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8§81 Introduction

Let D be an elliptic operator on a closed manifold M. Since the index of
D depends only on the principal symbol, it is nat&ral to consider this as a
primary invariant of the operator. In this paper we describe an example of a
theory which can provide a way to define higher order invariants of elliptic
operators. These invariants will depend on more than just the principal symbol
of the operator. To obtain them we will embed D in a family of perturbations

and study the cumulative effect of the variations. All of this is done in the

1Research supported in part by grants from the National Science Foundation
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context of cyclic cohomelogy.

What is presented here is a special case of a general theory which will
appgar in longer papers. One aspect of it describes a relation between the
p-invariant of a self-adjoint elliptic operator on a closed manifold and the
index theory for Toeplitz operators along the leaves of an associated foliated
manifold. The latter is described by a longitudinal cyclic cocycle and the
former by what may be viewed as a renormalized transverse cyclic cocycle.
[1],[4]),[8] The special case we work out in detail is where the manifold i;
the circle S1 and the operator is the Dirac operator ~iga. Despite the
simplicity of the example, the steps we follow are similar to those one would
use in the general framework.

The actual procedure is as follows. To the manifold Sl, the operator D =

e

Tl and a representation a:ﬂl(sl) —_— 81 we associate a foliated manifold,

T2, and an operator D on it. The original operator D was elliptic, but D will
not be. Now T2 is provided with two transverse foliations and D is

transversally elliptic with respect to one and longitudinally elliptic with

respect to the other. Following Connes, we define the transverse cocycle for D
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on the convolution algebra for one of the foliations, Cm(szsl), (this is
described below). It is then "renormalized” to obtain a cocycle on the
commutative algebra Cm(Tz), which will yield the p-invariant. Next, the
longitudinal cocycle is defined Qn Cw(Ta). The pairing of this cocycle with
K-theory gives the Toeplitz index theory along the leaves of the foliation.
Finally, we reach the most important aspect of the theory--the proof that the
longitudinal cocycle and the renormalized transverse cocycle are equal. After
this is accomplished, one pairs with appropriate unitaries to obtain a new ‘
proof of the Atiyah-Patodi-Singer Index Theorem for flat bundles in this case.
In the general case, [11], [12], we will study an arbitrary self-adjoint,
ISt—order, elliptic operator on a closed manifold and « will be a unitary

representation of nl(M). We close with some remarks on the general framework

of higher order invariants.

32 The basic data
Our basic operator will be D = -i(%;) on the manifold 1. The associated

~ foliated manifold is T2. It is represented as (R/2n2)x(R/2n2) with coordinates
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(6,?). Choose an irrational number «, O<a<1, ana represent ﬂl(Sl) = Z on S1 by
sending 1 to 2ma € S1 = R/2n2. Form the quotient Rxasl. It is isomorphic to
Té v;a the trivialization 7 given by 7(<6,9>) = (8,9+a8). We work on 72 with
bthe foliation, denoted ?d, whose leaves are the images of Rx{®}. The graph of
the foliation can be identified with szR. The fibers of the principal bundle
pr2:T2 [ S1 provide T2 with a second foliation ?T whose graph is szsl.

Consider the 1St—order, self-adjoint, differential operator D =

Sg + asg) on Cm(Tz). It is obtained by lifting D to R, extending to !RxS1 in

-if(
the natural way, then descending to the quotient. One then uses the
trivialization 7 to transfer the operator to T2. It is longitudinally elliptic
* *
with respect to ?a.in the sense that o(D)|(T 7q) is an isomorphism, where T ?a
denotes the c?tangent bundle to ?a. On the other hand, it is transversally
elliptic to ?T in the sense that its symbol is invariant under the action of S1
and is invertible when restricted to the normal bundle to ?T' Thus, we may
apply both longitudinal and transverse index theory to this operator. We will

show how it is related to the Atiyah-Patodi-Singer Index Theorem for flat

bundles, [2], for this particular situation. 1In fact, the transverse cocycle
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is related to spectral data for the operator, while the longitudinal cocycle

yields a topological formula involving secondary classes.

