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1. In this note we propose to study the homotopy groups of BFq, the classifying
space of G-foliated microbundles [H1] A follation F on a manifold X is a
G-foliation if it is defined by local submersions Into a g-dimensional model mani-
foeld B, such that the local transition functions preserve a G-structure on B,
With respect to an adapted connection w, the Chern-Weil homomorphism defines a map
h(m):I(G)R —> A.(X), where I(G)Q is the ring of invariant polynomials on G
modulo the ideal of elements of degree > 22. The index ¢ dspends on G and
whether the G-structure is integrable; it can always be taken < q ([B]}.

For any commutative DG-algebra A, we let W:MA —> A be a minimal
model [S]. Let HA denote the augmentation ideal: the quotient F*(A) dgf MA/HAZ
is called the dual homotopy of A. For any (semi-simplicial) manifold ¥, we set
H*(X) = T*(A'(X)) [Bi, [S], where A.(X) is the deRham algebra in the sense of
Sullivan~Dupont. If X is I-~-connected and of finite raticnal type, then there is
a natural isomorphism F*(X) = Hom(W*(X),H{). For a DG-algzbra A, whose cohomo-

logy is of finite type, we define
%*
T {A) = HomIR (m (A),R).
Let X be a G-foliated manifold. The following result is proved in [Hui}

P . . #oo* %
1.1, THEOREM, The Chen-Wedld homomerphism {nduces a map h' 7 (I(G)Q) — (X
which depends onfy on the concondance class of the feliaticon.

If X is of finite rational type, the map h# induces by transposition a mapping

(1.2) h#:H(X) —> H(I(G)l),

*
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where TI(X) = s‘l(n*(x)am) and 1I(A) _l’rr*(A) are the desuspended graded homo=-
topy groups. It 1Is known [B-L] that the functor Il has values in the category of
graded Lie algebras. As h(w):I(G)R e A.(X) is a homomorphism of DG-algebras,

h# 1s a homomorphism of graded Lie algebras. This construction extends to G-

microbundles in an obvious way and therefore defines a homomorphism of Lie algebras

By:l(BIG) ——> M(L(G),).

If f:X —=> BFg denotes the classifyingmap of the G-foliation F on X, the

diagram
h
(1.3) ) whhb U(I(G)
M(BI)

1s commutative, Tt is the purpose of this note to determine the Lie algebra struc-

ture of H(I(G)g) (Section 2) and to detect elements in the image of E# via

appropriate choices of (X,f) (Section 4). In 3 we study the relationship of h#
1

with the chavacteristic homomorphism A* for G-foliations K-T 11, [K-T 27.

2. The structure of M(I(6) ;)

In this section we determine the structure of the graded Lie algebra
H(I(G)R). Let G be a reductive Lie group. In order to simplify the following
discussion, we will assume that G 15 connected in which cass I(G) = Bl[cl,...,cr]

is a polynomial algebra generated by the characteristic classes ¢

3

of even degree.

As before,we denote by

I, = 1(6), = Rlcy,...,c 1/ ($(cq, . e ) deg p > 20)

the truncated polynomial algebra, where CpswresCy denote the generators of

degree < 28,



Let A, = AP(ZR) 8 I, be the DG-algebra introduced in section 3. The inclusion
0 —> I, —> A, dualizes to give an epimorphism of DG-coalgebras,

* *
A2 NN IE~f-H¢ 0. Applying Quillen's L[ ceonstruction [Q], [B-L], we get an exact

sequence of free DG-Lie algebras
* * *
(2.1) 0 —> ker j —> L(A)) —> L(I,) —> 0,

where L(C) = E,(s_la) is the free DG-Lie algebra generated by a suspended reduced

DG-coalgebra C [B-L], [N-M]. Passing to cohomology we get an exact sequence
* * 8 *
0o — H,(L(Ag)) e H_(L(IR)) — H__l(ker i) —> 0

(2.2) ' I/ -

I

2,3, THEOREM. There s an extension of graded Lie algebras

0 —> T(A,) —> T(T,) — 0,

S E3
— Popy

where P L5 an abelian Lie algebra and (ay) = L(H.(AE)*) 45 a gree Lie

*
(28)
algebra.

We remark that the Lie algebra structure of the extension H(IZ) is

uniquely determined by the induced representation of P in the Lie algebra of

*
(22)
outer derivations of H(Az). This follows from the fact that the free Lie algebra
H(Ag) has trivial center and from the general theory of extensions of Lie algebras
{compare [Ho ] for the ungraded case). The proof of this theorem, culminating in the

determination of this induced action, will occupy the rest of this section.

