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GLOBAL INVARIANTS FOR MEASURED FOLIATIONS
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STEVEN HURDER

ABSTRACT. New exotic invariants for measured foliations are constructed, which we
call the p-classes of a pair (¥, ). The dependence of the p-classes on the geometry
of the foliation ¥ is examined, and the dynamics of a foliation is shown to determine
the p-classes in many cases. We use the p-classes to study the classifying space BTg L,
of foliations with a transverse invariant volume form, and we show the homotopy
groups of BIg 1, are uncountably generated starting in degrees ¢ + 3. New invariants
for groups of volume preserving diffeomorphisms also arise from the p-classes; these
invariants are nontrivial and related to the geometric aspects of the group action.
Relations between the p-classes and the secondary classes of a foliation are ex-
hibited.

0. Introduction. In this paper we construct new exotic characteristic classes for
foliations which have a transverse invariant measure. These invariants, which we call
the p-classes, are similar to the secondary classes and take values in the real
cohomology H*(M) of the foliated manifold M (Theorem 1.6). The values of the
p-classes are strongly related to the geometry of the foliation (Proposition 3.4). The
p-classes have applications to the study of foliations with a transverse invariant
volume form (Theorems 5.1 and 5.2), to the computations of the homology groups of
the discrete group of volume preserving diffeomorphisms of R” (Theorem 7.4), and
to the problem of relating the secondary classes of a foliation with its global
geometry [185, 20].

The p-classes arose from an attempt to obtain general invariants of a foliation
which are intermediate between the leaf and secondary classes. They are a special
case of a family of universal invariants associated to a C2-foliation, the Weil
operators. In codimension one, the introduction of the Weil operator is a decisive
ingredient in Duminy’s elegant proof of the Sullivan conjecture about the Godbil-
lon-Vey class [9]. The properties of the Weil operators in higher codimensions are
given in [15] where they are used to study the “residuable” secondary classes. We
briefly describe the construction of the Weil operators and their relations with the
p-classes and other foliation invariants in §2. For a foliation with all leaves compact
we note that the Weil operators are identically zero (Proposition 2.6).

We denote by % a C*-foliation of codimension ¢ on a paracompact manifold M,
and p denotes a transverse invariant measure for . Recall that u assigns to each
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368 STEVEN HURDER

compact transversal 7 C M a finite number p(T). We do not require p to be
positive; that is, u(T') need not be positive. For the flow ¢,: M — M of a vector field
X on M tangent to ¥, the invariance of p implies u(¢,7) = u(T). There is an
extensive literature giving methods for constructing transverse invariant measures
and applications [16, 29, 30,31, 35]. The pair (%, p) is said to be a measured foliation
on M.

One definition of the p-classes of a measured foliation (%, p) is that they are the
integral of the leaf classes of & over the generalized measure space (M, /%, ). Since
the quotient M /¥ is genericly a singular, nonhausdorff space, this integral must be
interpreted via Connes’ theory of noncommutative integration [7]. This theory was
used by Connes to prove the index theorem for foliations [8]. The index invariants
are defined by integrating tangent data to % (the Euler and Pontrjagin classes of the
subbundle % C TM) over (M /%, w). In contrast, the p-classes are defined by
integrating normal data to & over (M /%, p). The normal data consists of the
differential invariants associated to the canonical flat structure on the normal bundle

. We note, however, that the construction given in §1 below for the p-classes is
direct, and does not require the theory of noncommutative integration.

The organization of the rest of this paper is as follows. Part I defines the p-classes
and studies their properties. §1 gives background material and then constructs the
p-classes. The Weil operators are defined in §2 and we derive the p-classes from
them. Relations between the geometry of the foliation and the values of the p-classes
are examined in §3. This yields a convenient method for producing examples with
nonvanishing p-classes (Proposition 3.4). Several examples are described in §4. Part
IT studies SL, -foliations, where p is represented by a smooth, closed nonvanishing
g-form. The u-classes have corresponding universal classes in the cohomology of the
Haefliger classifying space BIg L, This is pursued in §5, where we show many of the
p-classes inject into H *(BFSL ) and are independently variable. Extensive non-
vanishing results are also glven for H*(BTg L) 86 examines the rational homotopy
groups 7 (B FSL ) ® Q. This information is used in §7 to calculate part of the group
homology H,(B lefc RY Q), where w is any volume form with infinite total volume.
In particular, we show H;(B leF RY; Q) has uncountable dimension for g = 3 so
the vanishing result of Thurston-Banyaga that H,(B lef‘ R? Z) = 0 is almost the
best possible.

It is a pleasure to thank D. McDuff, A. Haefliger and C. Lazarov for stimulating
conversations during the progress of this work. The material in §2 was developed in
discussions with J. Heitsch and P. Schweitzer. The author is grateful to the Institute
for Advanced Study for its hospitality and support.

I. p-CLASSES AND MEASURED FOLIATIONS

1. Transverse measures and p-classes. We assume throughout that M is an oriented
manifold, (%, ) is a measured foliation on M, and either M is compact or the
measure p is absolutely continuous. In the latter case, p can be represented by a
g-form w with locally integrable coefficients so that for a transversal T, wW(T) = [rw.
The g-form w satisfies i(X)w =0 = wa for all vector fields X tangent to ¥, and
thus has distributional derivative dw =
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A foliation cycle z defines a transverse invariant measure p, via “counting
intersection points” [35]. For a compact leaf L C M and oriented transversal T in
general position with respect to L, set

p(T) = #(L N T) = number of points of intersection.

For T compact, u,(T) is clearly finite; p, is easily seen to be invariant and has
support on the leaf L. More generally, a leaf of subexponential growth in a compact
manifold determines a foliation cycle and an invariant measure p, [20, 35].

An invariant measure p with compact support determines a closed current c, on
M. We recall from [31] the definition of ¢,: Let dimension M = m and &(M) denote
the de Rham complex. Choose a finite open cover {Uj,..., Uy} of supp p by foliation
charts, where ¢;: U, - D™~ 9 X D? C R” identifies the leaves of ¥ |, with the
plaques D77 X {pt}. Let {A,,...,Ay,,} be a partition of unity subordinate to the
open cover {U,,...,Uy, M-supp(p)} of M. The definition of the current c,:
@™ 9 M) - Ris now given by, for a formn € @" 4 M):

(1.1) cu(n) = é fD { fD m_qxin}u.

The value of c,(n) can be shown to be independent of the choices made [31].
Further, if 7 is an exact form then ¢,(n) = 0, so ¢, is a closed current.

For a compact manifold M, possibly with boundary, and a closed current c:
@"(M) — R, there is a corresponding (dual) cohomology class [c¢*] € H" ™ "(M).
The class dual to ¢, above is denoted [n] € HY(M).

Leaf and secondary classes. Let Q denote the normal bundle to & in TM and #:
TM - Q the projection. A connection vV on Q is said to be a Bott connection [4] if
Vym(Y) = w(LyY) for all vector fields X tangent to % and Y normal to %. The
. Jacobi identity for vector fields implies a Bott connection restricts to a flat
connection on the normal bundle to a leaf, 0|, - L.

The choice of a Bott connection for ¥ defines a differential graded algebra (dga)
map A: WO, » @(M). The algebra WO, is the product of an exterior algebra with a
polynomial algebra truncated in degrees above 24,

wo, = A(yl, y3,...,yq,) ® R[c,,...,cq]q,

where ¢' = 2[(q + 1)/2] — 1, degree y; = 2i — 1, degree ¢, = 2i and the differential
is determined by dy, = ¢;, dc; = 0. The construction of A and its properties are
described iri detail in the foundational papers of Bott and Haefliger [4, 6], and from
the Chern-Weil point of view by Kamber and Tondeur [22,38]. The image of A,:
H*(WO,) - H*(M) consists of the secondary classes of %.

. If the normal bundle to ¥ is trivial then a choice of framing of Q, given by a
section s: M — P of the associated frame bundle, determines an extension of A to a
dga map A°: W, - @(M), where

W, = A(yl,yz,...,Y)®R{c1,...,cq]q

with degree y;, = 2i — 1, and dy, = c; again. We remark that if the previous A is now
constructed using the metric for which the framing s is orthonormal, then A° restricts
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to A on WO,. The image of A, consists of the secondary classes for the framed
foliation (9, s).

