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Foliation dynamics and leaf invariants

STEVEN HURDER(V

§1. Statement of results

Let # be a codimension-n foliation of a smooth manifold M without bound-
ary. M may be either compact or open, and assume % is transversally C2. The
purpose of this note is to examine the relation between the linear holonomy of the
leaves of # and the growth rates of the leaves.

THEOREM 1. Let ¥ and M be as above. Given a leaf L = M of %, suppose its
linear holonomy group I' = GL(n,R) is not amenable. Then ¥ has a leaf L' which
contains L in its closure, and for all Riemannian metrics on M, L' has exponential
growth.

Amenability is taken in the sense of topological groups, where I'; is endowed
with the topology from GL(n,R).

We actually prove a slightly more general result, from which Theorem 1
follows by standard methods.

THEOREM 2. Let 4 be a pseudogroup of local diffeomorphisms of R", all of
whose elements are defined at and fix the origin 0 €R", and are C? in a neighbor-
hood of 0. Let I denote the linear group of Jacobians at 0 of the elements of 4. If I
is not amenable, then the action of 4§ on R" has an orbit with exponential growth
and which contains 0 in its closure.

The normal bundle to ¥ is denoted by Q. The restriction of Q to a leaf L is
well-known to be a flat R"-vector bundle, to which there are associated charac-
teristic classes [12] obtained from the relative Lie algebra cohomology of (gl,, O,,).
They are given by a map

x. : H*(gl,, O,) > H*(L).

The leaf classes of L consist of the image of x;.
! Supported in part by NSF Grant #MCS 82-01604
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320 STEVEN HURDER

THEOREM 3. Let % be a foliation of M as above. Suppose there exists y e H™
(gl., O,) with m>1 and x; (y) # 0. Then the linear holonomy group I'y of L is not
amenable.

COROLLARY 4. Let ¥ and M be as above. Suppose that all leaves of F have
non-exponential growth. Then for every leaf L of %, the linear holonomy group I'; is
amenable, and all leaf classes of L in degrees greater than one are zero.

The hypothesis m > 1 is necessary. For example, a flow on M with a linearly
attracting closed orbit L has x;(y,)#0, where y, is the standard generator of
H'(gl,, O,). All orbits of the flow have at most linear growth, hence non-
exponential, and the holonomy group of L is Z, which is amenable.

Corollary 4 can be viewed as a generalization to all of the characteristic classes
for flat bundles of a result due to Hirsch and Thurston. The Main Theorem of [7]
implies that the Euler class of the restriction Q | L — L is zero if the foliated
normal sphere bundle to L has an invariant transverse measure. This will be the
case, for example, when % has a leaf L' of non-exponential growth with L
contained in the closure of L'.

Theorem 1 is complementary to a result of Zimmer (Theorem 5.5 of [20]; see
also Corollary 4.3 of [10]): If & is amenable, then there exists a measurable
framing s of Q — M such that for almost every leaf L, there is a closed amenable
subgroup G; < GL (n,R) for which the linear holonomy along L, with respect to
s, takes values in G;. For example, ¥ will be amenable if almost every leaf has
subexponential growth.

Note that the set of leaves of ¥ with non-trivial linear holonomy has measure
zero (Lemma 7.2 of [10]), so Zimmer’s theorem does not imply our Theorem 1.
With the stronger hypothesis that every leaf of % has nonexponential growth,
Theorem 1 implies that for every leaf L, there exists a framing s; of Q|L — L
for which the linear holonomy along L, with respect to s;, takes values in an
amenable subgroup G;j. It is an open problem to find sufficient conditions on the
dynamics of ¥ that imply Q — M has a measurable framing s, with respect to
which every leaf has amenable linear holonomy.

This work arose out of the study [9], and was motivated by an attempt to
generalize to all codimensions the results of Duminy [2] relating the God-
billon-Vey class in codimension-one with leaf dynamics. For a further discussion,
see [10].