First note that by taking a A-minimal model of the KS extension

0 > Ii > AR > AP(22) —> 0 [Ha], there is a long exact dual homotopy

: %
sequence with injective coboundary 2 and therefore a short exact sequence

(2,4) 0 —> B*P(zg) —_— ‘E*(Il) ——> ﬁ’*(AR‘) —> 0,



Dualizing this sequence gives the exact sequence of the theorem. The elements of

*
P(2£) all have odd degree, s0 as a Lie algebra this must be abelian, We want to

*
(22)
that H(AE) is an ideal in H(Ig).

analyze how the elements in P act on the image of H(Ag), and this will show

The algebra 4, admits a subalgebra Z, © A, with trivial differential

% L

and products, which Induces an isomorphism in cohomology 2

L

~

2 — H (AR) [K~-T3].

Therefore AR is biformal and we have iéomorphisms

k. % z .* ~
(2.5) L(ZR) = H.(L(Zi)) —_— H.(L(AQ)) = H(AE)°

-1 %
It follows that H(AQ) is a free graded Lie algebra generated by s lzl.

The algebra Z and the isomorphism Z, = H(AQ) have been described in

[ L

[K-T1], [K-T3]. We use here a slightly different notation, which is more convenient
in the present context. For ordered sequences 1 = (il<--'<is), J = (jlff--fjm),
the symbol (I/J) is called admissdibfe if it satisfies

m

(2.6) : deg ¢y < 24, cy = It Cju;
a=1
(2.7) deg ey eq 28
1
(2.8) i ig

For an admissible symbol (I/J), the cochain
Z(I/J) =¥ ) cg = yilA-.-AyiS ® le-..cjm S Ai
Is clearly a cocycle and the product of any two such cocycles = 0, The algebra
Zg is then given by the linear space spanned by 1 and the cocycles Z(I/J) for
{(1/7) admissible. l
let I = H{[cl,...,ct]; the canonical quotient mep I —> IE dualizes
%

% *
to an inclusion L(IR) C (I ). Since 1I has a canonical Hopf algebra structure

and trivial differential, we find easily that

H_(L(I*)) z P(zz) = span{Yl,...,Y,.i} ,



-1 * *
where Yj =35 lcj, j=1,...,t. Hence all the cycles in L(I )} of degree > 22

- *
are boundaries. Thus all the cycles in L(IQ) of degree > 2{ are boundaries in

*
L(I ). With this observation in mind, we produce explicitly a set of cycles in

L(Iz), which will generate H(L(Iz)).

-] * *
3 LN B ) % = e -
For any monomial Cps K (kli fkm) in I, we set YK' s oy I
*
The diagonal A in I is given by
2 Aer) = cb 81+18 c, + 2 T (B et 8 )
(2.9) (cg) = ¢ 8 + 5 (ca\ cgteg 8y,

(o, 8)
where (a,B) rums over all ordered proper partitions of the set {kl""’km}' By

*
definition,the differential dL of L{I ) 1is determined by the formula

=1 *
(2.10) d Yy =3 ) [YOt,YB] € [(T).
(a, 8)
%
For an admissible symbol (I/J) with I = (i), it follows that dLY(j 7 = L(Ig)
bl

is a cycle of degree > 2%, and we define

(2.11) s"lu’z./J)hdLY(, 5= L1y, ¥,
1 1, (Ct,’B)

If (I/J) is an arbitrary admissible symbol, we set

-—1* — Tees0 _l*
(2.12) s ¥/ ad(YiS) ad(Yiz)s u(il/J), s> 1,

where ad(Y¥) = [Y,-] denctes the adjoint representation. Clearly the Yj and the

-1 % % *
lu(l/l) are cycles in L(IQ)' Their corresponding homology classes in H.(L(IR))

-1 %
are denoted by the same symbol., Obscrve that the elements s lu(i/J) correspond

s

exactly to a minimal set of relations eCy ™ 0 for the quotient algebré IQ. For
* *

% c =) ] asi 3

J(I/J) ZR’ denote by Z(I/J) the corresponding dual basis element of 7,

X,

2.13. LEMMA. The dnfective homomosphism AP H(Ag) —_— ]!(IR’) 0§ Theonem 2.3 is

anduced by the homemoaphismof free De-Lie algebras L(zz) —= i IZ) , Which 45
] ' -1 * -
determined on the generalons by s L a/n 7 1U?I/J) g0t (1/3) admissible.



-1 *
It follows that the homology classes s 1U(I/J) generate a free subalge~

*
bra in L(Ig). The formulas in the following Proposition have teo be understood with
the conventlon: Whenever a symbol (I'/J') is not admissible, the term in which

the symbol occurs must be replaced by 0.