Next recall the definition of the leaf classes for a leaf L C M. Let I'(M, 0*) C
@'(M) denote the space of 1-forms which annihilate ¥, and I'( M, A'Q*) the sections
of the ith exterior power bundle. The crucial property of the Chern-Weil homomor-
phism A constructed using a Bott connection is that for each Chern polynomial c;,

(1:2) &N(c,) = A(c;) € T(M, NQ*) ANRY(M).
This implies A(¢;) vanishes when restricted to the leaf L, so each A(y,) |, or &(y,) |,
is a closed form which is an invariant of the flat connection on Q |, — L.

For an index I = (i},...,i,) with 1 <, < --- <i <gq, set y, = Y EW,
If all i are odd then y; € WO,. The form A( y,) or AS( yr) € @(M) is not closed in
general, but the above remarks imply A(y;)|, is closed and determines a class in
H*(L). The restrictions of A or A’ thus define graded algebra maps

x.: H*(gl,,0,) - H*(L), x%:H*(gl,) - H*(L).
Here, we identify H*(gl,) with A(y,,...,y,) endowed with the trivial differential,
and similarly for the relative Lie algebra cohomology H*(gl,, O,). The image of x ;
consists of the leaf classes of ¥ for L.

The map x, is an invariant of the germ of % about L, and in fact depends only on
the flat bundle structure of Q|, — L. To be precise, recall that the foliation in a
neighborhood‘ of L determines the linear holonomy dh: m (L, x) - G/ R, for x € L
a basepoint. The flat structure on Q|, is classified by the induced map B(dh):
L~ BGIf, R, where Glf,R has the discrete topology. Shulman and Tischler prove in
[33] the

PROPOSITION 1.3. There is a commutative diagram

XL

H*(gl,, 0,) - H*(L)
VEN 7 B(dh)*
H*(BGI’R)
where VE is the van Est map defining the differentiable cohomology of Glg R.

If Q is a trivial bundle, then the classifying map M — BGI R is trivial, so the
composition L — BGIGR - BGI,R is also homotopic to the constant - map. The
choice of a framing s of 0 defmes a lift B(dh,s): L » BquR where G, R 1s the
homotopy fiber of the inclusion GlgR C GI,R. The analog of Proposition 1.3 is then

PROPOSITION 1.4. There is a commutative diagram:

H*(gl,) = H*(L)
VEN 7 B(dh,s)*
H*(BGIR)

REMARK 1.5. Note that if the linear holonomy of L is trivial, or B(dh)* is the zero
map, then 1.3 implies x; is the zero map. However, even if L has trivial holonomy,
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with the proper choice of framing of Q one can sometimes make x nontrivial. Of
course, x 7 must still vanish in this case when restricted to H*(g/ ¢ Og) C H*(gl,).

The p-classes. We say two measured foliations (%, no) and (%, u,) on M are
measured concordant if there is a codimension ¢ measured foliation (%, p) on
M X [0, 1] which restricts to (%,, u,) on M X {t} fort =0 or 1.

THEOREM 1.6. Let (F, n) be a measured foliation on M and assume that either M is
compact and without boundary, or that p. is absolutely continuous.
(a) There is a characteristic map

Xy H*(glq’ Oq) - H*+q(M)

raising degree by q, which depends only on the measured concordance class of (%, p)
and is functorial with respect to pull-backs.
(b) Given a framing s of the normal bundle to %, there is a characteristic map

X, H*(gly) — H** (M)

raising degree by q, which depends only on the measured concordance class of (F, p)
and the homotopy class of the framing s.

REMARKS. 1.7. x,, and x; are homomorphisms of real vector spaces, but do not
preserve the algebra structures.

1.8. The class x (1) € H%( M) is the canonical class [p] associated to the measure.

1.9.If 0M # @ and % |,,, has codimension (¢ — 1), then one can also define maps
Xy Xy With rangé H*(M,oM).

1.10. If the measure p is represented by a smooth, nonvanishing g-form w, then
(%, p) is an SL ~foliation and 1.6 yields new differential invariants.

PRrOOF OF 1.6. We assume (%, p) is given, a choice of Bott connection for & has
been made and for part (b) that a framing s is given. From this data x w and x;, will
be defined. It is then standard to show the independence of the maps from the
choices involved.

First, assume p is represented by a ¢g-form w which has distributional derivative
dw=0.Fory, =y N--- Ny, of degree p, set

X,u(YI) = [A()’l) A “’] € HPI(M).
Note that this is well defined:
d(A(y;) Nw) =dA(y) Aw+(=1)’A(y) Adew =0

since dA(y;) € I(M, Q*) A @P(M), and this ideal is annihilated by exterior prod-
uct with w. The monomials {y, € WO,} are a basis for H*(gl ¢ O,) so extend by
linearity to obtain x,. The construction of X, 1s entirely analogous, where for
Y € W, we set

X;(YI) = [AX()’I)'/\ “’] € HPY(M).

Next, suppose p is an arbitrary transverse invariant measure and M is closed. For
y, of degree p, we first define a closed current

Xu(yr): @779 M) - R.
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Given a form 7 of degree m — p — g, set X ,(y;)(n) = ¢, (A(y;) A\ n) where ¢, is the
closed current associated to p in (1.1). We must show ¥ «(¥r) 1s closed. For this it
suffices to assume n = d{ where { has support in an open foliation chart ¢:
U - D™ 9 X D9 Then

(1.11) x,(y)(ds) = c,(A(y;) A dS)
tcﬂ(d{A(y,) A §}) + Cu(dA()’l) NE)
= tcu(dA(y,) AS)

-+ {f ﬁ dA(y,)/\f}u
a€DI\ VD" IX {a}

=0
because A( y;) restricted to any leaf is closed, and dA( ;) |pm-ox @ = 0 in particular.

M is assumed to be closed and oriented, so we can define x,(y;) € H?*9(M) to
be the dual class to the closed current x,(y;). Then we extend by linearity to obtain
the characteristic map x,. The construction of x;, is similar.

The independence of x, and x; from the choice of Bott connection, their
dependence only on the measured concordance class of (¥, p) and the dependence
of x; only on the homotopy class of s are all proved in the same manner. We prove
just the first of these claims and leave the rest to the reader.

Let v° v' be two Bott connections for %. The projection M X [0, 1] » M pulls
(%, ) back to a measured foliation (%", p’), and a Bott connection for %" is given by

= (1 —1)v?+ tv' where 7 is the coordinate in [0, 1]. Let X, H*(gl,, 0,) >
H*(M X I) be the characteristic map defined using V'’. For the two inclusions ¢,:
M X {t} > M X[0,1], = 0 or 1, we note that ¥ o x . is the characteristic map of
(%, p) calculated using the Bott connection V'. Since §, =~ ¢{,, {& = {F so our
conclusion follows.

2. The Weil operators. The leaf, secondary and p-classes of a foliation % are special
cases of a very general set of invariants for ¥, which we call the Weil operators in
reference to that fact that they are the transgressive operators in the Chern-Weil
theory of characteristic classes. We briefly describe their construction and relevance
to the standard invariants of %, which helps to show why certain properties of the
p-classes carry over to the secondary classes. The Weil operators were first intro-
duced in the context of codimension one foliations by Duminy [9], where there is
just one, corresponding to y, € W,. A complete development and study of the Weil
operators in all codimensions is given in [15]. The Weil operators are also related to
the derived classes in sheaf cohomology of Kamber and Tondeur, developed in §§6
to 8 of [38].

We define a subcomplex &(M; F) C @(M). Let {w,,...,w,} be a (local) set of
defining 1-forms for . Set

AM;F)={pEQ(M)|p Nw,=0forl <i<g}.
By integrability, dw, = 29_ 0, N\ w; for 1-forms (w;;), and s0 0 = d(¢ N\ w;) = d¢
Nw, = Ndw,=do Nw,. Thus @(M;%) is a differential subcomplex, and
H*(M, ) denotes its cohomology.
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In the space of currents C,(M) on M, define a subcomplex, for p =0
C,(M;%)={c€C(M)suchthatc|w, - &(M)=0,1<i<g}.

This is a differential subcomplex, and H, (M, ¥ ) denotes its homology.

EXAMPLE 2.1. A transverse invariant measure p with compact support defines an
element [¢,] € H,_ (M, %). If u is represented by a closed nonzero g-form w, then
we have a class [w] € HY(M, %), and [w] # 0 since @7~ '(M; F) = 0.

