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A foliation # on a smooth manifold M is said to transversely holomorphic if
% is locally defined by submersions into ", and the associated transition
functions are biholomorphic. If M is also a complex manifold and the local
submersions are holomorphic, then F is said to be holomorphic. The purpose of
this paper is to study the characteristic classes of transversely holomorphic
foliations. The universal chern classes for transversely holomorphic foliations
of codimension n are shown to be independent up to degree 2n, above which
they must vanish. Using this result, we then construct for all even complex
codimensions the first examples of transversely holomorphic foliations for
which a set of rigid secondary classes is non-trivial. Applications of the
independence results we obtain are given to the study of BI'Y and to the study
of the space of foliations on an open manifold.

Heitsch showed that the secondary classes of a foliation divide into two
categories [9]: the variable classes are those whose value can change under a
deformation of the foliation; rigid classes are those invariant under defor-
mation. The examples of Baum-Bott [§11; 2] established that all of the
variable classes of degree 2n+ 1 in codimension n are independently variable in
H*"*Y(FI'Y). The Baum-Bott examples are extended in [Theorem 5; 11], so
that all of the variable classes in H*(W,)® H*(W,) which are not products are
independently variable in H*(FIL%). The examples of Rasmussen [18] show
that some of the decomposable classes can also vary. The natural question
raised by these examples is whether any rigid classes are non-trivial in
H*(FLY). We give a positive answer, using the dual homotopy techniques of
[10] and a detailed study of the topology of the map v: BI;* —» BU,.

The rest of the paper is organized as follows. Section | gives the general
non-triviality results for the chern classes and rigid secondary classes. Back-
ground material about secondary classes and dual homotopy invariants is
presented in § 2. Section 3 gives specific results about codimension 2, and §4 is
devoted to the space of foliations. The proofs of Theorems 1.3 and 1.4 are
deferred until § 5.
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0020-9910/82/0066/0313/$02.20



314 S. Hurder

The author is especially indebted to the referee for his very helpful comments, which have greatly
clarified the presentation of this work. The support of the Institute for Advanced Study during the
period of this research is gratefully acknowledged.

§ 1. Independence Theorems

All manifolds are assumed to be smooth and paracompact. Topological spaces
are assumed to have basepoints and maps between them to be continuous and
preserve basepoints. The singular cohomology of X with coefficients in C is
denoted H*(X).

Let BI,® be Haefliger's classifying space of codimension n transversely
holomorphic foliations [7], and let v: BI;— BU, be defined by the differential.

Proposition 1.1. The map v*: H*(BU,: Q)— H™(BI,*; Q) is injective for all
m<2n.

The Bott Vanishing Theorem for transversely holomorphic foliations [3]
implies v* is the zero map for m>2n, so this result is sharp.

Proof. The foliation by points of a compact, complex n-manifold M determines
a map f: M — BI'® such that vof classifies the complex tangent bundle of M.
Given a non-zero ze H*"(BU,; Q). there is a compact, complex n-manifold M
with tangent bundle classified by g: M — BU, so that g*(z)%0. This follows
from the independence of the chern numbers in degree n [§16; 16]. We can
factor g=vof. so v¥(z)#0. Since z was arbitrary. v* is injective in degree 2n.
For a non-zero ze H?(BU,; Q) with [ <n. multiplying by ¢" ! yields a non-zero
class of degree 2n so that v*(z-¢""')%0. whence v*(z)+0. Therefore v* is
injective in all degrees <2n. [

The connectivity theorems of Landweber [15] and Adachi [1] along with
Proposition 1.1 yield:

Proposition 1.2. The map v, (BLY) —n,(BU,) is an isomorphism for m<n,
onto for m=n+1 and has finite cokernel for m=n+2.

Proof. 1t is shown in [1] that the fiber FI,* of v is n-connected, so the point of
(1.2) is to prove vy :m,, ,(BIHY®Q—n,, ,(BU,)®Q is onto.

In the fibration FI— BI'*-% BU,, the base is I-connected and fiber is n-
connected. From the Serre exact sequence for homology [Theorem 7.10; 207,
we get the commutative diagram with exact rows:

H,,,BLY Q) —*— H,,,BU;Q) —*— H,, (FL5Q)

b o b

Ty 2 BLH®Q—"> 7, ,(BU)®Q —"">n,, ,(FI9®Q.