We now give an idea of the proofs. Theorem 3 is based on the observation
that the well-known explicit Lie algebra forms, representing the generators of
H*(gl,, O,), are exact when restricted to the Lie algebra of a maximal amenable
subgroup of GL(n,R). This is proven in §3. The heart of this paper is the proof of
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Theorem 2. It is useful to compare Theorem 2 with Tits’ Theorem [19]: a
non-amenable linear group I' contains a free non-abelian subgroup on two
generators. From this it is easy to see that the linear action of I on R™ has orbits
of exponential growth. Two problems arise when one tries to use this to show the
pseudogroup % has orbits of exponential growth. First, control must be main-
tained over the domains of the appropriate holonomy maps from 4. This is
achieved by finding an element y,'€ % with non-trivial contracting stable man-
ifold, and then applying our elements from 4 to some power of ;. The second,
more delicate problem is to control how well the orbit under 4 of a given point is
“shadowed’ by the corresponding orbits under I'. This latter problem occupies
§5, and is where the CZ-assumption on ¥ is needed. It is doubtful that Theorem 2
holds if we are just given that ¥ is C'. Finally, we remark that the proof of
Theorem 2 is reminiscent of the proof given in [5] of a special case of Tits’
Theorem.

The author is grateful to D. Ellis and R. Szczarba for several helpful
discussions on this work, and for their encouragement. Thanks are due to W.
Thurston for his remarks on the local structure of group actions, to C. C. Moore
for discussions on the classification of amenable subgroups of GL(n,R), and to E.
Ghys for bringing our attention to the paper by de la Harpe.

The support of the Mathematical Sciences Research Institute is gratefully
acknowledged.

§2. Growth types and leaf classes

Let &% denote a fixed codimension n, transversally C? foliation on a manifold
M, L a fixed leaf of %, and h a Riemannian metric on M. Given a basepoint xe€ L,
let B(x, r)= L denote the ball of radius r in the submanifold metric on L. The
metric h induces a volume element on L, and vol{B(x, r)} will denote the total
volume of B(x, r). The growth function of L is G(x, h, r) =vol{ B(x, r)}.

With respect to the choice of x and h, the growth type of L is said to be:

1
subexponential if lim sup " log G(x, h,r)=0

1
nonexponential if ¢; =lim inf 7 log G(x, h,r)=0

exponential if ¢; >0.

If M is compact, then the growth type of L is independent of the choices of x and
h, [6], [16], and thus is an invariant of the way L is embedded in M.
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The growth rate of a finitely generated group H is defined in a similar way (cf.
[14]). Let {g;, ..., g} be a reflexive generating set for H; reflexive means that
some g; is the identity element, and for each i, g;'=g; for some j. The word
metric on H is then defined by

lgl<pif g=g,---g, forsome integers 1<iy,...,i,<s.

Set H, ={g € H with |g|<p}. Let #S denote the cardinality of a set S. We say H
has subexponential growth if

1 1
¢y =lim sup ; log # Hp=lilgl_21f;10g# H,

p—>®

is zero, and exponential growth if c5>0.

For a countable pseudogroup ¥ of local diffeomorphisms of R", all of which
are defined at and fix 0eR", we define the orbit growth type of 4 as in Plante
[16]. First, assume ¥ is finitely generated with reflexive generating set
{¥1> .-+, 7vs}. For ye% with y in the domain of vy, we say |yy|, <p if there are
integers 1<i;,...,i,<s with vy, defined at vy, o---oy,(y) and y(y)=
¥i,° - - °¥,(y). Then set

Orbit (y, 9, p) ={yy such that ye€ ¢ with |yy|, <p}

1
c(y, 9= HLIL iurJlf -l; log # Orbit (y, 4, p).

We say % has exponential orbit growth at y if c(y, 4)>0 and nonexponential
otherwise. For a non-finitely generated groupoid %, we say it has exponential
orbit growth at y if this is true for some finitely generated subpseudogroup 4,< %.