EXaMPLE 2.2. A Chern polynomial ¢; € WO, of degree 2q satisfies A(c,) €
(M, A%Q*) A @4 M) hence determines [c,] € H*%( M, ¥ ). Heitsch has shown the
class [c,] is independent of the choice of the Bott connection [15].

ExaMmpPLE 2.3. Let j: L — M be the inclusion of any leaf of %. Then there is a
natural map j,: H, (L) - H,(M,%). For any cycle z in L, the image j(z) is a
foliation cycle in M with compact support.

We now define the Weil operators. These were first introduced by Duminy [9] in
codimension 1; the natural extension to higher codimensions is further studied in
joint work with J. Heitsch [15].

THEOREM 2.4. Let F be a codimension q, C*-foliation on M.
(a) There is a well-defined linear map for each p = 0

x: H"(gl,,0,) » Hom(H*(M,¥ ), H**?(M)).

(b) If s is a framing of the normal bundle to %, then there is a linear map for each
p=0

x*: H?(gl,) » Hom(H*(M, %), H**?(M)).

Note the space H*(M, %) is not invariant under concordances of %, so the Weil
operators are not concordance invariants.

PROOF OF 2.4. For a monomial y, € H”(gl,, O,) we define x(y,): H(M,%) -
H'*P(M) as follows: given a closed ¢ € @(M; F), set x(plel = [A(y;) N ]
where A: WO, — @(M) is the secondary map of §1. We must check that for
6, ¢ €ER(M; %) and n € @ '(M; F) with ¢ — ¢’ = dn, the cohomology class
[A(y)$] = [A(y,)¢']. But dA(y;) A =050

{A()’l) AN —A(y) A 4’/} = d{A(J’I) A 77}'

The proof that x(y,) does not depend on the choice of Bott connection used to
define A is the same as in the proof of Theorem 1.6.

The construction of x* is made using the characteristic map A° of the framed
foliation (%, s), but is otherwise the same as the above. [

THEOREM 2.5. Let F be a C>-foliation of codimension q on a compact manifold M
without boundary.

(a) There is a well-defined linear map for each p = 0
x: H*(gl,,0,) > Hom(H,(M,F), H, ,(M)).
(b) If s is a framing of the normal bundle %, then there is a linear map for eachp = 0

X°: H*(gl,) > Hom(H, (M, %), H, ,(M)).
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PrOOF. For a monomial y; € H?(gl , O,) and a closed current [c] € H (M, ¥ ) we
define the closed current (y,)(c): @ (M) - R as follows: for n € @ 7(M) set
x(y))(e)m) = c(A(y;) A\ n). To see that x(y,)(c) is closed one proceeds along the
lines of (1.11), and the independence of the resulting class x(y;)[c] € H,_,(M) from
the choice of Bott connection follows similarly. [

It is apparent from the definitions of x and x° that many of the standard foliation
invariants can be recovered from them. We make these relationships precise.

Given a measured foliation (¥, u) on M with p represented by a closed g-form w,
we have [w] € HY(M, ¥). The p-classes result from applying the Weil operators to
this element: for y, € H*(gl,, 0,), x.(y;) = x(y)lw]. If M is compact without
boundary, then [c,] € H,,_ (M, %) and the current definition of the p-classes yields
%, = Xl

A cocycle y;c; € WO, with degree ¢; = 2q is said to be a residuable secondary
class (see Heitsch [14] or Hurder [20]). For any C2-foliation ¥ and Chern polynomial
¢, of degree 2q we observed in Remark 2.2 that there is a class [c,] € H*(M, F).
The residuable secondary class A, (y,c,) is obtained by applying the Weil operator
x(y;) to [¢;]. From the point of view of Duminy this says the residuable secondary
classes can be factored into two parts: the first, x(y,), takes values in a space of
homomorphisms and the second, [c,], is a “point” in the space H*(M,%). For
codimension ¢ = 1, in Duminy’s terminology x(y,) = g is the Godbillon operator
and [c¢,] = v is the Vey element, and one has the functional equation

GV(F) = A(yie)) = x(y)le)] = gowv.

The justification for this approach is-the brilliant discovery by Duminy that the
invariant x(y,) can be related in codimension one to the geometry of %. He shows
that x(y,) is the zero operator if M is compact and ¥ has no resilient leaves, and
thus the Godbillon-Vey class A,(y,¢;) = x(»,)lc,] vanishes under the same hy-
pothesis. This suggests that to relate the geometry of & with the secondary classes in
codimension greater than one, a possible first step is to understand the properties of
the operators x(y;).

In a previous paper (Hurder [20]) it was shown that the residuable classes for a
foliation with all leaves compact must vanish. An examination of the proof of this
shows that a more general result is true:

PROPOSITION 2.6. Let 5 be a C*-foliation of codimension q on a compact manifold M

with all leaves of F compact. Then the characteristic map
x: H'(gl,, 0,)  Hom( H*(M,F), H**/(M))

is zero for all | > 0.

Let j: L » M be the inclusion of a leaf of ¥ and assume M is closed. For
y, € H'(gl » 0,), the linear function given by the composition

' x(p
H/(L)™ H(M,F)"=" Hy(M) =R

defines a cohomology class [(y;) ° j,J* € H'(L). Tracing through the various
definitions one sees this is the class of the cocycle obtained by restricting A(y;) to L,
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hence is the leaf class x ,(y;) = [x(y;) © j,J*. The Weil operators are thus seen to
yield the leaf classes of J via restriction; in this sense, they are universal leaf classes
for &. This relationship also shows that the map j,: H, (L) - H,(M,%) can be
nonzero. Let z € H,(L) and suppose there is a leaf class x,(y) which evaluates
nontrivially on z; then j, (z) # 0.

The homomorphism A, of Chern-Weil theory is the composition of two maps,
H*(gl,, 0,) —>"*H*(P/0q) -~ H*(M), where P —» M is the Gl -frame bundle of Q,
and k(y,) transgresses to the Chern class A(c,) € @(M). We remark that each Weil
operator x(y,) can be viewed as an “operation” in the spectral sequence for the
algebraic fibration

27) @(M.%) - &(M.F) ® H*(gl,.0,) ~ H*(gl,, O,),
the operation transforming basic classes in H*( M, %) into classes in
H*(@(M, ) ® H*(gl,,0,)),

which can then be mapped to H*(M). This operation in (2.7) is related to an edge
map in hypercohomology defined by Kamber and Tondeur [38].

3. Geometry of the p-classes. Relations between the values of the p-classes of
(%, n) and the global geometry of % are investigated in this section. Examples to
illustrate these properties are given in §4.

Let (%, n) be a measured foliation on M. Recall that a set X C M is saturated if
for each leaf L of % with L N X # @ we have L C X. For a u-measurable saturated
subset X of M, denote by ay: M — R the characteristic function which is equal to 1
on X and zero otherwise. Then p - a, is an invariant measure on M and we can
define p-classes for (¥, p- ay). Given a countable decomposition of M into saturated,
p-measurable sets { X,} with M = U X, wesetp, = p-ay and sop = Zpu,. For M a
closed manifold, we then have x, = Zx, showing the p-classes can be decomposed
into the contributions from invariant subsets of M.

The p-classes are measured-concordance invariants. If (%, py) and (%, u,) are
measured foliations on M and the characteristic maps x,,, # X, , then there does not
exist a measured foliation (%, p) on M X [0, 1] which restricts to these two foliations
on the ends. For example, when each p, arises from counting the intersections of a
transversal with a compact leaf L; of ¥, this implies there is no codimension g
foliation ¥ on M X [0, 1] with a compact leaf L so that (¥, L) restricts to (%, L,) on
M X {i}. However, there may well be a foliation ¥ restricting to the given foliations
%,. In this situation, the p-classes are obstructions to the existence of compact leaves
which satisfy a boundary condition.

The support of a transverse invariant measure p is always a saturated set. When
the support consists entirely of compact leaves, then the p-classes are precisely the
leaf classes of % weighted according to p. Let M be compact without boundary. We
first consider the case when support g consists of a single compaci leaf L. Up to a
scalar multiple, u is the counting measure with respect to L, and without loss of
generality we can assume g = p,. Assume that Q, % and M are oriented, so for
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z € H'(M), respectively w € H'(L), there is a well-defined Poincaré dual z’ €
H, (M), respectively w' € H, (L), where n = m — ¢ = dimension L. As above,
J: L - M is the inclusion and x;, : H*(gl,, 0,) > H*(L) is the leaf class map.

