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ON THE HOMOTOPY AND COHOMOLOGY OF THE
CLASSIFYING SPACE
OF RIEMANNIAN FOLIATIONS!

STEVEN HURDER

ABSTRACT. Let G be a closed subgroup of the general linear group. Let Bf‘g be the
classifying space for G-foliated microbundles of rank g. (The G-foliation is not
assumed to be integrable.) The homotopy fiber FT'% of the classifying map »:
BT — BG is shown to be (g — 1)-connected. For the orthogonal group, this
implies FRIY is (q — 1)-connected. The indecomposable classes in H*(RW,)
therefore are mapped to linearly independent classes in H*(FRTY); the indecom-
posable variable classes are mapped to independently variable classes. Related
results on the homotopy groups = (FRT?) also follow.

1. The main theorem. Let BRI? be the Haefliger classifying space for Rieman-
nian foliations, BO(q) the classifying space for O(g)-bundles and »: BRT? —
BO(gq) the map classifying the normal bundle of the universal RI-structure on
BRT" [3]. Let FRT be the homotopy theoretic fiber of ». H*( ) will denote singular
cohomology with real coefficients. In this note we show

THEOREM 1.1. FRTY is (g — 1)-connected.

This implies there is a section of » over the g-skeleton of BO(q), so »*:
H9(BO(q)) -» HY(BRI") is injective. On the other hand, the vanishing Theorem of
J. Pasternack [9] implies »*: H?*'(BO(q)) - H?*'(BRTY) is the zero map. Theo-
rem 1.1 is therefore the best result possible for ¢ = 4k + 3. For other g, it would be
interesting to know whether FRTY has higher connectivity.

Theorem 1.1 is a special case of a more general result. Let G C Gl(q, R) be a
closed subgroup. A foliation on a manifold M is said to be a G-foliation [1], [7] if
there is given

(i) a model manifold B of dimension g with a G-structure on TB,

(i1) an open covering { U,} of M and local submersions ¢,: U, — B defining the
foliation such that the transition functions v,, are local G-morphisms of B.

A G-foliation is integrable if it is modeled on R? with the flat G-structure.

A classifying space for G-foliations is constructed as follows: Let 9U(G, RY)
denote the total space of the sheaf of local C*®-sections of the bundle R? X
Gl(q, R)/G — R, This is a (non-Hausdorff) C *-manifold, with a canonical G-
structure. Let §; be the pseudogroup of all local, C®, G-diffeomorphisms of
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(G, RY) and let T'% 7 be its associated topological groupoid [1, §2], [3]. Let BI“' be
the Haefliger clas51fy1ng space of I“’ -structures. For G = O(q), we have BRI? =
BI“’o(q) and, in general, BTY is the classifying space of G-foliations.

There is a natural map »: BI"’ — BG classifying the normal bundle of the
I“’ -structure on BI“’ Let F I’" be the homotopy theoretic fiber of ».

THEOREM 1.1'. F I“(’; is (@ — 1)-connected.

For G = O(q) we recover Theorem 1.1.

There is also a classifying space for integrable G-foliations, denoted by BI'%. We
let FT', denote the homotopy theoretic fiber of »: BI';, — BG. When G = Si(q, R),
one can show BT'Y ~ BT% [1, Remark 4.2], recovering from Theorem 1.1’
Haefliger’s result that FT', is (g — 1)-connected.

2. Applications. In this section, we give some consequences of Theorem 1.1°. The
proofs of the propositions stated use Sullivan’s theory of minimal models [10], and
are given in [5].