2.14., PROPOSITION. Let (I/J) be admissible and k < j in {1,...,t}. Then the

*
following formulas hold in H_(L(I%)):

I .
{2.15) ad(Yk)(Yj) = g u(k/j)’

-1 %

-1 % =
(2.16) ad{¥))s "uep, gy =8 Hgeeei k[9)”

for k > i ;
s

s
(2.17) ad(Yk)s_lu?I/J)= Y (—l)S—Bad(Y. Yorseoad(y, )B—lu?k/. ),s-lu?. i J)]
B=a s B+1 B i, ig .yl
s-otl -1 % ,
+ (~1) s (i eevi _Xiwi ‘J), for ia__l<k<1a,l<oc_<_s,
1 a-1""d"s
(2.18) ad(v,)s N’ P n*Faacy, ) ay, s =y ]
. a 8 u = - a , Joe*eoa . s u . .S u,,
k (1/3) 8=0; i 13+1 (k/lp) (1l 16“1|J)
s+l -1 % .
+ (1) ad(Yi ) ad(Yi )oad(Yk)s Yoy 17y for k< i3
s 2 1
-1 % o
(2.19) ad(Y,)s “u, /== 8 U, . 4. ...% .... ys for k< jo = 1i.
S € VA I TR (IS PVA ISR PULE I 0
Together with corresponding formulas for k=1 , a=1,...,s, (2.15) to (2.19)

o

completely determine the Lie algebra extension in Theorem 2,3 and hence the struc-
% % %
ture of H(IQ) = H(L(IR)). They also show that the subalgebra L(zé)‘jH(L(}é)) is
%
an ideal. Wc denote by D(Yk) the derivation on L(;;) induced by ad(Yk),

k=1,...,t. (2.15) implies

r _ a - ° / = ‘5—1r *
(2.20) DO PT = DY) o DO + DOV o DO = ad sz )40,

‘ _ *
D therefore induv(nt; ‘1 roprospntation D of the abellan Lie -‘.!]f’]l'bra }‘(22) in
DorﬂL(Z:))/IntDer. This {s the representatlon cinonically associated to the

cxtension (2,3).



As an example, we describe H(Iz) for T I(EA(Z)) =IR[ci,c2] « We have

3 2 * ; .
I, = [cl,cz]/(cl,cicz,cz).Th§ Lie algebra H(Iz) H(L(T )) is generated by

sl 121, 2 and sh -
Yj =g Cj’ j=1, an s u(l/ll) =

subalgebra L(Z;) C H(L(I;)) is generated by s
-1 % B -1 % B -1 % B .
ueyay T Y ¥ols 8 Tugg oy = TN Yol s Ty qqy = 1Y), 1YY g 1] and

-1 % :
s 1“(12/2) = [YZ’[Yl’Y2J]' The non-zero brackets in Prop. 2.1k are given by

Iy ]+ The free

Y¥a,nl o, = MY
-1

*
u(l,ll) and the elements

s

-1 * 3 -1 *
[Yl’s U(2/2)] =-2s Y(12/2),
_ -1 * T -1 *
XYpos Tugpnnt = = I8 0y !

-1 * -1 = -1 %
[Yys5 Tuigproy] = 08 Tugg s Uyl

-1 * -1 *®

1 1
[x 3 1% Uy V!

- *
278 “(12/11)] =7
and

1 . -1 % -1 *

-1 %
[Yps8 Tugyayoyd =7 I8 Uayays s vy

Theorem 2,3, has the following consequence

2,21, THEORDM. The mininal algebra M(IQ) appeans as an extension of  DG-algebras

(2.22) ‘o-—-e>Id(cl“..,cg)———>M(%)-Jﬁ—oauAR)———> 0

| /1] f
0 —> Td(ey,..rre) —> € (1)) === ¢ (L(zp)) —> 0,

where € (L) = s’ (s1) denotes the cochain complex of @ ghaded Lie algebra. As A

%
48 bdgornmal, the .Lsomorphism M(Ag) = C'(L(Z;)) presenves difperentials, Fon 1

which s only fonmal, the cochain differential dg descnibes only the quadnatic

Lenms of dyye

he I-cochains € 4 s basis elements
The l-cochains U(I/J) H(IR)’ dual to the basis elements

%

u
(1/3)

described earlier, are mapped Lo the cocycles Z(I/J) € ZQ c AZ' The obvious

relation in M(IR)



{(2.23) dMu(i/J) = ¢4

decomposable); hence Il is not

*
coformal for £ > 1. The minimal algebras of the form C (L(ZE)) have the homotopy

shows that dM has non-quadratic terms (for ¢y
type of a finite wedge of spheres, and their study goes back to P. J. Hilton

(compare e.g. [H1], [H2]). By contrast the minimal algebra M(IR) appears to be
quite complicated as far as the differential is concerned. Details of these con~-

structions will appear elsewhere [K-T4] .