PROPOSITION 3.1. (a) There is a commutative diagram:

Xm,/ H1+q(M) PED Hn—I(M)
Hl(glq’ Oq) 1/,
P.D.
XN HI(L) = an[(L)

(b) If Q has a framing s, then there is a corresponding relationship between the maps
x* and x7.

PrROOF. The map ¥, is defined via the map into the currents, Xy H( 8l;, 0,) ~
Hom(H""/(M),R) = H, (M). For a closed form ¢ € @ /(M) and y €

’(glq, 0,), formula (1.1) reduces to %,(»)[¢]= [ A(y) A ¢. This is clearly the
same as restnctmg [¢] to H" (L) and pairing with the leaf class x 1(»), which in
turn is the same as evaluating [¢] on j,[x ,(»)']. The proof of (b) for X} 1s identical.
O

When the support of p is the union of compact leaves, we have a similar but more
delicate relationship between x, and the leaf classes. Let 7" = support u/F be the
transversal space of the support p. This is a possibly singular space, but it still makes
sense to integrate with respect to u over T [36,§6]. For each x € T, let L, be the
corresponding leaf in support p with leaf classes x L, H*(gl,, 0,) > H*(L,). Given
y € H'(gl,, 0,) and [¢] € H""(M) we obtain a real number fL XL() N ¢.

PROPOSITION 3.2. With notation as above,

KOs =[] i) Ao

Further, a corresponding formula holds for X

Proor. This follows directly from our definitions and [36, Proposition 6.1]. [

COROLLARY 3.3. Let (F, p) be a measured foliation on a closed manifold and assume
support . is the union of compact leaves. Then X, depends only on the C L_germ of §
about support p. Givenay € H'(gl 2> Og) with x ;(y) = 0 for all leaves L in support p.,
then x ,(y) = 0 also.

PrOOF. By 3.2, X, and hence x,, depends only on y and the leaf classes x ;(y) for
L C support p, and the leaf classes of L depend only on the C'-germ of % about L.
The vanishing condition follows from 3.2 directly. O

An important question is whether Proposition 3.2 has an extension to measures
whose supports contain noncompact leaves. We mention one application of 3.2. It is
shown in [21] that if a leaf L of a foliation ¥ has a nontrivial leaf class of degree
greater than one, then the linear holonomy group of the leaf must have exponential
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growth, and there is a leaf of & near L with exponential growth. Combined with 3.3
this yields

PROPOSITION 3.4. Let (%, p) be a measured foliation on a compact manifold without
boundary and assume the support of p consists entirely of compact leaves. If ¥ has
subexponential growth in an open neighborhood of support p., then x,(y) = 0 for all
y € H'(gl,,0), 1> 1.

A theorem of Hirsch and Thurston [16] states that the Euler class of a flat bundle
vanishes if there is a transverse invariant measure for the foliation defined by the flat
structure. For the germ of a foliation about a union of compact leaves, Proposition
3.4 can be viewed as a generalization of this result. The extra hypothesis on the
growth of the leaves of ¥ forces all of the differential invariants of the normal flat
bundle to vanish in degrees > 1.

It is not possible to extend 3.4 to the invariants from H*(gl ). For a measured
foliation (¥, u) with framing s, the value of x;, on the cokernel of H*(gl,, O,) -~
H*(gl,) depends upon the framing s. For example let & be the foliation defmed by
the standard fibration 7: SO,,, - S? A volume form & on S lifts to a transverse
volume form w = 7*&. The normal bundle Q = 7*TS? has a canonical framing s, so
we obtain a framed, measured foliation (%, u, s). For ¢ =3 odd, the class [w] €
H%SO,,,) is nonzero. The Chern-Weil definition of A* shows each A’( y,;) restricts
to a generator of H*(SO,). It is then easy to see that x ,: H*(gl,) - H**"(SOqH) is
injective on the exterior algebra generated by the monomials {y,,}. But all leaves of
% are compact (= SO,) and have no holonomy. The key ingredient in this example is
that the restriction of the framing s to each leaf L = SO, is homotopic to the
identity.

The above example illustrates a property of foliations which has been called the
permanence principle [23,19,33]. We state a general consequence of this for the
p-classes. Let (¥, p) be a measured foliation on M with framing s of the normal
bundle Q. Let N = M X SO, denote the product and (%, p’) the pull-back mea-
sured foliation on N via the projection p: N - M. Define a framing s’ of Q" = p*Q
by setting, for (m, g) € N, s'(m, g) = s(m)- g. The framing 5" of Q’ is the framing
s o p twisted by the action of G.

THEOREM 3.5. Let (%, p,s) on M and (F', ', s") on N = M X SO, be as above.
Assume Xt H*(gl,, 0,) - H**9(M) is injective on a subspace VC H*(gl,, 0,).
Then x,L H*(gl,) - H*“’(N )is injective on the extended subspace V=V=« H*(SO,).

Here, V x H*(SO,) denotes the subspace of H*(gl,) spanned by the elements in
A(yys s---y,) of the form {z A yy, A -o- Ay |zE€ VI <y < - <i, < q/2}.

The proof of 3.5 proceeds exactly as that of [19, Theorem 3.5].

When support p is a single compact leaf L, Theorem 3.5 has an appealing
interpretation. By 3.1, k;, is the composition of x7 with Poincaré duality and then
the inclusion H, (L) - *(M ). Thus, X; 1s determined by the map x7 which is
determined, in turn, by the framed hnear holonomy B(dh, s): L - BGl, R Note
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there is a fibration SO, ~ QBGI] — BGIR — BGIR* and H*(BGIR) =
H*(BGlj?R*) ® H*(SO,). These remarks are also true for the leaf L X SO, ¢ M X
SO, = N with framing s’, and this yields a commutative diagram:
id
SO, - SO,

q q

l )

B(dh, s

LxSo, - BGI,R

) !

B(dh)
L - BGlgR

Thus, B(dh, s’)* = B(dh)* ® id* which implies 3.5 in this case.

4. Measured foliations with nonvanishing p-classes. A one-dimensional foliation on
a compact riemannian manifold M always has a transverse invariant measure. Let v
be a vector field on M defining the foliation. If v has a closed orbit L, then we can
take the counting measure p,;. In general, given a noncompact orbit R = M we use
the metric to construct an asymptotic l-cycle to which p is dual [29]. For the
measure g, we can evaluate the p-classes:

LEMMA 4.1. Let v be a vector field on a compact manifold M™ with a closed orbit L,
and p. the counting measure for L. Let A € Gl,,_ R be the generator of the linear
holonomy of L. Then x ,(y,) € H™(M) satisfies

(xu(3): [M])= —%logldet Al

PrOOF. By 3.1 we have (x,(y,),[M])= (x.(»),[L]) and it is a classical result
due to Reeb (see p. 143 of [22]) that

(xa(0):[21)= [[8(3) = -5 log| det(dh(1)|

where dh: (L) - GI,,_ R is the linear holonomy and 1 € 7 (L) is the generator.
d

EXAMPLE 4.2. Let v be a nonvanishing vector field on T2 with a closed orbit L,
and suppose L is an attractor so that dh: (L) — G/,R has a =|dh(1)|< 1. Then

(X (y),[T?]y=1/27-log(1/a) is positive.

Note thatif L,...,L, are closed orbits of v on M and p = Z7_ | A;p, , then we can
extend 4.1 to
l n
(4.3) (xu(3).[M])= —5— 3 Ajlog| det 4],
i=1

where 4, € G/,,_ R is the generator of the linear holonomy of L,. Choose a vector
field on T2 with 3 closed orbits L,, L,, L, all in the same homology class and with
A4, =4;=(1/2),4,= ). Let p=p; — 2p;, + p, Then x, (1) = [p] € H(T?)
is zero but (x,( y1),[T?1)= (2/7)log?2 # 0. This shows the two classes x,(1) and
X (1) can be independent for a given foliation.
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EXAMPLE 4.4. A less artificial example showing the independence of x,(1) and
X,(»)) is easily obtained. Let v be a vector field on S 3 with a closed orbit L and
assume the linear holonomy of L is generated by 4 € G/, R. If we construct v so that
A has eigenvalues 0 < A| < A, < 1, hence L is an attractor, then

\ I
(X2, [8°]) = -5 -log A A, > 0.

Thus x,(»,) # 0 but x (1) € H*(S?) always vanishes.