Given a regular foliation chart ¢: U —R™ with ¢(x)=0 (cf. §4 of [16)), a
closed path ¢ in L based at x determines a holonomy map v, :(V, 0) — (W, 0) for
some open neighborhoods V and W of 0eR", [3], [6], [16]. Given a finitely
generated subgroup H < m,(L, x), choose closed paths {¢;, . .., &} representing a
generating set of H, let ¥ denote the pseudogroup generated by the elements
{¥ey - - -» ¥e,}- We extend the generating set to a reflexive set {vyg, ..., v,}. We
extend the generating set to a reflexive set {y,,..., v}, and let V be an open
neighborhood of 0 €R"™ on which all of the v, are defined. The following result is
then implicit in §4 of [16]; see also Chapter IX of [6]:

PROPOSITION 2.1. Let y € V and suppose 4 has exponential orbit growth at
y. Then for all Riemannian metrics on M, the leaf L' of % through y has
exponential growth.
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It is clear that Theorem 1 follows from Proposition 2.1 and Theorem 2.

Given a foliation chart ¢: U —R™ centered at x, the linear holonomy map of
L is given by dh: m,(L, x) = GL(n,R), where for a€ m,(L, x) choose a closed path
¢ in L representing a, let y, denote the holonomy map associated to ¢, then set
dh(a) = Jyy,, the Jacobian matrix at 0. The image I'=I; of dh is the linear
holonomy group of L with respect to the chart (U, ¢). For a different choice of
foliation chart centered at x, the map dh is changed by conjugating with some
element of GL(n, R). Thus the conjugacy class of I' in GL(n, R) is an invariant of
the germ of % along L.

The leaf classes of L are obtained by considering the pullback via dh of the
continuous cohomology of GL(n,R). Recall from Haefliger [4] or Stasheff [18]
that the continuous cohomology H*(G) of a topological group G is the cohomol-
ogy of the cochain complex of real valued group cochains on the discrete group
G? which are continuous with respect to the topology on G. The basic result is:

THEOREM 2.2 (van Est [4]). Let G be a Lie group, and let K< G be a
maximal compact subgroup with G/K contractible. Then there is a natural
isomorphism

H*(@g, K)=H%(G)

where g is the Lie algebra of G and H*(g,K) is the relative Lie algebra
cohomology.

For G = GL(n,R), it is well known that

Ht(GL(ﬂ, R)) EH*(QI", On) 511()’1, Y3, ... yn’) (23)
where y; is a closed O,-basic form on gl, of degree 2i—1, and n’' is the largest
odd integer less than (n + 1), (cf. Chapter 5 of [13].) Given an index I =(iy, ..., i)
with 1<i,<---<i, <n' we write yy =y, A---AY,. The proof of Theorem 3 will
depend upon the identification in (2.3) of H%(GL(n,R)), and the naturality in the

conclusion of van Est’s theorem.
Define the characteristic map x; as the composition

xc.: H*(gh, 0,) = H*GL(n,R)) L5 H*(my(L, x)) —> H*(L)
where we use that 7,(L, x) is discrete so that

H’:(WI(La x)) = H*(Bwl(L, x)) - H*(L)9
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where the second map is induced from the natural map L — B (L, x). For a
more detailed discussion of the leaf classes, see Kamber-Tondeur [12], Chapter 6
of [13] or Shulman-Tischler [17].

§3. Structure of the linear holonomy group

In this section we analyze how the structure of a countable subgroup I'c
GL(n,R) is related to the map H*(GL(N,R)) — H*(I'). Theorem 3 will follow
from this, and we also establish some preliminary results needed for the proof of
Theorem 2.

Consider GL(n,R) as the real points of GL(n,C) and let G denote the
algebraic closure of I' in GL(n, C). The identity component G, of G has finite
index, and passing to the subgroup I' NG, does not affect the statements or
conclusions of Theorems 2 and 3. Thus, we can assume G is connected.

Let G' =[G, G] be the commutator subgroup of G, and set G**'=[G*, G*].
Similarly define I'**'=[I'*, I'*].