f

3. The nelationship of h" with A,

Let X 'have a G-foliation; ﬁe assume that the G-frame bundle TF(Q) of
the normal bundle admits an H-reduction, where H C G is closed and (G,H) is a
reductive, CS-pair [¥K-T2]. Let P E.Aék be the space of primitives:
p = span{Yi,;..,Yr} where Yj is the cohomology suspension of ey Let P=F&p

be a Samelson decomposition. Denote the image of the transgression mapping by

~ ~ ~ %
V = TgP =V &V E.I(E)’ so that Ideal(V) ker( i :I(g) —_— I(D)). We denote by

V(2Q)’ resp. V(ZQ) the subspace generated by the elements of degree > 28, resp.
< 2%. Similarly we decompose P = P(ZQ) @ P(ZQ)'
The complex AQ used in section 2 is defined by A2 = AP(ZQ)E;I(E)Q’

with differential defined by the transgression. A similar relative complex is
defined by Ri = AﬁkgdSI(g)i. The relative Weil algebra of the pailr then has

cohomology [K-T 3]

(g 21 0P 6 1), & 1)
o aa(20) o Ko 8 -
B 0wy 1.

The Chern-Weill theory gives a characteristic homomorphism for G-foliations
[K"T,Z]

*
AH(g, 1), —> AT (F @ /1) > A7 (%),



giving a commutative diagram of minimal models

MGGs,) oo (R (o) /i)

(3.1) ' MjT lMS_

_Mn

M(I(G)R) > M(X)

We deduce two results from (3.1): First, there is a relationship between

h# and A,, given by [Hul]

3.2. THEOREM. The diaghram

*
T (I(6) )

(3.3) | cT tw*

f\'/\
H (AQ)

*
H (W(g,h )

natunally commutes, where I 48 the dual Hurewiez map and T L8 the inclusion

mappAng Z(I/J)——> /1)

This result gives a ncw method for showing the non-triviality of A,:
a class which is non-zero in the image of h# o L is.mapped to a non-zero class by
A,. Conversely, the non-triviality of A, for a given X can be used to show
h# is non-trivial, if the map i is known. Section 4 will indicatc what can be
shown using these techniques.

Let ng be the classifying space of trivialized, fooliated micro-

bundles; let K C G be a maximal compact group., By thefunctoriality of h# and

A#, dualizing (3.1) gives



3.4, THEOREM. let f1X —> Bl“g classdify a G-foliation on X . In a natural way,
thene ane defdined maps s0 that the diagram commutes:

('Y iﬁ TW(g,e),)
G &

(3.5) l l

q E#
nEry —— TW(g,L )

SN
#I h# it

M)  ——> I(L(G)

h R)

# \
-~k -~ ~k
The cokernel of j# is P 3 (3.5) forces h# to have cokernel 2 P ,

-

The obvious question is whether equaiity holds: Does image h# = 1image j#?
4. The homotepy of Bfg

For the three standard types of G-foliation, we indicate the extent to
which ﬁ# is known.
Let G = G&(q,R). Mather and Thurston [T] have shown that

v:er! —— BO(q) is (g¥2) connected. Therefore

{(4.1) ﬁ#mapSOnto YZj for 4j <q + 2.

(4.2) ﬂm(BFq) & qQ-——> Hm(BFq;Q) is an isomorphism (resp. onto) for m < 2q + 2

(resp. m = 2q + 3).
By (4.1 t h, i -l
y (4.1) we sec that p s onto s u(2m,2m)’

Yy #0 in BOlrYy.  This is a rigid

for g =4m - 2 > 3 or

q = 4m -~ 1. Theorem 3.2 implies A*(YZmC2m

class for q even. Other Whitchead products are similarly in the image of g#
[Hul].

Many more results follow from the Theorems of Heiisch [He] or Fuks [F] on

the variability of the classes in the image of A,



11

Using (4.2) we conclude there is a surjection of (qu) —> I{d,
h
for some d > 0, For example,by TFuks we have qu(BFq) —*ﬁé HZq(Iq) is onto.

2g+1

The homotopy of BI'Y therefore maps onto a rather large Lie subalgebra of H(Iq).
The 2q connectivity of Vv would imply ﬁ# is almost onto, within the restrictions
of (3.5).

When G = G&(n,T), the classes Yl,...,Ys are in the image of
ﬁ#:ﬂ(BTE) —_— H(In)’ where s = [vVn]. 'Coupled with the Theorem of Baum and Bott
[B-B], this shows lH(Bfg) O H(In) is onto a muéh larger subalgebra than origi-
nally considered in {H3] Further details are in [Hul].

When G = S0{(q) the map ﬁ#:H(BRFq) — H(Iq,), q' = [q/2], is onto,
and complete variétion occurs [HuZ?]. 1In this case the Lie algebra H(Iq,) is

injected into H(BRFq). The variability of the classes implies there are uncount-

ably many distinct ways of choosing a sectien H(Iq) —_— H(BRFq).
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