The leaf classes of a foliation measure the dynamical behavior of ¥ in a
neighborhood of a leaf, where exponential growth of the leaves corresponds to
“mixing” in the orbit space and seems to be necessary for the leaf classes to be
nontrivial. One point of the above example is that the p-classes provide nontrivial
cohomology invariants of (%, p) by incorporating, with u, the geometric data
inherent in the leaf classes. A similar phenomenon occurs with the secondary classes,
where the Chern ring of the normal bundle can be trivial, but taking a product with
the leaf classes produces interesting global invariants.

We next discuss a general process for constructing measured foliations about
which the p-classes yield important information. The following concepts are well
known, and we simply adapt them to our setting. A full treatment is found in Bott
[5], for example.

Let X be a connected manifold of dimension g. Diff° X will denote the group of
compactly supported diffeomorphisms: for ¢ € Diff¢ X, there is a compact set
K C X so that ¢ is the identity outside of K. We next are given a smooth manifold B
with fundamental group I' = 7 (B) and a representation I' - Diff° X. The universal
cover B of B has a natural left T-action, so T acts on the product B X T and we form
the quotient manifold M = B X X. The horizontal foliation on B X X with leaves
B X pt descends to a foliation & on M, transverse to the fibers of the projection =:
M - B. If there is a measure i on X invariant under the I'-action, then ¥ inherits a
transverse invariant measure p and (%, p) is a measured foliation of codimension ¢
on M.

If we assume that [i is absolutely continuous, then p is represented by a g-form
with locally-integrable coefficients and there is a well-defined characteristic map x,:
H'(gl,, 0,) » H*(M) for 1> 0. Here, H¥(M) denotes the cohomology of the
cochains on M which have compact support on each fiber of M — B. To obtain x,,
we use a Bott connection on M which is horizontal outside of a compact set in each
fiber; such exists because I' acts through Diff¢ X. The interest in the group H*(M) is
due to the existence of a map 7,: H/"% M) - H'(B), defined by integration over
the fiber [4, p. 15]. The composition 7, ° x,: H*(gl,, O,) > H*(B) defines in-
variants for the representation I' —» Diff¢ X, and is functorial. We present an
example below where these invariants have been extensively studied. In general, little
is known about them.

For an absolutely continuous measure i on X9, let Difff X denote the discrete
group of compactly supported diffeomorphisms which leave fi invariant. The con-
structions above yield the following.
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PROPOSITION 4.5. There is a well-defined characteristic homomorphism
X, = 7y ° x,: H*(gl,, 0,) - H*( BDiff{ X).

The class x,(y;) always vanishes if p is absolutely continuous, since the Weil
operator x(y,) vanishes on the support of an absolutely continuous measure [15].
The first nontrivial invariant is thus X,(»3) in degree 5, defined for ¢ = 3. A natural
question is whether there exists an absolutely continuous measure on a closed
3-manifold X and a subgroup I’ C Diff; X for which ) EH 5(T) is nonzero.

EXAMPLE 4.6. For higher codimensions, the following type of example was
suggested to us by W. Thurston. We take X = T the g-torus, and the measure i is
given by w =dx; N\ -+ Ndx 2 the natural euclidean volume form. Then SL ZC
Diff  T9, and %k : H*( gl ¢ Op) = H*(SL,Z) can be identified with the composmon
H*(gl,, 0,) = H}GI}R) - H*(BGISR) - H*(Sl,Z), where H(GIR) is the con-
tinuous cohomology of Gl SR Consequently, X.( y3) is nontrivial for ¢ = 25 by Borel
[3]. This example is used in part II, so we develop it in more detail.

Form the homogeneous space B = SL,R/SO, which is contractible. By Borel
there is a subgroup I' C SL Z of finite index such that T\ B = B is a smooth
manifold. For each real A 5 0 the form @, = A-dx; A - Adx , is nonvanishing on
T9, and the natural I'-action on T preserves @,. We thus obtam a codimension ¢
measured foliation (%, w,) on M = B X[ T4 which is transverse to the fibers of 7
M — B. We calculate the characteristic map Xo,: H*(8l;, 0,) ~ H*+"(M ).

Associated to the inclusion I' C SL_R is a flat bundle P E=B X R! - B. The
normal bundle Q to the foliation % is the pull-back:

o % E
rl p
M 2 B

There is a given flat connection §’ on E — B, and it is easy to check that this pulls
back under 7 to a Bott connection § for ¥ on Q — M. Hence (¥, w,) admits a
globally flat Bott connection § which we use to construct A: WO, - @(M). The
Chern forms A(c;) vanish identically, so each A(y,) € &(M) is a closed form.
Further, for

xz: H*(gl,, 0,) > H*(B),
the characteristic map of the flat bundle E — B, the functoriality of the Chern-Weil
homomorphism implies 7* o x z(y;,) = [A(),)] € H*“(M). Recall that T

H**9(M) — H*(B) is the integration over the fiber map, and A- -X g denotes x .
scaled by a factor of A.

LEMMA 4.7. The characteristic map X oy for (¥, w ) factors:
A-x
H*(gl,,0,) 5% HX(B)

x:a)‘\ ;"’T
H**9(M)

*
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PrOOF. Lety € H*(gl,, O,). Then
Ty © wa(y) = W*([A(y) A “)A]) = 7ran:('”*(XI:‘(y)) U [wA])
=xe(y) U ([@r]) =X x£(»),

the last step because 7, ([w,\]) = [rohdx; A -+ Njdx, =A. O

Lemma 4.7 reduces the calculation of x, to the problem of determining the
characteristic classes for the flat bundle E associated to I' C SL,R. This is a very
difficult problem, but it has been partially solved by Borel [3] who shows that x z:
H'(sl,, 0,) -~ H'(B) = H'(T) is injective for / < [(q — 1)/4].

The lowest codimension for which these examples have significance is ¢ = 25; the
above arguments show x,, (y;) € H**(B X T?) is nonvanishing and varies with A.

II. SL 4 FOLIATIONS

S. The p-classes of SL -foliations. An SL -foliation on M is a measured foliation
(9, p) where p is represented by a smooth nonvanishing g-form w. An SL ,foliation
admits an atlas of foliation charts {¢,: U, = R?} for which

‘*’luﬂ = ¢x(dx, A - /\dxq)

[10]. This yields the equivalent definition that an SL -foliation is one modeled on R?
whose transition functions preserve the volume form dx, N - -- Adx,.

There are two standard ways to obtain examples of SL -foliations. Given a
submersion 7: M — X7 of smooth manifolds, the choice of a volume form & on X
defines a closed g-form w = w*&® which is transverse to the foliation & of M by the
fibers of 7, yielding an SL -foliation (¥, w). The other type of example is that of §4.
Let @ be a volume form on X9 and Diff X denotes the group of compactly
supported diffeomorphisms which preserve &. Assume a representation I' - Diffg X
is given where I' = m,(B) is the fundamental group of a manifold B. Then T acts
diagonally on the product B X X, and the quotient manifold M = B X X has a
natural codimension g foliation with invariant volume form w induced from &. The
p-classes can be nontrivial for both of the above types of SL -foliations.

Let BI L, denote Haefliger’s classifying space of SL, fohatlons [10]. The universal
normal bundle is classified by »: B, — BSL,, and BI‘S 1, denotes the homotopy
fiber of ». A basic property of BT, is that an SL -foliation ( p) on M determines
a unique homotopy class of maps qf: M- BI‘SLq. If the normal bundle Q of ¥ is
trivial, then a choice of framing, s, determines a unique homotopy class of maps f;:

M - BT L, The functoriality of the p-classes implies there are universal characteris-
tic maps

Xo: H*(sl,,0,) > H** (BT, ), x: H*(sl,) - H**9( BTy, ).

We restrict the domains to the cohomology of s/, because an SL -foliation always
admits a Bott connection for which the form A(y,) vanishes identically, and thus
X.(y;) = 0 whenever 1 € I.

The classes in the image of x, and x:, define elements in the differentiable
cohomology of T'g L, and T‘S Ly and therefore by [11] they come from the Gelfand-Fuks
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cohomology of the divergence-free vector fields on RY, as was pointed out to us by
Haefliger. A further discussion on this is in the appendix to McDuff [ [27].