LEMMA 3.1. G* is closed and connected for all k.
Proof. See §17.2 of [8], for example. [

We denote the algebraic closure of a group H< GL(n,C) by H.

LEMMA 3.2. The algebraic closure T*= G*.

Proof. The inclusion T*< G* is immediate, so it suffices to show G*<T*. By
definition I = G, and we proceed by induction: assume I''= G' for | < k. Consider
the commutator map

¢: GL(n,C)x GL(n,C)— GL(n,C)

with c(g, h)=[g, h]. This is algebraic, so H=c (') is algebraically closed.
Clearly, I'*'xI'*"'c H so T 'xT'* 'c H. Now I'* 'xI'* ! is a group contain-
ing T 'xe and exI* !, so by induction G* 'xG*'cTFIxI*1c
T TxT*Tc H. Since G* is generated as a group by the image c(G* *x G*™),
we are done. [

As each G is connected, there exists a least integer N such that G* = G**!
for all k = N. The key to the proof of Theorem 2 is to understand the properties
of I'N, which we now study.

DEFINITION 3.3 [20]. A topological group H is amenable if every continu-
ous affine action of H on a compact convex separable set has a fixed point.
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A connected amenable Lie group is a compact extension of a solvable group.
For H< GL(n,C) amenable, Moore proves in [15] that H is conjugate to a
subgroup of one of 2" standard maximal amenable algebraic subgroups.

DEFINITION 3.4. A subgroup H< GL(n,C) is distal if for each ge H, all
eigenvalues of g have unit length.

PROPOSITION 3.4 (Conze-Guivarc’h [1]). A distal subgroup of GL(n,C) is
amenable.

For the linear group I' we now observe:

LEMMA 3.6. If T'* is distal for any k>0, then G is amenable.

Proof. Suppose that I'* is distal. Then I'* is amenable, so by Moore [15] its
algebraic closure G* is also amenable. This implies G is amenable, for G is
obtained from G* by a finite number of abelian extensions. [J

COROLLARY 3.7. If T is not amenable, then G" is not trivial, and for all
k>0 the group I'* is not distal.

This corollary is the starting point for the proof of Theorem 2 in the next
section. We now prove Theorem 3. First, note that the inclusion induced map
H*(GL(n, C)) - H*(GL(n, R)) is onto, since H*(gl,C, U,)) = H*(gl,,, O,) is onto
(e.g., see Chapter 7 of [13]). By the remarks of §2, Theorem 3 then follows from:

PROPOSITION 3.8. Leti:I' — GL(n, C) be the inclusion, and suppose that I’
is amenable. Then

i*: H™GL(n,C))—»> H™(I")

is zero for all m>1.

Proof. Let A < GL(n,C) be a maximal amenable subgroup containing I'. From
[15] we know there is a basis {v,, ..., v,} of C" and integers {n,,..., n;} with
ny+- - -+ ny =n such that with respect to this basis, A has the form:

R+Un1* e % *

0O * - - =* %
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Here, R*U, denotes the positive reals product with the unitary group of
dimension n;. Let U,, = GL(n,C) be the unitary subgroup with respect the basis
{vg, ..., 0.}

The map i* factors through the map H*(GL(n, C)) = H*(A), so it will suffice
to show this latter map is trivial in degrees greater than one. Let A be the Lie
algebra of A, and let U< A be a maximal compact subgroup with U=ANU, =
U, %X+ +xU,,. By the van Est Theorem, it suffices to show that for Lie algebra
cohomology,

i*:H™(@,C, U,) > H™(, U)

is zero when m>1.