§3 The transverse cocycle

Let Cm(?T) denote the smooth convolution algebra for the holonomy groupoid

of ?T. We follow Connes [8] in constructing the transverse cocycle Cg €

1, @ 1, 0 2 1 . oo 3 d .
ZA(C (?T)) = ZA(C (T"xS7)) associated with D = 1(33 +a3;). There is a
representation of Cm(szSI) on Lz(Tz) given by

k*e(0,2) = [k(0,u,P)¢(0,m)du
*

where k € Cw(szsl) and ¢ € L2(T2). which extends to C (Tz,?T). Let

To2,,.2 2,..2 cas . -
P:L°(T") — L7(T") be the positive projection for the operator D, and let F =

2P - 1 denote the associated symmetry. The cyclic cocycle Cg is defined by

A 1
CD(PI,PZ) =7 Tr(F[F,Pl][F,Pz]).

We shall compute it explicitly on certain elements. Let ka bc e1(89+b?+06)
€ Cm(szSl) and €nn = e1(m9+n?) € Lz(Tz). Then we have
k *e = e if b = -n, and 0 otherwise,

a,b,c "m,n a+m,C
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and
F(e ) = o(m+an)em

0]

where o(Xx)

1 x20
-1 x<0

Let x

#

[x] + {x}, where 0 < {x} < 1, and [x] is the greatest integer < x.

A direct computation yields the following result.

Proposition 3.1:

h
CD(k

K ) - [~ac)~[a+ab] if a‘=-a, b’=-c, ¢c’=-b
a,b,c "a’,b’,c’ 0 otherwise

Proof: We evaluate F[F,ka b CJ[F.ka, , c,] on e and sum the diagonal terms

b m,n

to obtain the trace. Note that [F,ka Je = (g(a+mt+tac)-a(m+an) e if b

,b,c” m,n a+m,c

= ~n and is O otherwise. Thus,

Py 1
chtk ) = FIr(FIF .k, o JIF K

a,b,c ’ka’b’c’ a’.b’.c’])

= :% Z cr(m+ac)(o(m+ac)—a(m—(a+<xb)))2

since the only way there can be non-zero diagonal terms is if a = a’,

b’ = -n = -c, and b = -¢’.

0 m>-ac, m>a+ab or m<-ac, m<a+ab
Note that ag{m+ac)-o(m-{(a+ab)) = { 2 -ac<m<a+ab

-2 a+ab<m<-ac

which yields the desired result.|§
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If v e cw(szsl). then one can write ¥ = 2 A k where {Aa

a,b,c a,b,c } is

,b,e
a rapidly decreasing sequence. It is directly checked that

1 2

CS(PI-PZ) = Aa,b.cA _a'_c,_b([—ac]—[a+ab])

is finite and satisfies the cocycle condition bcg(P ) = 0 for

1'¥2'%3

Pi € Cm(szsl). Thus, we obtain

Proposition 3.2: CS(PI,PZ) is a cyclic 1-cocycle on the smooth convolution

algebra Cw(szsl).
This cocycle has an index theoretic interpretation in terms of spectral

flow which will be discussed in §6.

84 The p-invariant and spectral flow

We review some of the basics of the p-invariant and relate it to the
cocycle Cg of 83. If D is a self-adjoint elliptic differential operator on a
compact manifold then one defines n(D,s) = 2 sign(l\i)l)\il_s , the sum being
over the non-zero eigenvalues. vIt is holomorphic for Re(s) large and has a

meromorphic extension to the entire plane with 0 as a regular value. The

17
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number n7({D,0) has geometric, analytic and physical significance in several
contexts, ([2],[11],[12],[15]), and is called the p-invariant of D. It is

customary to modify it by setting ¢(D) = %(q(D.O) + dim{kerD)). If D 0<t<1,

.
is a smooth path of operators, then e(Dt) may not be continuous., The
discontinuities occur when an eigenvalue crosses 0, since then ¢ jumps by #1.
Thus, the variation of ¢ breaks up into a continuous and discontinuous part.
The continuous part can be obtained by the following procedure. If one
projects ¢ to R/2 the resulting function is smooth and its derivative can be
1y
lifted smoothly to R. Set Eta(D,) =j $E(8(D,))dt + §(D)). In general the
0

result will depend on the path between D. and Dl’ but if the path runs through

0
elliptic differential operators of the same order and the same principal symbol
then Eta(Dt) erends only on the endpoints and it will be denoted by
Eta(Dl.Do), or some variant. The discontinuous part of the variation of ¢ is
called spectral flow and is denoted by Sf(Dt) or Sf(Dl,Do), as above. It is

the number of eigenvalues which pass through 0 during the deformation.

