

On the Homotopy and Cohomology of the Classifying Space of Riemannian Foliations

Steven Hurder

Proceedings of the American Mathematical Society, Volume 81, Issue 3 (Mar., 1981), 485-489.

Your use of the JSTOR database indicates your acceptance of JSTOR's Terms and Conditions of Use. A copy of JSTOR's Terms and Conditions of Use is available at http://www.jstor.org/about/terms.html, by contacting JSTOR at jstor-info@umich.edu, or by calling JSTOR at (888)388-3574, (734)998-9101 or (FAX) (734)998-9113. No part of a JSTOR transmission may be copied, downloaded, stored, further transmitted, transferred, distributed, altered, or otherwise used, in any form or by any means, except: (1) one stored electronic and one paper copy of any article solely for your personal, non-commercial use, or (2) with prior written permission of JSTOR and the publisher of the article or other text.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

Proceedings of the American Mathematical Society is published by American Mathematical Society. Please contact the publisher for further permissions regarding the use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/ams.html.

Proceedings of the American Mathematical Society ©1981 American Mathematical Society

JSTOR and the JSTOR logo are trademarks of JSTOR, and are Registered in the U.S. Patent and Trademark Office. For more information on JSTOR contact jstor-info@umich.edu.

©2001 JSTOR

ON THE HOMOTOPY AND COHOMOLOGY OF THE CLASSIFYING SPACE OF RIEMANNIAN FOLIATIONS¹

STEVEN HURDER

ABSTRACT. Let G be a closed subgroup of the general linear group. Let $B\Gamma_q^G$ be the classifying space for G-foliated microbundles of rank q. (The G-foliation is not assumed to be integrable.) The homotopy fiber $F\Gamma_q^G$ of the classifying map ν : $B\Gamma_q^G \to BG$ is shown to be (q-1)-connected. For the orthogonal group, this implies $FR\Gamma^q$ is (q-1)-connected. The indecomposable classes in $H^*(RW_q)$ therefore are mapped to linearly independent classes in $H^*(FR\Gamma^q)$; the indecomposable variable classes are mapped to independently variable classes. Related results on the homotopy groups $\pi_*(FR\Gamma^q)$ also follow.

1. The main theorem. Let $BR\Gamma^q$ be the Haefliger classifying space for Riemannian foliations, BO(q) the classifying space for O(q)-bundles and $\nu: BR\Gamma^q \to BO(q)$ the map classifying the normal bundle of the universal $R\Gamma^q$ -structure on $BR\Gamma^q$ [3]. Let $FR\Gamma^q$ be the homotopy theoretic fiber of ν . $H^*()$ will denote singular cohomology with real coefficients. In this note we show

THEOREM 1.1. $FR\Gamma^q$ is (q-1)-connected.

This implies there is a section of ν over the q-skeleton of BO(q), so ν^* : $H^q(BO(q)) \to H^q(BR\Gamma^q)$ is injective. On the other hand, the vanishing Theorem of J. Pasternack [9] implies ν^* : $H^{q+1}(BO(q)) \to H^{q+1}(BR\Gamma^q)$ is the zero map. Theorem 1.1 is therefore the best result possible for q = 4k + 3. For other q, it would be interesting to know whether $FR\Gamma^q$ has higher connectivity.

Theorem 1.1 is a special case of a more general result. Let $G \subseteq Gl(q, \mathbb{R})$ be a closed subgroup. A foliation on a manifold M is said to be a G-foliation [1], [7] if there is given

- (i) a model manifold B of dimension q with a G-structure on TB,
- (ii) an open covering $\{U_{\alpha}\}$ of M and local submersions $\phi_{\alpha} \colon U_{\alpha} \to B$ defining the foliation such that the transition functions $\gamma_{\alpha\beta}$ are local G-morphisms of B.

A G-foliation is *integrable* if it is modeled on \mathbb{R}^q with the flat G-structure.