The vertical maps are the Hurewicz homomorphisms. The map v, is onto by
(1.1), so 6,=0. Since h; is an isomorphism, é, =0 also and thus v, must be
onto. [J
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The non-triviality of v, in degree n+2 is essential to our construction of
examples with non-trivial rigid classes. Recall that k,: H*(W,® W,)— H*(FI,%)
is the universal secondary characteristic homomorphism for transversely ho-
lomorphic foliations with framed normal bundles.

Theorem 1.3. Let n=2k—2 with k>1. Define a set of rigid secondary classes
RSH*(W)SH*(W,® W) to be

R={y,y;, ... v . AT2<i, < <, Znyu{yy,.ovalk<iy < <i <n)

Then k, maps A to a linearly independent set in H*(FIY).

Let 2, % be the subset # ={y,c;e #|2i <n+2}. The elements of the
subset k,(#,) are then, in addition, spherically supported:

Theorem 1.4. The set k (#)<=H*(F I is linearly independent on spherical
cycles. That is, the elements of k (A,) take independent values on the cycles in
the image of the Hurewicz map n (FI,Y)— H (FIY; Z).

n >

The proofs of (1.3) and (1.4) are deferred until § 5.

Remark 1.5. Theorem 1.3 implies there exists a complex manifold M with a
holomorphic foliation for which the secondary classes in # take independent
values. It is a standard application of the Gromov-Phillips Theorem to show
there exists an open analytic manifold U with a transversely holomorphic
foliation for which # is independent [6]. We take M to be the complexifi-
cation of U, and it follows from Theorem 2.6 of Landweber [15] that the
complex manifold M has a framed holomorphic foliation # with the classes in
A independent for .#. Further, the set # can be realized independently on
such an M which has the homotopy type of a bouquet of spheres by (1.4).

§ 3. Secondary and Dual Homotopy Invariants

We recall the construction of the secondary classes as given by Bott [3], and
their relation with the dual homotopy invariants of [10].

Define a differential algebra W, =A(y,..... 1) Cle,..... ¢,], where
C[cy,...,c,], is the truncated polynomial algebra with generators of degree c;
=2j, and we quotient out the ideal generated by monomials of degree >2n.
The differential is defined by setting dy,=c;. Also, we need the conjugate
algebra W, which is isomorphic to W, and has algebra generators y; and ¢,.

Given a transversely holomorphic foliation # on M with a framing s of the
normal GI,C-bundle to .7, a choice of a Bott connection for .# along with the
flat connection of s determines a differential map 4°: W,— (M) into the
complex de Rham algebra [3]. Taking the conjugates of the forms in the
image of 4° gives rise to a second map which we also denote 4°: W, — &¢(M).
The sum of both yields in cohomology the characteristic map
A% H*(W,® W,)— H*(M) which depends only on the concordance class of #
and the homotopy class of the framing s. This construction is functorial, so
there is a universal map which we denote k: H¥(W,® W,,)——»H*(FI‘”‘E).
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It is conjectured that k, is injective; k, is known to be injective when
restricted to the space of variable classes in the direct sum

H* (W) ® H*(W,) < H*(W,) ® H* (W) = H*(W, ® ).

For n=2, k,: H*(W,)— H*(FIy) is injective by Theorem 3.2 below. The in-
jectivity of k,: H*(W,)— H*(FI,Y) follows similarly if the space FI,* is (2n—2)-
connected. It seems to be a delicate matter to realize product classes in
H*(W,® W,); the only known examples are in [18].

A basis over C of H*(W,) has been determined by Vey [5]. For indices I
=(iy,...,i) and J=(j, ..., j,) we denote by y,c, the element of W,

D — J Jn
Ve, =y, -y, ®cft .o

A vpair (I, J) is admissible, and the corresponding y,c, is an admissible cocycle,
if it satisfies the conditions:

1si, <...<i;Sn and =0
degc;<2n and degy; ¢;22n+1

I<i, implies j,=0.

The set {y,c,|(I, J) admissible} is the Vey basis for H*(W)).

With respect to the Vey basis, the rigid classes in H*(W,) consist of the span
of the set {y,c,|(1,J) admissible and deg y; ¢,=2n+3}. Heitsch showed that if
z is a rigid class and (%,s) is a framed foliation on M, then the value of
45, (z)e H*(M) depends only on the homotopy class of % and s, and thus is
constant under a deformation of # [9].