Theorem 1.1 implies there are many nontrivial Whitehead products in 7 (BRT¥?)
and that many of the secondary characteristic classes map injectively into
H*(FRT?). To be precise, let ¢ = [¢q/2] and W(30(q)), denote the truncated Weil
algebra for the orthogonal Lie algebra [7]. The Chern-Weil construction gives a
characteristic map A,: H*(W(30(q)),) > H*(FRT?). Let k =[q/4] + 1 and m =
[(g — 1)/2]. The set of invariants factors as

H*(W(80(9))g) = A4 @ Ay - - - Vm)>

where A4 is an algebra with all products zero and the second factor is the exterior
algebra on generators y; of degree 4j — 1. The algebra 4 has an explicit basis, given
by 1 and the cocycles y,p, € W(30(g)), where

ylpj =yi| . . .yi,p.{l o .. k‘k_—ll’

1<i<---<i<kand!<i; =), =0,anddegp; p, > q,degp, < gq.

For g even, additional cocycles involving the Euler class must be added to this
list [8]. A basis element y,p, € A is said to be variable if deg YiPr=2¢ + 1

Let V' C H*(W(30(q)),) be the subspace given by the direct sum

V=A®1®10 Ay ...,»,)

PROPOSITION 2.1. A,: V — H*(FRTY) is injective, and the variable basis elements
in V are mapped to independently variable classes in H*(FRTI?).

The first statement follows from Theorem 1.1 and the results of F. Kamber and
Ph. Tondeur [6, Theorem 6.52]. The variability follows from the examples of C.
Lazarov and J. Pasternack [8, Theorem 3.6] combined with Theorem 1.1. Details
can be found in [5].

Similar results concerning the homotopy of FRI? can be shown. Set #*(FRIY)
= Hom(w (FRT?), R). Let {y,, . ..,y,, denote the real vector space spanned by
{Y>++++Ym}- In [5), a vector-space map h* o §: H*(W(80(g)),) —» 7*(FRIY) is
defined, for which



CLASSIFYING SPACE OF RIEMANNIAN FOLIATIONS 487

PROPOSITION 22. h* o §: A® Ly, ..., 0,0 — 7*(FRI?) is injective and the
variable basis elements of A are mapped to independently variable classes.

For any commutative cochain algebra @ there is a vector space 7*(&), the dual
homotopy of &, constructed by choosing a minimal model 9 — @, and setting
7*(@) = M*/(IM* - IM*) [10]. The algebra 4 has trivial products and differen-
tial, so for ¢ = 4, 6 or > 8 the vector space 7*(A) is of finite type but not finite
dimensional. There is induced a map A*: 7*(4) — 7*(FRTY), extending h* o ¢, for
which we have [5]

PROPOSITION 2.3. A*: 7*(4) ® (y,, .. ., Yy — T*(FRTY) is injective and the
variable classes are mapped to independently variable classes.

The following proposition gives our final remark on the homotopy of F f‘g The
proof is obvious, using minimal models.

ProroSITION 2.4. Let X be an n-connected space, n > 1. Then the rational
Hurewicz map ¥: =, (X) ® Q — H,(X; Q) is an isomorphism for m < 2n and an
epimorphism for m = 2n + 1.

COROLLARY 2.5. ¥: =, (FT'%) ® Q > H,(FT'%; Q) is an isomorphism for m < 2q
— 2 and an epimorphism for m = 2q — 1.

3. Proof of Theorem 1.1'. Let X C R? be an open subset homotopic to S”. When
n is zero, we consider S° to consist of a single point. Then ,(F I.“‘(’;) =[X, F f"(’;],
the set of homotopy classes of maps f: X - F f“{; By the Gromov-Phillips-
Haefliger Theorem [2], there is a bijection between [X, F f‘g] and the set of
integrable homotopy classes of G-foliations on X with trivial G-structure. We will
show two such foliations on X are integrably homotopic.

Recall that two codimension ¢ G-foliations %,, %, on X are integrably homo-
topic if there is a codimension g G-foliation ¥ on X X [0, 1] such that the slices i,:
X X {t} > X X [0, 1] are transverse to ¥ for all ¢, and induce &, forz = 0, 1.

Fix an integer n with 0 < n <gq. Let (8, r) € R**! be polar coordinates, with
0 € S"andr € R. Forany a, b € R with 0 < a < b, define

B(a,b) = {(8,r) ER"™!la <r <b} X RI™""1,
Set X = B(0, 1); then X C R is open and homotopic to S”.