Let 1 be the solvable radical of A, let n be the nilradical and d the subspace of
the complex diagonal matrices with f =n@®b. The intersection f N u consists of
purely imaginary diagonal matrices, so we consider t=1/(tNu) as those matrices in
t with real diagonal entries. Similarly define d=b/(Nu) so that t=n@®bd. As t is
normal in A, if follows from the definition of relative Lie algebra cohomology that

H*(A, U)=H*(t")=H*®",

where superscript U means the Ad(U)-invariant subspace. The adjoint action of
U ont, A and gl,C are all compatible, so we get:

H™(@,C, U,) —> H™(\, U)

Pk

r*

H™(g,C)% — H™@®)Y

We will show r*=0 for m>1.
Recall from (p. 116 of [13]) that the generator y, € H* !(gl,,C) is represented
by the ad GL (n,C)-invariant form on gl,,C,

Yi= ki tr(OA[O’ 9]A° * 'A[O’ 9])

(i— l)rfactors

where @ is the Maurer—Cartan form and k; is a scalar. The algebra n is an ideal in
t as an associative algebra, and [t,t]=nso for i > 1 the form r*(y,) on t is obtained
by taking the traces of elements of n, which all have trace zero. Thus, r*(y;) =0.
As the {y;} generate the algebra H*(gl,,C), we are done. [
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As a corollary of the above proof, we have the general fact about Lie algebra
cohomology which is useful in other contexts as well.

PROPOSITION 3.9. Let G be an amenable subgroup of GL(n,R) with Lie
algebra g and maximal compact subgroup K=GNO,. Then H™(gl,, O,) —>
H™(g, K) is the zero map for all m > 1. In particular, the restriction of the forms y;
to g are exact for all i>1 and odd.

§4. Action of I' on an attracting subspace

Let I'c GL(n,R) be a non-amenable countable subgroup, G < GL(n,C) its
connected algebraic closure and N the integer defined in §3 for which GN =
GN*1, By Corollary 3.7 the group I'N*! is not distal, so there exists fe 'V with
an eigenvalue of modulus greater than one. Let puq, . . ., u, be the eigenvalues of f
and set

w= max{h"l's lp'IlL ) ““'sl, h"s—ll}

By reordering the w; and replacing f with f~! if necessary, one can assume

p=lwgl == > A =gl = =gl

Let {v(i, j) | 1<i<s; 1<j=<r(i)} be a basis of C" in which f has Jordan form:
fv(ia 1) =t U(i, 1)

foli, )= wlv(, H+o@,j-1)] for 1<j<r(). 4.1)

We also require that v(i, 1)=v(j, 1) if w; =E,-, where ~ denotes complex conju-
gate. Set

V(i)=Span {v(i, j) | 1<j=<r(i)}.

Note that V(i) is stable under f, and there is a superdiagonal nilpotent matrix N(i)
so that

fI V()= plId+N@]

Let Ve=@®/_; V(i) and W =@;_,.; V(i) so that C" = V@ Wg. Since f is real,
both V¢ and W¢ are the complexifications of the real subspaces V= VcNR" and
W=WcNR".
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Endow C" with the Hermitian metric for which the vectors {v(i, j)} are
orthonormal. Let |v| denote the length of v e€C", and for A € GL(n,C) we set

|A|=sup |Av|.
lvl=1

Define m:R"—{0}— S"™! by = (v) = v/|v|. For a subspace Z<R", let Z' denote
the set of unit vectors in Z.
Note that (4.1) implies for all k>0 and 1<i=<g,

[flVe)= p.!‘[Id + (’;)N(i) +eeet <:>N(i)"] (4.2)

where N(i) =0 for j=r(i). Let q(k)=Yr=3 (¢), a polynomial of degree (n—1) in
k. Then (4.2) and our choice of metric yields:

LEMMA 4.3
a) ForveV,

o] p* <|f*(v)| = q(k) lv].

b) For we W,

Iwl sl <Ifw)l <A q(k) lwl. O

Define the arctangent function a:R"— W — R* between V and W by the
rule:

For yeR" with y=v+w, veV, weW, 0# v,

a(y)=|—‘:—||-

LEMMA 4.4. For all yeR"— W and k>0,

(el) s at=agrom=(2) atrac.