Associated to a transversely holomorphic foliation % on M of codimension
n is another family of invariants, the dual homotopy classes. We describe their
essential properties; complete details are in [10].

The Chern-Weil homomorphism with respect to a Bott connection for #
gives a differential algebra  homomorphism  h:l,— (M), where
1,=C[c,,...,c,], is the truncated polynomial algebra. It is shown in [Theorem
2.11; 10] that the de Rham-Sullivan algebra homotopy class of h depends only
on the concordance class of &. Any property of h which depends only on its
algebra homotopy class will then be an invariant of the concordance class of
Z.

Given a differential algebra .o/ with H°(«/)=C, the minimal model of .7 is
denoted .#,-% o/. Define n*(./) to be the graded vector space of indecompos-
ables in ./,

n* () > My (M)
where .#; denotes the ideal of elements of positive degree. The correspon-

dence of — n*(s#) is functorial. The dual homotopy invariants of & are ob-
tained by applying n* to the Chern-Weil map [Theorem 2.12; 10]:

Thorem 2.1. The map of graded vector spaces h*: n*(I,)— n*(M) depends only
on the concordance class of F.
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We use in (2.1) the notation n*(M)=n*(6M). For a simply connected
manifold, the space n*(M) is naturally identified with Hom (n (M), C). The
classes in the image of h* form a system of “higher order residues” for the
foliation, in the sense of [2, 19]. See also [Remark 4.3; 10].

When n>1, the minimal model of I, has an infinite number of generators
and the space of invariants n*(I,) is infinite-dimensional.

The construction of 1* is functorial, so there is a universal map

W*: 7 (1,) > n*(BLY) S Hom (n, (BI,Y), €).

This map is injective for n=1 or 2. For n>2, if FI'* is (2n—2)-connected, then
the universal map h* will be injective.

One of the useful features of the dual homotopy classes is their explicit
relationship with the secondary classes. In degrees m>2n, we can define a map
¢ to be the composition

T,(BLH®Qx~n,(FIYH®Q— H,(FL'; Q)

where the last map is the Hurewicz homomorphism. The dual to & gives a map
& HM(FTT) - n*(BLY).

Theorem 2.2. There exists an inclusion {: H*(W,)— n*(1,) such that, for m>2n,
the diagram commutes:

7Zm(In) __h_“___> ﬂ.'m(B I',"([')

I

Hm(VVn) Ky Hm(FI*n(l)

This is Corollary 3.6 of [10]. On the level of differential forms, the re-
lationship of (2.2) was discussed by Haefliger in [8]. The purpose of introduc-
ing h* in order to study k, is that the dual homotopy classes can detect
Whitehead products in n(BI)), and these Whitehead products are often
explicitly constructable. We prove Theorems 1.3 and 1.4 by exhibiting an
appropriate product in =,,, ;(BLY) which is detected by a class in the image of
h*o{ and then use Theorem 2.2 to conclude the corresponding secondary
class in H*(FI%) is non-trivial.

§ 3. The Structure of BI;

Proposition 1.2 and Theorem 1.4 have many consequences for the study of
BI'f. First, it follows from the 2-connectivity of FIy and (1.2) that the loop
space QBT decomposes after inverting 12 (=localizing away from 12); there
is a homotopy equivalence:

Q(BTY) 12, =Q(BU,) 5 x QFTY) 5. (3.1
This is proved by constructing a section u

Qv: QBIT2QBU,: 1
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where Qvo p is multiplication by 12. The number 12 is the determinant of the
2 x 2 matrix of chern numbers in dimension 2 [P. 194; 16], and enters into (3.1)
when constructing a map X u: S*— BIy which detects v¥(c,) e H*(BT}).

The integral groups = (BT 1) and T ¥) are essentially the same by (3.1).
For m>4, information about H™(FIy) and =, (FIy) is obtained using the
secondary and dual homotopy invariants. Recall that the Vey basis for H*(W,)
is:

Vs={y,¢1, 9,5} of degree 5
R,={y,c,} of degree 7

Ve={y1V:¢1, ¥, ,¢,} of degree 8

where VU Vy is a basis for the variable classes, and R, for the rigid classes.

In the next theorem, we regard a class ce H"(FI;) as a homomorphism
H,(FL%; Z)— €, and by composition with the Hurewicz map, also as a
homomorphism ¢: =, (FI,%)— C.