A classifying space for G-foliations is constructed as follows: Let $\mathfrak{N}(G, \mathbf{R}^q)$ denote the total space of the sheaf of local C^{∞} -sections of the bundle $\mathbf{R}^q \times Gl(q, \mathbf{R})/G \to \mathbf{R}^q$. This is a (non-Hausdorff) C^{∞} -manifold, with a canonical G-structure. Let \mathcal{G}_G be the pseudogroup of all local, C^{∞} , G-diffeomorphisms of

Received by the editors October 18, 1979 and, in revised form, February 22, 1980.

AMS (MOS) subject classifications (1970). Primary 57D30, 57D20; Secondary 55F40, 55E15.

Key words and phrases. Classifying spaces, foliations, characteristic classes, minimal models.

¹This paper is part of the author's doctoral thesis. The author would like to thank his advisor, Franz Kamber, for his guidance and encouragement.

 $\mathfrak{N}(G, \mathbf{R}^q)$ and let $\tilde{\Gamma}_G^q$ be its associated topological groupoid [1, §2], [3]. Let $B\tilde{\Gamma}_G^q$ be the Haefliger classifying space of $\tilde{\Gamma}_G^q$ -structures. For G = O(q), we have $BR\Gamma^q = B\tilde{\Gamma}_{O(q)}^q$ and, in general, $B\tilde{\Gamma}_G^q$ is the classifying space of G-foliations.

There is a natural map ν : $B\tilde{\Gamma}_G^q \to BG$ classifying the normal bundle of the $\tilde{\Gamma}_G^q$ -structure on $B\tilde{\Gamma}_G^q$. Let $F\tilde{\Gamma}_G^q$ be the homotopy theoretic fiber of ν .

THEOREM 1.1'. $F\tilde{\Gamma}_G^q$ is (q-1)-connected.

For G = O(q) we recover Theorem 1.1.

There is also a classifying space for integrable G-foliations, denoted by $B\Gamma_G^q$. We let $F\Gamma_G^q$ denote the homotopy theoretic fiber of ν : $B\Gamma_G^q \to BG$. When $G = Sl(q, \mathbf{R})$, one can show $B\tilde{\Gamma}_{Sl}^q \simeq B\Gamma_{Sl}^q$ [1, Remark 4.2], recovering from Theorem 1.1' Haefliger's result that $F\Gamma_{Sl}^q$ is (q-1)-connected.

2. Applications. In this section, we give some consequences of Theorem 1.1'. The proofs of the propositions stated use Sullivan's theory of minimal models [10], and are given in [5].

Theorem 1.1 implies there are many nontrivial Whitehead products in $\pi_*(BR\Gamma^q)$ and that many of the secondary characteristic classes map injectively into $H^*(FR\Gamma^q)$. To be precise, let q' = [q/2] and $W(\mathfrak{So}(q))_{q'}$ denote the truncated Weil algebra for the orthogonal Lie algebra [7]. The Chern-Weil construction gives a characteristic map Δ_* : $H^*(W(\mathfrak{So}(q))_{q'}) \to H^*(FR\Gamma^q)$. Let k = [q/4] + 1 and m = [(q-1)/2]. The set of invariants factors as

$$H^*(W(\mathfrak{So}(q))_{q'}) \simeq A \otimes \Lambda(y_k, \ldots, y_m),$$

where A is an algebra with all products zero and the second factor is the exterior algebra on generators y_j of degree 4j - 1. The algebra A has an explicit basis, given by 1 and the cocycles $y_j p_j \in W(\mathfrak{So}(q))_{q'}$ where

$$y_{I}p_{J} = y_{i_{1}} \cdot \cdot \cdot y_{i_{k}}p_{1}^{j_{1}} \cdot \cdot \cdot p_{k-1}^{j_{k-1}},$$

 $1 \le i_1 < \cdots < i_s < k \text{ and } l < i_1 \Rightarrow j_l = 0, \text{ and } \deg p_{i_1} p_J > q, \deg p_J \le q.$

For q even, additional cocycles involving the Euler class must be added to this list [8]. A basis element $y_I p_J \in A$ is said to be variable if deg $y_{i_1} p_J = 2q' + 1$.