Proof. For y=v+w, f*(y)=uv.+w, where w,=f*weW and v, =f‘veV.
Thus, a(f*(y)) =|wc|/|v.]| and Lemma 4.3 yields the estimate. [
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The last result needed for the constructions in §5 asserts that I'V contains
enough elements to map all of the strong expanding manifold V of f into the
domain R" — (VU W). We remark that if it were possible to find a single ge T for
which gV NV ={0} and gV N W ={0}, then a much simplified proof of Theorem 2
would be possible along the lines of [5]. As it is, we make do with the following:

PROPOSITION 4.5. Let ve V be a non-zero vector. Then there exists ge I'N
such that

gu¢Vandv-gv#0 (4.6)

and hence gu¢ W.

Proof. Suppose to the contrary that for all ge I'Y, either gpe V or v - gv=0.
These are algebraic conditions on I', so by Lemma 3.2 they also hold for all
ge GN. Now GV is irreducible as it is a connected algebraic group, so either
gveV for all ge G, or v+ gv =0 for all ge G". Clearly we must have the first
case, so GV -vc V. Let V denote the span of GNv. Then V is a subspace of V
stable under I'™, hence f|V is in the commutator group of I'N| V. But the
determinant of f|V is ¥ ¥Y>1, which contradicts f|V being a product of
commutators. [

The condition (4.6) is open for veV, so given any ve V' and g,eI™
satisfying (4.6), there is a 8(v)>0 so that for the closed 28(v)-ball B(v, 28(v)) in
R" centered at v, we have (4.6) is satisfied for g, and all y € B(v, 28(v)). Since V*
is compact, we can choose a finite set {g;,..., g} <IN and radii {3, ..., 8} so
that the balls B, = B(v;, §;) N V' cover V!, and (4.6) is satisfied for each g with
y € B(v,, 28;). Note this implies that for 1<i=<d, the arctangent a is defined and
bounded away from zero on the set gB(v;, 28;).

Finally, replacing f with a positive multiple if necessary, we can assume that
u >3, and for all 1<i=<d both p>|g)| and u >|g;"|. By our choice of metric on
C" and (4.1), we also have both |f|<2u and |f|<2pu.

§5. Exponential growth on the expanding manifold.

Let ¢ be the groupoid given in Theorem 2 and I the linear group of Jacobians
at 0. Assume that I' is not amenable. Let feI'™*! and {g;,...,g}<I'" be
chosen as in §4. Choose ye€ 9 with Jyy =, and for each 1=<i=<d choose v,€ §
with J,y; = g. For notational convenience, set y,=v. Let D<R" be an open
neighborhood of 0 on which all of the v; are defined. Let ¥, denote the
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subgroupoid of ¢ generated by the set {y,,..., v4}. We will show %, has a
continuum of orbits with exponential growth.

By the stable manifold theorem (cf. [11]) applied to y ', there is a connected
submanifold S < D with 0 € S, the tangent space T,S at 0 is equal V, and y ™! is
uniformly contracting on S. In particular, y~'S = S. By a change of coordinates on
R", we can assume S is an open neighborhood of 0 in V.

Before entering into the details of the proof of Theorem 2, a brief overview of
the argument may help the reader. We first define an open cone C< S whose
points satisfy lim,_,.. m(y™*y)e V' and |y *y| < u 2. For an appropriate constant
ey, we set y, =y "oy for a given ye C. For each p>0 we construct a subset
R, < %, consisting of 2° words of length <m, - p, such that the linear parts of the
words in &, move y, to 2P distinct points. We furthermore obtain an exponen-
tially decreasing lower bound on the distance between these 2P points. Using
Taylor’s theorem for C*-maps, and for e, sufficiently large so that y, is sufficiently
small, we conclude that R, -y, consists of 27 distinct points. The last remark is
that in constructing ®,, we use a version of the “ping-pong” lemma of [5]. In our
version, the orbits are repeatedly returned to the attractor V by applying high
powers of f, and are then scattered back into R"—(V U W) by the elements of
{g1, - - -, ga}- Thus, all of the orbits we build concentrate on the subspace V, and
one does not have the bilateral symmetry inherent in the method of Tits. Instead
of 2 players, one can think of this as an instructor with many students.