Theorem 3.2. The universal map k,: H*(W,)—»H*(FIy) is injective. Further,
there are epimorphisms of abelian groups:

(a) k, (V5): ns(FI) > CDC,
(b) k, (R5): n7(FF2‘F)®(I:—>C,
(©) k,(Vy): mg(FIH— CHC.

Proof. It suffices to show a, b and ¢ hold. (a) follows directly from the Baum-
Bott examples [§ 12; 2]. (b) is a restatement of Theorem 1.4 for n=2. (c) follows
from (a), the existence of a map g: S*— BIy which detects ¢, (by 1.2) and the
analog for BIY of [Proposition 6.12; 10]. [

It is not known whether k,: H*(W,® W,)— H*(FTY) is injective. As re-
marked in §2, k, is injective on the space of variable classes in
H*(W,)@ H(W,). The class k,(y,c,) is non-trivial, but the rigid class (y,c,
—¥,¢,) may be in the kernel of k. In the proof of 1.4, we will construct a
map f: S7— FIy such that the evaluation of k,(y,c,) on f is a real number
(in fact, an integer). Thus, k*(yzcz—m)(f)=0; so we get k, (y,c,)#0, but
cannot conclude k,(y,c, —¥,¢,) is non-trivial.

For the dual homotopy invariants there is an injectivity result parallel to
3.2:

Theorem 3.3. The universal map h*: n*(1,)— n*(BIY) is injective.
2 2

Proof. Let X =S*v CP? be the 4-skeleton of the standard CW structure on
BU,. It will suffice to construct a map f: X — BIy which induces an isomor-
phism (veof)*: H"(BU,)— H™(X) for m=4. For this implies the associated
Chern-Weil homomorphism h*: I,— H*(X) is an isomorphism, and also
h*: n*(I,)— n*(X) is an isomorphism. Since h* factors through f*, the theo-
rem follows.

To define f, choose a map g:S*— BIy so that (vog)*(c,)#+0. Let
g: CP?— BIY classify the point foliation. Then f=gvg': X — BIy has the
desired properties. [
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On implication of (3.3) is that the rational homotopy groups =,,(BIy)® C
are non-trivial for an infinite number of m. More amazingly, from Theorem
3.2a,c and using the ideas of Haefliger [8], we have for all m> 10, the group
n,(BIY) contains an uncountable number of free Z-zummands. This derives
from the existence of epimorphisms of the integral groups =, (BIyY)—> C™,
where r,, — oc. (Precisely, r,,#£0 for m=35, 8, 9 and m>10.) These epimorphisms
are constructed by showing there is a surjection of Whitehead algebras (the
suspensions of graded Lie algebras)

n (BIY)—>n (S°vS vSTvSiv S ®C

except in degree 7. The integer r, is just the dimension of the right-hand-side
vector space in degree m.

§ 4. The Space of Transversely Holomorphic Foliations

Let #%(M) be the set of codimension n, transversely holomorphic foliations on
the smooth manifold M. We assume this set is non-empty and give it the C™-
topology. The local structure of #(M) about a “point™ Z is related to the
infinitesimal deformations of %, and the associated deformation theory of %
has been studied by Kodaira-Spencer [14] and Duchamp-Kalka [4]. However,
very little is known about the global topology of #%(M). For many open
manifolds M, we can apply Theorems 1.3 and 1.4 to find that #Y(M) has an
infinite number of path components.

Define a smooth path y: [0, 1]— Z5(M) to be a smooth foliation ' on M
x[0,1] of real codimension 2n+1 such that each restriction 7, , is a
transversely holomorphic foliation of codimension n, and the complex struc-
ture of the normal bundle to #'|,,,, varies smoothly with r. We say %, is
smoothly homotopic to #, if there is a smooth path between them. Let
no(Z,E(M)) denote the set of components under the equivalence relation gener-
ated by smooth homotopies.

Theorem 4.1. Let M be an open manifold. Assume
(i) TM has a trivializable subbundle Q =TM of rank q=4k for some
positive integer k.
(ify M has the homotopy type of a CW complex X of dimension m with
H™(X)=*0.
(iii) One of the following holds:

k=1 and m=7
k=2 and m=1mod5 with m=1l
k=23 with m>(4k+7)(4k+09).

Then M has a infinite number of transversely holomorphic foliations of complex
codimension n=2k whose embedded normal bundles are homotopic to Q, but no
two of these foliations are smoothly homotopic. Further, there is a natural
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surjection of sets
7o(FE (M) —>> Zr

where lim r, , = oo when n=6.