Let $V \subseteq H^*(W(\mathfrak{So}(q))_{a'})$ be the subspace given by the direct sum

$$V = A \otimes 1 \oplus 1 \otimes \Lambda(y_k, \ldots, y_m).$$

PROPOSITION 2.1. $\Delta_*: V \to H^*(FR\Gamma^q)$ is injective, and the variable basis elements in V are mapped to independently variable classes in $H^*(FR\Gamma^q)$.

The first statement follows from Theorem 1.1 and the results of F. Kamber and Ph. Tondeur [6, Theorem 6.52]. The variability follows from the examples of C. Lazarov and J. Pasternack [8, Theorem 3.6] combined with Theorem 1.1. Details can be found in [5].

Similar results concerning the homotopy of $FR\Gamma^q$ can be shown. Set $\pi^*(FR\Gamma^q)$ = $Hom(\pi_*(FR\Gamma^q), \mathbb{R})$. Let $\langle y_k, \ldots, y_m \rangle$ denote the real vector space spanned by $\{y_k, \ldots, y_m\}$. In [5], a vector-space map $h^{\sharp} \circ \zeta$: $H^*(W(\$o(q))_q) \to \pi^*(FR\Gamma^q)$ is defined, for which

PROPOSITION 2.2. $h^{\sharp} \circ \zeta$: $A \oplus \langle y_k, \ldots, y_m \rangle \to \pi^*(FR\Gamma^q)$ is injective and the variable basis elements of A are mapped to independently variable classes.

For any commutative cochain algebra \mathscr{C} there is a vector space $\pi^*(\mathscr{C})$, the dual homotopy of \mathscr{C} , constructed by choosing a minimal model $\mathfrak{M} \to \mathscr{C}$, and setting $\pi^*(\mathscr{C}) = \mathfrak{M}^*/(\mathfrak{M}^+ \cdot \mathfrak{M}^+)$ [10]. The algebra A has trivial products and differential, so for q = 4, 6 or > 8 the vector space $\pi^*(A)$ is of finite type but not finite dimensional. There is induced a map Δ^{\sharp} : $\pi^*(A) \to \pi^*(FR\Gamma^q)$, extending $h^{\sharp} \circ \zeta$, for which we have [5]

PROPOSITION 2.3. Δ^{\sharp} : $\pi^*(A) \oplus \langle y_k, \dots, y_m \rangle \to \pi^*(FR\Gamma^q)$ is injective and the variable classes are mapped to independently variable classes.

The following proposition gives our final remark on the homotopy of $F\tilde{\Gamma}_G^q$. The proof is obvious, using minimal models.

PROPOSITION 2.4. Let X be an n-connected space, $n \ge 1$. Then the rational Hurewicz map $\mathcal{H}: \pi_m(X) \otimes \mathbf{Q} \to H_m(X; \mathbf{Q})$ is an isomorphism for $m \le 2n$ and an epimorphism for m = 2n + 1.

COROLLARY 2.5. $\mathfrak{R}: \pi_m(F\tilde{\Gamma}_G^q) \otimes \mathbf{Q} \to H_m(F\tilde{\Gamma}_G^q; \mathbf{Q})$ is an isomorphism for $m \leq 2q - 2$ and an epimorphism for m = 2q - 1.

3. Proof of Theorem 1.1'. Let $X \subseteq \mathbb{R}^q$ be an open subset homotopic to S^n . When n is zero, we consider S^0 to consist of a single point. Then $\pi_n(F\tilde{\Gamma}_G^q) \cong [X, F\tilde{\Gamma}_G^q]$, the set of homotopy classes of maps $f \colon X \to F\tilde{\Gamma}_G^q$. By the Gromov-Phillips-Haefliger Theorem [2], there is a bijection between $[X, F\tilde{\Gamma}_G^q]$ and the set of integrable homotopy classes of G-foliations on X with trivial G-structure. We will show two such foliations on X are integrably homotopic.