Recall that for a C?-diffeomorphism ¢ with ¢(0) =0, Taylor’s Theorem gives
an estimate on the spherical error between ¢ and J,¢, and the estimate is linear
in y:

For all € >0 sufficiently small, there exists k(¢, €)>0 so that

ld’y—Jod’)’l
lyl

As an immediate consequence we have:

<k(d,€)-ly| for all |y|<e. (5.1)

LEMMA 5.2. Let R ={¢,, ..., d,} be a set of local C*>-diffeomorphisms of an
open neighborhood U of 0€R" into R" with ¢,(0)=0 for all i. Let €>0 be
sufficiently small so that there exists constants k(¢;, €) for which (5.1) holds. Then
for K = max; <<, k(¢;, €) and ye U with |y|<e, suppose that

oy —Jody|>2-K - |y]* forall i#j.
Then the set R - y={¢;y | 1<<i=<p} consist of p distinct points. [

LEMMA 5.3. There exists 8>0 and an integer b>0 such that |y °y|<
w"%2|y| for all ye S with |y|<8.
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Proof. By Lemma 4.3 there exists an integer b >0 for which |f™ | V|<u™3%4,
Choose 8 >0 sufficiently small so that

8- kie vy ") <{n™™?—pn3"4

where e is such that (5.1) holds for y°, and 6 <e. Then
Iy Pyl=<ly®y =Pyl +If byl

<|y|?- k(e, y )+ p>**|y|
su™yl. O

For b, & as in (5.3) we replace f, v and u with f°, v®* and w® so we can
assume:

lyPyl<u™™?|y| forall p>0,yeS,|y|<8 (5.4
Choose € >0 to satisfy € <8, e <p ! and there exists a constant K, so that for all
de{y, v L, ¥, -, va}, condition (5.1) holds for all |y|<e and k(¢, €) = K,. Then
set

C={yeS|o<lyl<e}

These remarks are then summarized by

COROLLARY 5.5. y7*C<C, and for all p>0 and yeC,
lyPyl<p™?-e O
Set K =max {Ky, 2pn} and €, =min{e, K?}. For a word ¢ =¢;°-- - °¢, of

length <p with each ¢, €{y,, . . ., v4}, We estimate the constant k(¢, €,) required
for (5.1):

LEMMA 5.6. For ¢, K and €, as above
by —Jody| <K [y[* for lyl<e, G.7)
Thus, K(¢, €,) <K?.

Proof. For p =1, (5.7) follows from the definition of K. Assume (5.7) holds for
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¢ of length (p—1), and set ¢, = ¢,°* - -°d,. Then

|py —Jodyl=|d1° 4—’2)’ "Jo¢1°Jod-’2)'|
sl}"z : {|]0¢1| - K*72+ Uo&z‘z ‘K
+2 I-’od-’zl |}’| K> '+ |Y|2 K4p_3}-

From |Jo¢,| <K, [Jod,] <K?! and |y|<K™® we conclude

|dy —Jody| <|y?{K?>* '+ K> ' +2K?>* 2+ K*73}
- 2 1
=iye- ko 2]
<|y[*- K*

since K>p>3. O

1
LEMMA 5.8. Forge{f,f™% g1,..., 8} and all uq, u,eR", |gu1|>é—— lu,| and
1 ®
lgul-gu2|>i_‘u1—u2‘~
®w

Proof. |g|<2p, so |gw|<2u - |w| and hence for w =g 'u; or w=g (u;—u,)
we get the estimate. [J

Recall that {B; = B(v, §;) | 1<i=<d} is the covering of V* by closed balls in V
defined at the end of §4. By compactness of the sets gB;(v,28;,) and the
continuity of the arctangent function a on them, there exists constants 0 <c¢; <c,
for which ¢;<a(gy)<c, for all 1<i=<d and ye B(v, 28§,).