Just a sketch of the proof of (3.1) is given as the complete proof is very
similar to that of [Theorem 1.2; 12] which can be easily adapted along the
lines indicated below.

Let I' be the topological groupoid of local C* diffeomorphisms of R?"*!
=(C"x R which are of the form (z, t)— (¢(z,t), t), where for each ¢, the map
z— ¢(z,t) is holomorphic. The realization BI classifies deformations of trans-
versely holomorphic foliations, and the constant deformation defines a natural
map c¢: B> BI. If #, %, are smoothly homotopic and classified by
fo.fi: M — BIY, then the smooth homotopy defines a homotopy between ¢ o f,
and cof;. Assuming (i)-(iii) of (4.1), the aim is to produce an infinite set of
maps

{f M—>FLY— Bl aeZ™m}

with cof, =cof, implying a=pf. Since M is open and an embedding Q<= TM is
given, the existence theorem of [6, 7] yields a set {Z,} < #F(M) with each %, in
a distinct path component, proving the theorem.

The techniques of [§6; 12] show it suffices to assume M ~S". The codi-
mension n=2k is even, so Theorem 1.4 implies there is a set #, < H*(W)) with
k,(%s) spherically supported. Let % {zl,. z,} with n;=degz;, and con-
struct the one-point union of spheres Y= \/ S™. The proof in [9] that the

j=1
rigid classes are constant under smooth homotopy actually shows we can

define k (%S)CH*(FF) where FI is the homotopy fiber of BF%BU Then by
(1.4), there is a map cof": Y~—>FF¢-—>FF so that (cof)* ok (&,) is a basis
for H*(Y). From the theorem of [§4 8], we conclude the composition

1,(N@Q 751, FLH®Q >, (FNOQ-,BNOQ (42
is injective. For each aemn,(Y), define f,: M—FI* by f =foa. We let r,

=dim~,,(Y)® Q, so the injectivity of (4.2) implies at least Z™™ of the com-
posites cof, are homotopicly distinct. (For the general case, let g: M—S™
classify a non-trivial element of H™M;Z) and set g,= foaof: M—FIC. At
least Z™m of the g, are homotopicly distinct.) The fact that r, , 0 for the

values of m and k listed in (4.1) follows from explicit calculation of 7 (Y)® Q.

§ 5. Whitehead Products in =, (BI)

It is well-known that for each indecomposable chern class c;e H*(BU,) there
exists a map g;: S* — BU, such that g*(c,)#0. The most important application
of Proposition 1.2 is that for 2i<n+2, the map g, lifts to a map g;: S* — BI*
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with (vog)*(¢;)#0. For 2i=n+2, some multiple of g; will lift with (vog)*(c,)
*0.

Let n=2k—2 with k>1 be given. The idea of the proofs of Theorems 1.3
and 1.4 is to use the maps g, and g, to construct Whitehead products [g,,g,],
(g2,-..»85]€T,,, 5(BLY). Since m,, ;(BU)®Q=0, non-zero multiples of
these products come from elements of =,,, ;(FI,¥), which in turn determine
spherical cycles in H,,, ;(FI,*;Z). If we produce dual homotopy classes in
72"+ 3(BLY) which detect these Whitehead products, then Theorem 2.2 asserts
the corresponding spherical cycles are detected by secondary classes. In partic-
ular, the secondary classes are k,(y,¢,) and k (y,c4~"). With the notation of
(2.2), we further show that h*o{(y,c4") vanishes on the product [g,,g,] and
hence k,(y,¢4™") and k, (y,c,) are linearly independent when evaluated on
spherical cycles in H (FI;; Z).

Given the independence of k,(y,c¢%™") and k,(y,c,), the rest of the claims of
(1.3) and (1.4) follow by the “permanence principle.” That is, Theorem 3.3 of
[11] shows that if the set {y,c4 ', y,¢,} is mapped by k, to an independent
set, then all of the classes in the set # of (1.3) are also mapped by k, to an
independent set. For the subset #, of (1.4), we note that [Proposition 6.12; 10]
as applied to BI' implies #, is mapped to an independent set by h* o (:
H*(W,)— n*(BLY). Theorem 1.4 then follows from Theorem 2.2.