Recall that two codimension q G-foliations \mathfrak{F}_0 , \mathfrak{F}_1 on X are integrably homotopic if there is a codimension q G-foliation \mathfrak{F} on $X \times [0, 1]$ such that the slices i_t : $X \times \{t\} \to X \times [0, 1]$ are transverse to \mathfrak{F} for all t, and induce \mathfrak{F}_t for t = 0, 1.

Fix an integer n with $0 \le n < q$. Let $(\theta, r) \in \mathbb{R}^{n+1}$ be polar coordinates, with $\theta \in S^n$ and $r \in \mathbb{R}$. For any $a, b \in \mathbb{R}$ with $0 \le a < b$, define

$$B(a, b) = \{(\theta, r) \in \mathbb{R}^{n+1} | a < r < b\} \times \mathbb{R}^{q-n-1}.$$

Set X = B(0, 1); then $X \subseteq \mathbf{R}^q$ is open and homotopic to S^n .

A codimension q G-foliation on X must be the point foliation with a G-structure on the tangent bundle TX. The tangent bundle is trivial, so the G-structure is characterized by a smooth map $\alpha \colon X \to Y$, where Y is the coset space $Gl(q, \mathbf{R})/G$. We denote by (X, α) the G-foliation on X with characteristic map α . The G-structure on (X, α) is trivial if α is homotopic to the constant map with image the identity coset of Y. For two G-foliations (X, α_0) and (X, α_1) with trivial G-structures, it is apparent that α_0 and α_1 are homotopic.

To prove the theorem, it will suffice to show that if α_0 and α_1 are homotopic, then there is an integrable homotopy from (X, α_0) to (X, α_1) . To do this, we will construct three integrable homotopies, on $X \times [0, 1]$, $X \times [1, 2]$ and $X \times [2, 3]$ which combine to give the desired integrable homotopy.

Step 1. Choose a monotone, C^{∞} -function

$$\phi: [0, 1] \to [1/2, 1]$$
 with $\phi(t) = \begin{cases} 1 & \text{for } t \le 1/4, \\ 1/2 & \text{for } t \ge 3/4. \end{cases}$

Define $H: X \times [0, 1] \rightarrow X$ by

$$H_r(\theta, r, v) = (\theta, \phi(t) \cdot (r - 1/2) + 1/2, v).$$

For each t, H_t is a submersion; H_0 is the identity and H_1 maps X to a subannulus of X. Also, H_t is constant with respect to t for t near 0 or 1.

Define a G-structure on X by $\alpha'_0 = \alpha_0 \circ H_1$: $X \times \{1\} \to Y$. Then the submersion $H: X \times I \to (X, \alpha_0)$ defines a G-foliation on $X \times [0, 1]$ which is an integrable homotopy from (X, α_0) to (X, α'_0) .

Step 2. Define $H'': X \times [2, 3] \to X$ by $H_t'' = H_{3-t}$. Define a G-structure on X by setting $\alpha_1' = \alpha_1 \circ H_2''$. Then the submersion $H'': X \times [2, 3] \to (X, \alpha_1)$ defines a G-foliation which is an integrable homotopy from (X, α_1') to (X, α_1) .

Step 3. We next produce an integrable homotopy from (X, α'_0) to (X, α'_1) by constructing a G-foliation (X, α) and a submersion $H': X \times [1, 2] \to (X, \alpha)$ so that $\alpha'_0 = \alpha \circ H'_1$ and $\alpha'_1 = \alpha \circ H'_2$.

Define functions f_0 and f_1 as follows

$$f_0: B(5/8, 1) \to B(0, 3/4)$$
 by $f_0(\theta, r, v) = (\theta, 2r - 5/4, v),$
 $f_1: B(0, 3/8) \to B(1/4, 1)$ by $f_1(\theta, r, v) = (\theta, 2r + 1/4, v).$

Note that f_0 maps B(3/4, 1) to the image of H_1 and f_1 maps B(0, 1/4) to the image of H_2'' .

