell}$. The relative Weil algebra of the pair then has cohomology [K-T 3]

$$H^{*}(W(\underline{g},\underline{h})_{\ell}) \stackrel{\cong}{=} H^{*}(\Lambda P \otimes I(\underline{g})_{\ell} \otimes I(\underline{h}))$$

$$\stackrel{\cong}{=} \Lambda \hat{P}^{(2\ell)} \otimes H^{*}(\hat{A}_{(2\ell)}) \stackrel{\otimes}{=} I(\underline{h}).$$

The Chern-Weil theory gives a characteristic homomorphism for G-foliations [K-T,2]

$$\Delta: W(\underline{g},\underline{h})_{\ell} \longrightarrow A^{\bullet}(F(Q)/H) \xrightarrow{s^{*}} A^{\bullet}(X),$$

giving a commutative diagram of minimal models

$$M(W(\underline{g},\underline{h})_{\downarrow}) \xrightarrow{M\Delta} M(F(Q)/H)$$

$$M(I(G)_{\underline{Q}}) \xrightarrow{Mh} M(X)$$

We deduce two results from (3.1): First, there is a relationship between $h^\#$ and $\Delta_{\bf k},$ given by [Hul]

3.2. THEOREM. The diagram

$$(3.3)$$

$$\uparrow^{*}(I(G)_{\ell}) \xrightarrow{h^{\#}} \pi^{*}(X)$$

$$\downarrow^{\#}(\widehat{\Lambda}_{\ell}) \xrightarrow{\Lambda_{*}} H^{*}(X)$$

$$\downarrow^{\#}(W(\underline{g},\underline{h})_{\ell})$$

naturally commutes, where π^* is the dual Hurewicz map and τ is the inclusion mapping $z(I/J)^{--}$ u(I/J).

This result gives a new method for showing the non-triviality of Δ_{\star} : a class which is non-zero in the image of $h^{\#} \circ \zeta$ is mapped to a non-zero class by Δ_{\star} . Conversely, the non-triviality of Δ_{\star} for a given X can be used to show $h^{\#}$ is non-trivial, if the map \mathcal{H}^{\star} is known. Section 4 will indicate what can be shown using these techniques.

Let $F\Gamma_G^q$ be the classifying space of trivialized, G-foliated microbundles; let $K\subseteq G$ be a maximal compact group. By the functoriality of $h_{\#}$ and $\Delta_{\#}$, dualizing (3.1) gives

3.4. THEOREM. Let $f:X \longrightarrow B\Gamma_G^q$ classify a G-foliation on X . In a natural way, there are defined maps so that the diagram commutes:

The cokernel of $j_{\#}$ is \tilde{P}^{*} ; (3.5) forces $\tilde{h}_{\#}$ to have cokernel $\supseteq \tilde{P}^{*}$. The obvious question is whether equality holds: Does image $\tilde{h}_{\#}$ = image $j_{\#}$?

4. The homotopy of $B\Gamma_G^q$

For the three standard types of G-foliation, we indicate the extent to which $\tilde{h}_{\sharp\sharp}$ is known.

Let $G = Gl(q, \mathbb{R})$. Mather and Thurston [T] have shown that $v:B\Gamma^q \longrightarrow BO(q)$ is (q+2) connected. Therefore

(4.1)
$$\tilde{h}_{\#}$$
 maps onto Y_{2j} for $4j \le q + 2$.

(4.2) $\pi_m(B\Gamma^q) \otimes Q \longrightarrow H_m(B\Gamma^q;Q)$ is an isomorphism (resp. onto) for $m \le 2q + 2$ (resp. m = 2q + 3).

By (4.1) we see that $\tilde{h}_{\#}$ is onto $s^{-1}u_{(2m,2m)}^{*}$, for q=4m-2>3 or q=4m-1. Theorem 3.2 implies $\Delta_{\star}(Y_{2m}c_{2m})\neq 0$ in $H^{8m-1}(F\Gamma^{q})$. This is a rigid class for q even. Other Whitehead products are similarly in the image of $\tilde{h}_{\#}$ [Hul].

Many more results follow from the Theorems of Heitsch [He] or Fuks [F] on the variability of the classes in the image of Δ_{ω} .