At present, the following is known about the spaces BT sL, and BT s, First, BI‘S L,
is (¢ — 1)-connected (Haefliger, [10]) McDuff has shown in [24] that « (BI‘S L, )=
with the volume class [w] € H "(BFS L, ) the complete invariant. Usmg a generahza-
tion of the Mather-Thurston theorem McDuff also shows +,(BI‘ sz,) =0 for
q > 2. The group 7r3(BFSL2) = R by Banyaga [1]. For degrees n > 24, note that the
examples of Heitsch [13, §5] can be chosen to have the vector field X, ) divergence-free,
so they provide a family of examples of SL-foliations with nonvanishing secondary
classes. Consequently, we see H"(BT sL, ) and H"(BT L,) are nonvanishing for
n = 2q + 1 and many values of n > 2g4. The variability of the secondary classes in
the Heitsch examples implies H, q+1(BrSL ; Z) maps onto a real vector space.
Because the volume class [w] is zero in the Heitsch examples, one can show this
implies m,, H(BI‘S,_ ) maps onto a real vector space also. There is a gap in this
information about the homotopy groups w*(BFSL ); this gap in degrees between
g + 1 and 2q + 1 is filled by the p-classes:

THEOREM 5.1. The characteristic map x,,: H'(sl,, 0,) - H'*9(BT. s,) is injective
Jor 1 <[(q — 1)/4), and the classes in the image of X, are zndependently variable.

THEOREM 5.2. The characteristic map x:,: H*(sl,)) > H *+4( BT sz,) is injective on

the subspace spanned by the set V, = {y, € H*(sl YW = (iy,...,i, ) with 2<i, <

- <i, <2[(q+ 1)/2] and i, odd implies i, < [(q— 1)/8]}, and the set x° w(Vy)
consists of independently variable classes.

The following corollary of 5.2 can be taken as the definition of a set being

independently variable.

COROLLARY 5.3. Evaluation of the set x5, (V,) defines group epimorphisms
n+q( BFSL ; ) - Spang V,(n),
where V (n) denotes the elements of V, of degree n.

The definition of the set V, is somewhat complicated; for small values of g we give
V, explicitly (recall that y, has degree 2/ — 1 and 1 has degree 0):

i=n=A1}, B=V,=A{1,5}, Vs=Vi=Az{1, », y}
and so forth up to
Vas = Vaa = Az{L, 32, a5 om0}
Then, we have up to codimension g = 42:
Vas = Vae = Az{1, yy,. ..y} X (1, y3},
Vie = Vao = Az{1, ya,... .05} X {1, 33},
Vit = Vo = Az{1, ypsnepa0) X {1, 33, 35}

The second set in these products is a basis for H*(s/,, 0,) in degrees less than

(g — 1)/4].
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PROOF OF 5.1. To show the universal map x,, is injective on a set, it suffices to
exhibit an SL -foliation for which the set is injective. In particular, in Example 4.6
we produced an SLfoliation (¥, w,) on M = SL,/SO, X T? for which x, :
H"(sl,, 0,) —» H""9(M) is injective when n <[(q — 1)/4], showing the first claim
of 5.1. We next establish the independent variation; it suffices to check this for
homogeneous cocycles. Choose a basis {zy,...,z,} of H"(sl,, O,) where n<
[(g — 1)/4]. Let fy: M - BI‘S,_ be the classifying map of (¥, w,). For A = 1, choose
cycles {c,,...,c,} C ,,+q(M Z) so that 4, = x (z,))(fi«¢,) = X, (2:)(c,) is a non-
singular matrrx This is possible because xw is injective on the span of the set
{zy,...,2z,}. Given an a-tuple of nonzero real numbers A= (\,...,A,), for the
universal maps f, we have x,(z, )27, f*, *z)= 14;;A,. Now, A nonsingular
implies these evaluations are onto an open set in R“. Therefore evaluation of the set
{x.(z))---sx(2,)} C H"*"(BFSLq) on cycles in H, (BFSL ; Z) defines a homo-
morphism onto R?. [

PROOF OF 5.2. We remarked at the end of §3 that a choice of a volume form & on
S makes the fibration SO, —» S7into an SL -foliation (¥, w) on SO, ,. Further,
the normal bundle of ¥ has a canonical framing for which X H*(sly)) » H*(SO,.. )
is injective on the coimage of H*(sl;) » H*(so,) when q is odd, and the classes are
proportional to the value of f¢,&. Theorem 5.2 asserts that x?, is injective on a larger
set and for all g, so we must resort to a more rewarding example. The plan is to
apply the permanence principle, Theorem 3.5, to the Example 4.6. The difficulty is
that the normal bundle Q of ¥on M = SL,/SO, X T is not trivial, so we must lift
the SL -foliation (9, w,) to the frame bundle of Q.

Let p: P — M denote the SO,-bundle of orthonormal frames of Q with respect to
some metric on Q. Then (¥, w,) lifts to an SL -foliation ( p*¥, p*w,) on P and the
functoriality of x, yields a commutative diagram:

Xp"u/' H*+q(P)
H*(sl,,0,) 1p*
Xp N H*+q(M)

n+gq

If we show the injectivity of x ,., in degrees less than [(q — 1)/4], and since p*¥ has
a trivial normal bundle, we can then apply 3.5 to (p*%, p*w,) on P to obtain the
injectivity claim of 5.2. By the calculations of 4.6, it thus suffices to show p* is
injective on the image of x , in degrees less than [(¢ — 1)/4].

For g odd, p* is injective. Consider the Serre spectral sequence E/>° of the
fibration SO, » P -»”M. The E, term is H'(M) ® H’(SO,) since the fundamental
group I' of M acts trivially on H*(SO,). The transgression map defines the
Pontrjagin and Euler classes of the normal bundle Q. But ¢ has odd dimension, and
it was noted in 4.6 that Q is a flat bundle, so all of its real primary classes are zero.
Thus, the spectral sequence collapses, and p*: H*(M) - H*(M) ® H*(SO,) =
H*(P) is an inclusion.

For g even, the Euler class of Q is not zero, and we can only show p* is injective
on special classes. Recall from 4.6 that Q — M is the pull-back of the flat bundle
E - Bviaw: M — B. Let p,: P, - B be the orthonormal bundle of frames of E with
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respect to some metric. We can assume that P is the pull-back in:

o

P - P
14 v ~L170
M % B

The Serre spectral sequence for the fibration P, — B has E;** = H'(B) ® H(SO,),
and the transgression is zero in degrees less than (g — 1). (There is a class in
H "_‘(SOq) which transgresses to the Euler class in H%(B).) This implies that for
r < g — 1, there is an inclusion pg: H'(B) —» H'(F).

Next, note the fibration m,: P — P, has fiber 77 and the lift of the volume form
evaluates nontrivially, {( p*[w,],[79]) = A. Therefore, p*[w,] € HI(P) is nonzero
and for the fibration P — P, we obtain an inclusion

H*(P,) — H*(P,) ® HY(T7) = H**4(P).

Piecing these facts together and using Lemma 4.7, there is a commutative diagram:

g Up*lwa]

He*9(P) - H'(P,)
p* 1 T ps
(5-4) HY (M) H*(B)
' Xy N Xk

H*(sl,, SO,)

The injectivity of p* o x, in degrees less than [(¢ — 1)/4] now follows from (5.4)
and the injectivity of p§ © x ; in this range.

Next lift (p*F, p*w,) on P to the product P X SO, to get an SL -foliation
(%', w}). The natural framing of Q' = p*Q — P is twisted via the action of the
factor SO, to yield a new frammg s’ of Q' —» P X SO, as in the set-up for Theorem
3.5. We conclude that x3 : H*(sl,) - H* 9P X SO ,) maps ¥V, to a linearly
independent set, and the values of the image classes are dlrectly proportlonal to A.
Finally, the independent variation of the set x;,(V,) C H*(BFSL ) is proved exactly
asinS5.1. O

6. Homotopy groups of BI‘SL The space BI‘SL is (¢ — 1)-connected, and the
evaluation of the volume class on elements of = (BI‘SL ) defines a map BI‘SL
K(R, g) whose homotopy fiber is denoted BTSL McDuff has shown BT s, is
(g + D) -connected if g = 3 [25]. As a consequence of 5.2, there are eplmorphlsms

m, +3(BI‘SL ) - R so BTSL is not (g + 3)-connected. This is one of the applications
of Theorem 5.2 to the calculation of 7, (BT L) Fix g = 3. Recall that V, C H*(sl,)
is the set defined in 5.2. Let V (n) denote the subset of v, consisting of elements of
degree n.