There are inclusions

$$i_0: S^n \times \{3/4\} \times \mathbf{R}^{n-q-1} \subseteq B(5/8, 1),$$

 $i_1: S^n \times \{1/4\} \times \mathbf{R}^{n-q-1} \subseteq B(0, 3/8)$

and the composites $\alpha_0 \circ f_0 \circ i_0$ and $\alpha_1 \circ f_1 \circ i_1$ are homotopic by assumption. Therefore, there exists a smooth extension

$$\tilde{\alpha}$$
: $S^n \times [1/4, 3/4] \times \mathbb{R}^{n-q-1} = \overline{B(1/4, 3/4)} \to Y$

of $\alpha_0 \circ f_0 \circ i_0 \cup \alpha_1 \circ f_1 \circ i_1$. We define a smooth map $\alpha: X \to Y$ by

$$\alpha = \begin{cases} \alpha_0 \circ f_0 & \text{on } B(3/4, 1), \\ \tilde{\alpha} & \text{on } \overline{B(1/4, 3/4)}, \\ \alpha_1 \circ f_1 & \text{on } B(0, 1/4). \end{cases}$$

Finally, we construct the submersion $H': X \times [1, 2] \to X$. Choose a monotone, C^{∞} -function $\varphi: [1, 2] \to [0, 3]$ with

$$\varphi(t) = \begin{cases} 3 & \text{for } t \le 5/4, \\ 0 & \text{for } t \ge 7/4. \end{cases}$$

Then H' at time t is given by

$$H'_{t}(\theta, r, v) = (\theta, 1/4(r + \varphi(t)), v).$$

The map H' has the effect of sliding the image of X from image H_1 to image H_2'' as t varies from 1 to 2.

Let $X \times [1, 2]$ have the G-structure defined by the submersion $H': X \times [1, 2] \to (X, \alpha)$. This gives an integrable homotopy from $(X, \alpha \circ H_1')$ to $(X, \alpha \circ H_2')$. A straightforward check shows that $f_0 \circ H_1' = H_1$ and $f_1 \circ H_2' = H_2''$. This implies $\alpha_0' = \alpha \circ H_1'$ and $\alpha_1' = \alpha \circ H_2'$, which finishes Step 3 and the proof of Theorem 1.1'.

REFERENCES

- 1. T. Duchamp, Characteristic invariants of G-foliations, Ph. D. thesis, University of Illinois, Urbana, Ill., 1976.
 - 2. A. Haefliger, Feuilletages sur les variétés ourvertes, Topology 9 (1970), 183-194.
- 3. _____, Homotopy and integrability, Lecture Notes in Math., vol. 197, Springer-Verlag, Berlin and New York, 1971, pp. 133-163.
- 4. _____, Whitehead products and differential forms, Lecture Notes in Math., vol. 652, Springer-Verlag, Berlin and New York, pp. 13-24.
- 5. S. Hurder, Dual homotopy invariants of G-foliations, Ph. D. Thesis, University of Illinois, Urbana, Ill., 1980.
- 6. F. Kamber and Ph. Tondeur, Non-trivial invariants of homogeneous foliated bundles, Ann. Sci. École Norm. Sup. 8 (1975), 433-486.
 - 7. _____, G-foliations and their characteristic classes, Bull. Amer. Math. Soc. 84 (1978), 1086-1124.
- 8. C. Lazarov and J. Pasternack, Secondary characteristic classes for Riemannian foliations, J. Differential Geometry 11 (1976), 365-385; Residues and characteristic classes for Riemannian foliations, J. Differential Geometry 11 (1976), 599-612.
- 9. J. Pasternack, Foliations and compact Lie groups actions, Comment. Math. Helv. 46 (1971), 467-477.
- 10. D. Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269-331.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, URBANA, ILLINOIS 61801

Current address: School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540