Using (4.2) we conclude there is a surjection of $\pi_{2q+1}(B\Gamma^q) \longrightarrow \mathbb{R}^d$, for some d > 0. For example, by Fuks we have $\Pi_{2q}(B\Gamma^q) \xrightarrow{\hat{h}_\#} \Pi_{2q}(I_q)$ is onto. The homotopy of $B\Gamma^q$ therefore maps onto a rather large Lie subalgebra of $\Pi(I_q)$. The 2q connectivity of V would imply $\hat{h}_\#$ is almost onto, within the restrictions of (3.5).

When $G = Gl(n,\mathbb{C})$, the classes Y_1,\ldots,Y_s are in the image of $\widetilde{h}_{\#}:\Pi(B\Gamma_n^{\mathbb{C}}) \longrightarrow \Pi(I_n)$, where $s = [\sqrt{n}]$. Coupled with the Theorem of Baum and Bott [B-B], this shows $\Pi(B\Gamma_n^{\mathbb{C}}) \longrightarrow \Pi(I_n)$ is onto a much larger subalgebra than originally considered in [H3] Further details are in [Hul].

When G = SO(q) the map $\widetilde{h}_{\#}: \Pi(BR\Gamma^q) \longrightarrow \Pi(I_{q^1})$, $q^1 = [q/2]$, is onto, and complete variation occurs [Hu2]. In this case the Lie algebra $\Pi(I_{q^1})$ is injected into $\Pi(BR\Gamma^q)$. The variability of the classes implies there are uncountably many distinct ways of choosing a section $\Pi(I_q) \longrightarrow \Pi(BR\Gamma^q)$.

References

- [B-L]: H. J. Baues and J. M. Lemaire, Minimal models in homotopy theory, Math. Ann. 225, 219-242 (1977).
- [B-B]: P. Baum and R. Bott, Singularities of holomorphic foliations, J. Diff. Geom. 7, 279-342 (1972).
- [B]: R. Bott, On a topological obstruction to integrability, Proc, Symp. Pure Math., AMS vol. 16, 127-131 (1970).
- [D]: J. L. Dupont, Simplicial de Rham cohomology and characteristic classes of flat bundles, Topology 15, 233-245 (1976).
- [F]: D. B. Fuks, Non-trivialité des classes caractéristiques de g-structures,
 C. R. Acad. Sci. Paris 284, 1017-1019 and 1105-1107 (1977).
- [H1]: A. Haefliger, Feuilletages sur les variétés ouvertes, Topology 9, 183-194 (1970).
- [H2]: ______, Sur la cohomologie de l'algèbra de Lie des champs de vecteurs, Ann. Sci. École Norm. Sup. 9, 503-532 (1976).
- [H3]: ______, Whitehead products and differential forms, Proceedings-Rio de Janeiro, LNM vol. 652, 13-24 (1978).
- [Ha]: S. Halperin, Lectures on Minimal Models, Université de Lille I (1978).
- [He]: J. Heitsch, Independent variation of secondary classes, Annals of Math. 108, 421-460 (1978).
- [Ho]: G. Hochschild, Lie algebra kernels and cohomology, Amer. J. Math 76, 698-716 (1954).
- [Hul]: S. Hurder, Dual homotopy invariants of G-foliations, University of Illinois preprint (1979).
- [Hu2]: _______, Some remarks on the homotopy and cohomology of $BR\Gamma^{q}$, University of Illinois preprint (1979).
- [K-T1]: F. Kamber and Ph. Tondeur, Foliated bundles and characteristic classes, LNM vol. 493 (1975).
- [K-T2]: _______, G-foliations and their characteristic classes, Bulletin AMS 84, 1086-1124 (1978).

- [K-T3]: ______, Characteristic classes and Koszul complexes, Proc. Symp. Pure Math. vol 32, AMS, 159-166 (1978).
- [K-T4]: ______, The rational homotopy type of truncated relative Weil algebras, to appear.
- [McL]: S. Mac Lane, Homology, Springer-Verlag (1963).
- [N-M]: J. Neisendorfer and T. Miller, Formal and coformal spaces, Illinois Journal of Math. 22, 565-579 (1978).
- [Q]: D. Quillen, Rational homotopy theory, Ann. Math. 90, 205-295 (1969).
- [S]: D. Sullivan, Infinitessimal computations in topology, IHES 47, 269-331 (1977).
- [T]: W. Thurston, Foliations and groups of diffeomorphisms, Bulletin AMS 80, 304-307 (1974).

Department of Mathematics University of Illinois Urbana, IL 61801

USA