THEOREM 6.1. For n < q the p-classes from the set V (n) define an epimorphism of
abelian groups

n+q(BFSL ) — Spang Vq(”)-
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COROLLARY 6.2. For n < q there is an inclusion of rational vector spaces
o: Spang V,(n) - n+q(BfSL ) ® Q.

PROOF OF 6.2. Choose a Q-vector space section o of the epimorphism =, , q(BF sL, )
® Q - Spang V (n) induced from the map in 6.1. [

For the special case ¢ = 3 there are three basis elements of H*(sl;), the classes y,,
¥3» 2 ;- About the first we can show:

PROPOSITION 6.3. Evaluation of x(y,) € H 6(BT. sL,) defines an epzmorphzsm of
abelian groups 7r6(BI‘S 1,) = R, with corresponding rational section ¢: R - 7r6(BI‘ sLy)

® Q.

We turn now to the proof of 6.1. Let b, be the number of elements in the set
V/(n), and set b = max{b,}. For real A # 0, let P X SO, have the SL -foliation
(J' w} ) constructed in the proof of 5.2, with normal framing s’ and classifying map
P X SO, - BT Ly

Next modlfy the space P X SO, to eliminate the unnecessary structure in dimen-
sions less than ¢. P X SO, is a compact manifold and so has a finite CW-complex
structure. Attach a finite number of cells to P X SO, of dimension < g to obtain a
(g — 1)-connected space W. Each map f;" extends to a map Fy: W — BI‘SL since the
latter space is (¢ — 1)-connected. There is a commutative diagram

‘H(P><S0-Z) (%),

| e
H(WZ)%

so the cycles in the image of ( f{), are also in the image of ( F,),.

Let Y be the one-point union of an uncountable number of copies of W, so
Y = V xcraxoW,. Then set X = V ;_.Y,, the one-point union of b-copies of Y.
Construct F: X - BFSL where F restricted to a factor W, , C Y, C Xis the map F,.
The point of 1ntroduc1ng X and F is that the proof of 5.1 and 5.2 shows the universal
classes in the set x3(V,) C H *(BT S Lq) assume any prescribed values on the cycles in
the image of F: H (X; Z) — *(BI‘SL ; Z). The space X is thus “universal” with
respect to varying the p-classes in x (¥, )

The high connectivity of W enables us to analyze its rational homotopy groups
using the rational Hurewicz theorem [2, Proposition 3.8]. To wit, there is an
isomorphism ¥: «, (W) ® Q - H, (W;Q) for m<2g—1, and I is onto for
m = 2q — 1. Therefore, we can choose a set of homogeneous classes {g;,...,g,} in
®,,<2,M(W) which maps onto a basis {cy,...,c,} for &, _, H,(W; Q). Each g, is
represented by a map also denoted g;: S™ - W, so ¢; = J((g;) is an integral class in
H,(W; Q). For each inclusion of a factor i) ,: W — X, the naturalicy of JC yields a
commutative diagram:

7.(W) - H,(W;Z)
(6.4) (ias)ed Jf(ik.k)*v
7.(X) - H,(X;Z)
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We have seen the cohomology classes F* o x;(V,) C H*(X) assume any pre-
scribed values when evaluated on cycles in the image of the maps (i, V - -+ Vi, )):
HY; Z) - H,(X; Z). For m <2gq, the cokernel of ,(Y) - H,(Y; Z) is a finite
abelian group. Consequently, for n < g, F* o x(V,(n)) assumes any prescribed set
of values when evaluated on spherical cycles in the image of (i), V -+ Viy ), © I
7,4 (Y) = H,, (X; Z) for the various choices of (A,,...,A,). From 6.4 we see
F* o x;(V,(n)) is independently variable on the spherical cycles in the image of
T, (X) = H, (X; Z). By the universality of BI‘SLq this proves 6.1. O

To establish Proposition 6.3 we must show x:(),): 7(BIs; ) — R is onto, and
for this we start with an example. Let S have a volume form &, with ([&,],[S?]) = A.
Define an SL,-foliation (%, w,) on SO, by the fibration p: SO, — S 3 and lifting &,
to w,. The normal bundle to ¥ satisfies Q = p*TS 3, where SO, can be identified with
the bundle of orthonormal frames of 7'S>. Hence, there is a canonical framing s of
Q. We claim x;,(»,) € H (S0,) is nonzero and proportional to A. One way to see
this is to note that ¥ is a foliation by compact leaves and that Proposition 3.2 yields

[ xlm=[{f K}

Given a point x € S> and the proper choice of framing of TS?, the restriction
K lp.l(x): SO, — SO, is the identity map by the definition of s. Thus, the leaf class
X0 2) € H3(S0,) is a nonzero class which is independent of x. Therefore,
(X0, (D2),[SOD) = ([@,], [521) - (x3(»,),[SO,]) is nonzero and proportional to A.
Now lift (%, w,) to the double cover Spin, of SO,. This produces a new
SL-foliation (¥, w)) for which x:,(,) varies, and is also defined by a fibration p”:
Spin, — §3 with fiber Spin; = S°. Recall that p’ admits a section and so Spin, = S 3
X §3. Clearly, the volume form w}, evaluates to give zero on the fiber S° of p, so the
composition S* - BT, in the diagram
) R =
s§* - Spin, - Blg,
Pl )
3
S - Bl

is homotopic to a constant.

Attach a 4-cell e, via de, = S = Spinj to a fiber of p’ to obtain X = Spin, Ugs et
which is homotopic to SV S° The above remarks imply f\ extends to Fy:
X - B_T‘SL3 with F* o x%(y,) nonzero and proportional to A. Therefore, x;(),) €
H(BTy, ) varies on the spherical cycles in the images of (£} )y 7g(X) = m(BLg,).
O

Theorem 6.1 and Proposition 6.3 have wide-ranging consequences for the higher
homotopy groups w*(BI_’S Lq). To state these results it is necessary to introduce some
new ideas. Applications of the following will be given in §7.

The elements in the image of o: Spang Vy(n) - 7, q(Bf‘s Lq) ® Q are detected by
the cohomology classes x¢,(V,(n)) C H 9*n( BT L,,)- These classes are represented by



GLOBAL INVARIANTS FOR MEASURED FOLIATIONS 387

cocycles {A(y;) /A w} which have the property that their products vanish as cocycles,
A(y;)w N A(yp)w =0, since w A w =0 for the volume form w. It then follows
easily from rational homotopy theory that the subset U, _ o(V (n)) C 7 ( Bf‘s Lq) ®
Q generates a free, graded Lie subalgebra. These ideas are presented elegantly by
Haefliger in [12], whose notation we adopt here.

Given a graded vector space V, let 2¥V denote the k-fold suspension: ¥V is
isomorphic to V as a vector space, but each a € V is raised in degree by k to give
Ska € 3FV. We set £ = 3L

Recall that V(n) is the set of elements of degree n in the set V, of Theorem 5.2.
Set V,(0) = {1}, where 1 has degree 0. For ¢ = 2 define graded vector spaces:

Y, = ESPanR V,(0), V= @ ZZSpanRV3(n) ;EZSpanR{l, ¥}

n=073

and for g > 3,

D Z ¢ 'SpangV(n).

0<n<gq

Let Lch denote the free graded Lie algebra over R generated by the graded vector
space °\g. For details on the construction of this space, see [12]. If the real dimension
of °V_ is greater than one, then LV is an infinite-dimensional real vector space which
is finite dimensional in each degree. There is a natural inclusion V, - LV, as a Lie
algebra basis, from which we derive an inclusion 2V, C ZLV,. Theorem 6.1 and
Proposition 6.3 assert that for all g = 2, the p—classes in x$, (V) define a degree
preserving epimorphism w*(BFSL ) = 2%, onto a real graded vector space, and o:
2V, - (BI‘SL )®Qis a rational sectlon There exist extensions of these maps
Wthh yield the followmg general results.

THEOREM 6.5. Let ¢ = 2.

(a) There is a natural, degree preserving group homomorphism onto a real graded
vector space w*(BFSL ) = 2LV,

(b) There is a degree preserving inclusion of a real vector space o: EL‘V -

*(BI‘ sL, ) ® Q and o is a rational section of the map in (a).

The homomorphism in 6.5(a) is defined using the dual homotopy invariants
associated to the p-classes. The dual homotopy invariants corresponding to the
secondary classes of an SL -foliation are developed in [17]; this theory can be
adapted in a straightforward way to produce invariants of the dga map Z9x’:
A (yy,..-Y,) = @(M) associated to a framed SL -foliation (¥, w, s) on M. The
proof of Theorem 6.5 then proceeds in the same fashion as that of Proposition 5.13
in [18]. However, to give the proof here would take us too far afield, and so it is
omitted.