A codimension g G-foliation on X must be the point foliation with a G-structure
on the tangent bundle 7X. The tangent bundle is trivial, so the G-structure is
characterized by a smooth map a: X — Y, where Y is the coset space Gl(q, R)/G.
We denote by (X, «) the G-foliation on X with characteristic map a. The G-struc-
ture on (X, a) is trivial if a is homotopic to the constant map with image the
identity coset of Y. For two G-foliations (X, a,) and (X, «;) with trivial G-struc-
tures, it is apparent that a, and «a; are homotopic.

To prove the theorem, it will suffice to show that if a; and a;, are homotopic,
then there is an integrable homotopy from (X, a) to (X, a,). To do this, we will
construct three integrable homotopies, on X X [0, 1], X X [1, 2] and X X [2, 3]
which combine to give the desired integrable homotopy.
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Step 1. Choose a monotone, C “-function

¢: [0,1]>[1/2,1] with ¢(z) = {
Define H: X X [0, 1] > X by
H(,r,v) = (0, ¢(2)- (r —1/2) + 1/2, 0).
For each ¢, H, is a submersion; H, is the identity and H, maps X to a subannulus
of X. Also, H, is constant with respect to ¢ for ¢ near 0 or 1.

Define a G-structure on X by aj = &y © H;: X X {1} - Y. Then the submersion
H: X X I >(X, ay) defines a G-foliation on X X [0, 1] which is an integrable
homotopy from (X, &) to (X, ag).

Step 2. Define H”: X X [2,3]— X by H” = H,_,. Define a G-structure on X
by setting a; = a; ° H; . Then the submersion H”: X X [2, 3] - (X, a,) defines a
G-foliation which is an integrable homotopy from (X, aj) to (X, a;).

Step 3. We next produce an integrable homotopy from (X, agp) to (X, a}) by
constructing a G-foliation (X, &) and a submersion H': X X [1, 2] - (X, a) so that
ap=ac° Hianda; = a ° H,.

Define functions f, and f; as follows

fo: B(5/8,1) > B(0,3/4) by fo(8, r,v) =(8,2r —5/4,v),
fi: B(0,3/8) — B(1/4,1) by f,(8,r,v) =(6,2r +1/4,0).
Note that f, maps B(3/4, 1) to the image of H, and f, maps B(0, 1/4) to the image
of H;.
There are inclusions
i: 8" X {3/4} X R"™971 C B(5/8, 1),
iz §" X {1/4} x R*"7"' C B(0, 3/8)
and the composites a, ° fy ° iy and a, ° f, © i} are homotopic by assumption.
Therefore, there exists a smooth extension :
a: S" x[1/4, 3/4] % R 7 !'= B(1/4,3/4) > Y
of ay © fy © ig U @, © f; ° i;. We define a smooth map a: X — Y by
ay° fo onB(3/4,1),
a=1d on B(1/4,3/4),
a, ° f; onB(0, 1/4).

Finally, we construct the submersion H’: X X [1, 2] - X. Choose a monotone,

C *®-function ¢: [1, 2] - [0, 3] with

3
t) =
o(1) { 0
Then H’ at time ¢ is given by
H/(0, r,v) = (6, 1/4(r + ¢(1)), v).

The map H’ has the effect of sliding the image of X from image H, to image H, as
t varies from 1 to 2.

1 fort < 1/4,
1/2 fort > 3/4.

fort < 5/4,
fort > 7/4.
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Let X X [1, 2] have the G-structure defined by the submersion H': X X [1, 2] —»
(X, a). This gives an integrable homotopy from (X, a o H)) to (X,a o H;). A
straightforward check shows that f, e H{ = H, and f, © H; = H,'. This implies
ag = a ° H{ and a] = a o H;, which finishes Step 3 and the proof of Theorem 1.1".

a
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