Set X={xeR"||x|=1 and c¢;<a(x)<c,}.

For 6 >0, set

A@B)={xeR"||x|=1 and a(x)<8}
A8)={xeA@®)|x=v+w,veB, we W}

Note the sets {A(5), ..., A (8)} cover A(8). Choose 8,>0 sufficiently small so
that for all 1<i=<d, gA;(28,) < X. Lemma 4.4 implies there exists an integer e
for which f°(X)< A(8,) for all p=e. Set my=2d - e+1, and define

¢, = infimum |7f*°y — wfi*z|.
v,zeX
1si<j=2d
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Choose e;,>1 so that for all p=1,

Cy

(2m,—e, -t =
w 2m,—ey/2)p <2K2p e .2 (5.9)

and
u¢°>K4. (5.10)
For all non-zero y e C we now show the groupoid ®, has exponential orbit
growth on y. Fix a choice of 0# ye C. For p>0 set y, =y "y. By Lemma 5.5
and (5.10) we have |y,| < K *’¢ <€, and then (5.9) yields

21y, K <2K% -y, |- w70 e
=G

We can now define the set &, which consists of 2° words of length <p - m, in
R,. The set R, will be chosen so that for all ¢# YR,

C
|Jo¢yp—fowp|>w—);,70|ypl- (5.12)

By Lemma 5.2 and (5.11), the set R,y, ={dy, | $ € R,} consists of 2P distinct

points. Thus, &, - y™> consists of words of length <(m,+ eo)p, and applied to y

yields 2” distinct orbits. Since y, — 0, this will finish the proof of Theorem 2.
Fix p, choose i, with my, € B(iz), and consider the 2d points

Fy={nf**g,y, | 1<k <2d}<= A(8).
There exists an integer i; with 1=<<i, <d for which Q, = F, N A, contains at least 2
points.

Now proceed inductively, and suppose i,_;, F,—; and Q,_, have been chosen
with Q,_;=F,_;NA,_, and #Q,_;=29"". The set

F,={nf**g, Q1| 1=<k=<2d}c A(8)

consists of at least 2d + 2! points, since

g A, ., cX and fNX)NfUX)=0 for j#k.
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Therefore, there exists i, with Q,=F, N A, containing at least 29 points. This
completes the inductive step.

Let F, be the set obtained in this inductive fashion; let R, be the set of words
in {yo, . . . , va} corresponding to the words in {f, g;, . . , g4} which are applied to y,
to obtain the points in F,. A typical element of ®, has the form

¢ = ye.k"o‘Yip_lt"Ye'k"_lo'Yip_zo' L%
for some integers 1=<k,,..., k,<2d. The length of ¢ is at most p - m, with
respect to the set {yo, . . ., v,}, and Ry, consists of at least 2d - 2°~!=2" points,
once we have established the estimate (5.12).

Let ¢#¢cR, and let g=Jy¢, h=Jo¢ be their linear parts. There are
integers 1<k,,...,k,<2d and 1=<j,,.. ., j,<2d for which

g =fe'jugi"_1 e f“flgio
h =fe‘k”gi,_. e ]:e-klgio

Let q be the largest integer such that j,_; # k,_,. Set

g =fe'kpgi‘,.l “ .. fe.kqgiq_l
g=¢lg h'=¢"h

Apply Lemma 5.8 at most q - m, times to obtain

|gy, — hy,| = 1£(8"y, — h'y,)l
=Q2u) ™ |g'y, —h'y,|.

Next, g’ and h’ have length <pm,, so Lemma 5.8 again yields
min {|g"y, |, [h'y, [} = (2p) ™7™ |y, |.
Hence,

‘g’yP - h')’pl ?(hﬂ"’"‘" |yp| * l"rg,)’p - ’"thP| ?(2“)_pm° ° l)'pl *Cy

and so

gy, — hy,|=Q2up) ™ |y,|- c;. O
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