We conclude this section with a partial description of the sets SLY, for small
values of g. The numbers after the spanning sets are the respective degrees of the
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corresponding basis elements of ZLV,:
q=2, XLV, =Spang([w],[w,w]}; degrees2,3,

g=3, 2LV, =Spang{[«],[y,e],[»e, «], [“” [Y:z‘*%‘*’]]»[)’zw, el };
degrees 3,6,8,10, 11,...,

q = 4, EL% = SpanR{[w]’[yzw]’[w’ w]»[yzw’ w], [w9[w’ ‘*’]]v--};
degrees 4,7,7, 10, 10,....

The next qualitative change occurs for
q= 8’ ELCVB = SpanR{[w]’ [.wa]’ [y4w]5 [w, w]v [y2w’ w],

[0, [0, @]], [ys0, @], [9,0, vl [0, [y, «]]....};
degrees 8,11, 15, 15, 18, 22,22, 25,25, ..

7. The local homology of Diff¢R?. The calculations of =, (BT L,) in §6 and the
theorems of McDuff for SL -foliations generalizing the Mather- Thurston Theorem
enable us to make many calculatlons of the local homology groups H (B lef‘ RY%; Q).

Let X be a connected manifold of dimension ¢ with no boundary and endowed
with a volume form w. If X is open, we assume each end of X has infinite w-volume.
For technical convenience, we also assume H?~!(X) = 0; see [25] for the details of
the general case. Recall that Diff A X denotes the group of diffeomorphisms of X
which preserve .w, and DiffS X is the subgroup of diffeomorphisms which are
compactly supported. We let G denote either of these two groups, endowed with the
compact-open topology; G® denotes the group G with the discrete topology and G is
the homotopy fiber of G® - G. Note that G is again a group.

The homology group H *(BG_; Z) depends only on the structure of G in a
neighborhood of the identity and so is called the local homology of G [28].

It is shown in [24] that BG X X has a natural SL -foliation transverse to the fibers
of the projection onto BG. Thus, there is a homotopy commutative diagram

_ f
BGXX > By,

(7.1) l o

x 5 BSL,

where 7 classifies the tangent bundle to X and f is the classifying map for the
SL -foliation on BG X X. There is a lifting y of 7 which classifies the point foliation
on X.

Let L - X be the pull-back under 7 of the fibration »: BI;; — BSL,, with fiber
BI‘S L, From diagram (7.1) and adjunction we obtain a map fX BG - S(X ), where
S(X ) is the component of the space of sections of L - X which contains the map y.
If G = Diff{ X, then we can further choose the map f, to have image in the space
S, X of sections which are equal to y outside a compact set in X.

For example, S5 (R?) is homotopy equivalent to the component Q9(BIg Lq)O
of §4(BT, ) which contains the base point, and so &, (R?) = SZ"(BI_‘SL‘,)0 = Q"BTSLq.
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When X is a compact manifold with trivial tangent bundle, then S(X) = S/(X) ~
Maps( X, BT L,)o» the latter space being the set of continuous maps which are not
necessarily base-point preserving.

In a sequence of papers [24-26], McDuff has proven a generalization of the
Mather-Thurston Theorem [28] which applies to SL,-foliations. We state this
theorem in the special case where the flux homomorphism is zero.

THEOREM 7.2 (MCDUFF). Let X be a manifold without boundary and w a volume
form on X so that each end of X has infinite w-volume if X is open. Assume that
HY Y(X) = 0. Then the map f, defined above induces isomorphisms

fy: H(B Diff , X; Z) > H(S(X); Z),
fe: H(BDill,, X; Z) — H,(S(X); Z).

For g > 2, Thurston and Banyaga (see [1, 32]) have shown by geometric arguments
that H(BlefcR" Z) = 0. Therefore, HI(SZ‘IBFSL ; Z) = H|(S5,(R?) =0 which
implies 7, (B T L) = 0. From this we can conclude that the mapping spaces S( X)
and & X ) are 31mp1y connected. For degrees n > 1, Theorem 7.2 reduces the
calculation of H,,(Bﬁi—ffﬁ, X; Z) to that of the homology of a space of sections or
maps. Using the results of §6 on the nontriviality of w*(Bf‘SLq), it is in theory
possible to make extensive calculations of these homology groups using Sullivan’s
model for the space of sections of a fibration [34]. We consider in this paper only the
case X = R?and w = dx, A - - - Adx,, the standard volume form. Then by 7.2, there
are isomorphisms

H,(B Diff ,R%; Z) = H,( BT, ; Z),
H,(B Diff ,RY; Z) = H,(9BTy, ; Z).

The results of §5 on nontrivial cohomology invariants from the u-classes all apply to
Diff _R? and the homotopy results of §6 can be applied to study TfffoR". Our
interest is this latter group. _

By the Bott-Samelson Theorem, the rational homology H*(QfoSLq; Q) is an
exterior algebra with generators the primitives in the Hopf algebra structure. The
space of primitives can be identified with w*(Qfo‘SLq) @Q=m,, q(BI_‘SLq) ® Q.
Let 279V denote the g-fold desuspension of the graded vector space V. Then
Theorem 7.2 implies

COROLLARY 7.3. There is a natural isomorphism of graded rational vector spaces
Ao{ 3 om,(BTy,,) ® 0} > H,(B DI k% Q).

At the end of §6 the real graded Lie algebra Lc\f was introduced, and Theorem 6.5
asserts there is an inclusion of rational vector spaces o: 3LV, - 7, (BT L,) ® Q.
Recall that the space ZLV, contains one generator of degree g, correspondmg to the
class [w]in 7 (BFSL )® R and EL‘V has no elements of degree less than g. Define a
new graded vector space EOL°V wh1ch is equal to EL‘V in degrees greater than g, but
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has no elements in degree q. Since 7,,( Bi L) = 7, (BT L,) for m > g we thus obtain
an inclusion of rational vector spaces a,: Z,LV, - w*(BfSLq) ® Q. Combining this
with Corollary 7.3 we obtain

THEOREM 7.4. There is a natural inclusion of graded rational vector spaces
RN ) — ¢
3 -4(2,L%,) - H, j( B Diff ,R*: Q)

for all g=2. When q =3, E'q(EOL‘V‘,) is a real vector space with infinite real
dimension.

The image of =70, is contained in the space of primitives of H,(B Diff { R%; Q) =
H,(Q°BTy,, ; Q) so one can extend 7.4 to yield

COROLLARY 7.5. There is an inclusion of the free exterior algebra over Q with basis
the real vector space ™92, L),

A3 o — ¢
Ao(2-4(S,LY,)) =" H,(B Diff ,R% Q).
The simplest case of this corollary can be stated as

PROPOSITION 7.6. For all g = 3 there is an inclusion o,: R — H3(Bﬁm': R% Q).

This shows the Thurston-Banyaga vanishing theorem for H l(BD_iffZ,R"; Z) does
not extend to degree 3 or above. It is unknown whether the group Hz(Bﬁi_fffo R% Q)
vanishes.

We remark that the rational vector space AQ(E’q(EOLCVq)) is incredibly large by
almost any standard. Even for g = 2, £%(£,LY,) is a real vector space with basis
element 37*[w, w] of degree 1, so H (B Diff, R% Q) contains the rational graded
exterior algebra A R, where each nonzero element of R has degree one.

It is natural to ask what properties of the group Ef—f; R? give rise to these
homology classes. For example, one asks for invariants of m: R? which can detect
a nontrivial homology class in the image of 2 %0,. This has been answered by
McDuff for one of the classes when ¢ is even, that being £~ [ w, w] of degree (¢ — 1).
We restrict to the case ¢ = 2. Then n = 372w, w] is a basis for T(Z, L) as a real
vector space, and we have 2 %0y(n) € H,(BBE:RZ; Q) is nonzero. McDuff shows
in [27] that this element is detected in a natural way by the Calabi invariant in
H ‘(Bﬁffj}Rzg R). This correspondence is a basis for hope that other classes in
the image of 3~%0, are detected by natural invariants of groups of volume-preserving
diffeomorphisms. A further discussion of the Calabi invariant and related ideas can
be found in Banyaga [37].
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