It remains to construct the indicated Whitehead products. First, consider
g,: S*— BI'® with (vog)*(c,)*0. Choose a point x,€S5% x §2* which is not
the base point, and let D** =S x S be a closed disc neighborhood of x,. Set
W=52*x§%* —{x,}, and note there is a homotopy equivalence W ~S* v Sk
Let F be the composition W ~S2y §2k B8, BpC and define f to be the

composition
Sln+3 :(’}DM(E W__f_) BI::T.

The second order Whitehead product [g,,g.]€n,,, ;(BLY) is by definition the
homotopy class of f.

The evaluation property [4.6; 10] states that the dual homotopy class
h* o {(y,c,) takes the value

h* o Ly (g &)= —21{ | gF(c)}? +0. (5.1)
2k
Also, the remark following [Theorem 4.4; 10] gives

h*o Sy, g8 ) =0

for k>2 since {(y,c%~') has order k, and [g,, g,] has order 2.

The integral in (5.1) giving the evaluation of h* o {(y,c,) on [g,,g,] corre-
sponds exactly to the residue for f: W— BI'® which was used by Schweitzer
and Whitman [19] to construct analogous products in 7 (BI).

Since 7,,, ;(BU,)® @ =0, a multiple of the map f representing [g,,g,] lifts
to a map f: S?"*3— FI%. This is the spherical cycle on which k_(y,¢,) is non-
zero, and k,(y,c%~") vanishes.
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Next, we produce a k™-order Whitehead product in =,,, ;(BLY) using a
map g: S*— BI¥ chosen so that (vog)*(c,)+0. This product is of higher order
for k>2, and its construction is accordingly more delicate. For each positive
integer <k, let X;=S*x...xS* be the product of I-copies of S* Define f;:

1 1
X,— BIL to be the product map g'= xg: X,— x BI'Y followed by the natural
map >I<BF2¢->BI:,¢. The map g' determines a singular foliation on X, of

codimension 2/, and taking the product with the point foliation of €"~%
defines a singular foliation on X, x €"~2' of codimension n which is classified
by £

Now let [ be fixed. For each 1 i</, define the map ¢;: X,_, — X, to be the
inclusion which misses the i""-factor. As both fco, and f, , determine the
same singular foliation on X, _, x C"~2*2 and the classifying map of a given
foliation is unique up to homotopy, we conclude that f,oo; and f,_, are
homotopic. The transitivity of homotopy yields:

fieo;=fioa, forall 1<ij<I. (5.2)

Choose a point x, € ;(<S4=Xk which is not the base point. Let D* < X, be
the closed disc neighborhood of x,. We define the far wedge [17] to be W=X,
k

—{x,}. There is an inclusion of the wedge product \/ S*< W, and the wedge
product of k-copies of g gives a diagram

k N
\/ S YE, BIT (5.3)

n

We claim that \/ g extends to a map F making (5.3) commute. There is a
general criterion for when a higher order Whitehead product exists (ie., an
extension F of \/ g exists), given by Theorem 2.7 of Porter [17]. The assump-
tion of this theorem is that for each fixed ! <k and for all possible inclusions

1 k
\/ S*< \/ 8%, extensions of the composites

1 k
\ Sty §*Y5 Bre

to maps x S*—BI® exist, and all of these extensions are homotopic. This is
exactly the content of (5.2). We can thus conclude there is an extension F:
W— BLC.

Let f be the composition f: S*"*3=0D*cW—£->BI® The k™-order
Whitehead product [g, ...,g]en,,, ;(BLY) is defined to be the homotopy class
of f. For the dual homotopy class

h* o L(y,c5™ 1) my,y 3(Bl:.¢)‘*c’

it follows from [4.5; 10] that h* o {(y,c5~ ") ([f])#0. Let f: S*"*3 > FI® be a
lift of some non-zero multiple of f Then by Theorem 2.2,
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ko (v, "ye H**3(FI,Y) is non-zero on the cycle represented by f. This com-
pletes the proofs of Theorems 1.3 and 1.4.

It is interesting to note that the rigid secondary classes k,(y,c4") and
k,(y.c,) are shown to be non-trivial by evaluating a “residue™ (ie,
h*ol(v,5= ") or h* o {(y,c,)) about the point omitted in W. This is in exact
analogy with the Baum-Bott examples, so that all of the known non-triviality
results for secondary classes of transversely holomorphic foliations are obtained
using residues.
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