=2 is

Consider now our particular case. The operator D = —l(sg + aa?

invariant under the action of S1 on Tz, s0 it preserves the summands in the
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decomposition Lz(Tz) = g(Lz(Sl)@Vp), where p runs through the irreduciﬁ]e
representations of Sl. Let Epa denote the line bundle Rxpdt — S1 provided
with its natural flat connection, qu. Let Bp denote BILZ(SI)@Vp. There is a

commutative diagram

D
2,1 o 2.
Lo (sH)ev, Lo(sHev,
2 2 )
LY(E_) L“(E_)
pa D8, 1 p“

where 7 is induced by the trivialization of mxpat. We apply the previous
formalism to the operators r_ler and D®I on L2(Sl)@vp. We write Eta(D,p,«,7)
for Eta(rﬁler,DQI) and similarly for spectral flow. For R& a finite set of p

set § = z ko -0’ and let Eta(D,5,4,7) = z Eta(D,p,a,7).
PR PER

§5 The renormalized transverse cocycle

The cocycle Cg is defined on the (non-commutative) smooth convolution
algebra Cm(Taxsl) which plays the role of the the smooth functions on a

transversal to ?T. This algebra, along with the commutative algebra Cm(Tz), is
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represented on L2(T2) in such a way that C”(Tz) acts as multipliers on
Cw(Taxsl). We will "extend” the transverse cocycle to Cw(Tz) by a
renormalization process. If an approximate unit, 6n' is chosen for Cm(szSI).
fhen CQ is defined on elements of the form ?Gn. ‘Dividing by an appropriate
quantity and letting n go to infinity yields the renormalized cocycle. It is
sometimes useful to think of this process as analogous to the "transfer" in

topology. In that situation, a class on the base of a fiber bundle is extended

to a class on the total space. Here, one views the transversal as the base of
a fiber bundle and the leaves of the foliation as the fibers.

We first choose, as an approximate identity for Cm(szsl), the elements

N

8, = } k , where k =
0,n,-n

i(n¥-nsé)

e .
0o,n,-n

-N

Definition: The renormalized transverse cocycle, defined on Cm(Tz). is

h
C (P .8, ,9.8.)
e, p,) = 1in 21N 2N
D120 Ny Tr (5.)

L%(s') ‘N
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h © 2
Theorem 5.1: The formula TCD defines a cyclic cocycle on C (T7).
Proof: We must show that the limit exists and that the cyclic cocycle

conditions are satisfied. For the first one computes

1 Fs .
P e s s 3 (aten - (atii )
Lhsh T -N<i<N

if 1+k = -(n+m) and equals 0 otherwise.

Lemma 5.2: lim cg(e ) = —(an+m).

8., 8
N m,n N m,-n N

~1
Proof: First note that N1 z ([a(1+1)]-[ali-k)]) =
-N<isN )

EﬁéT 2 (a(1+k)-{a(i+1)}+{a(i-k)}) . Now, both {a(i+l)} and {«(i-k)} are
-N<i<N

1 1
equidistributed sequences in (0,1) so T 2 {a(i+l)} and ETTS 2 {a(i-k)}
-N<i<N -N<i<N

approach the same limit, namely 1/2, as N —— ®., This yields the result.fj

o 2
Now, if Pl = z Am,nem,n' and ?2 = 2 ”p.qep,q are in C (T"), then Am n and

) s
“p.q are rapidly decreasing so that z Am'nu_m,_n(a(n+m)) < ®, hence TCD

exists.

Clearly, TCS(PI,?Z) = —TCS(Pa,Pl), so it remains to show that the cocycle

condition holds. Since Cg is a cocycle one has

*» 5 ,P.6.) =0

A - ot . A
Cp(P B\ *P 0, Po8) = Co(P 8. P, 8 %P 8 ) + Co(P5.*P 5. P,

N""2°N "3°N
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so it will suffice to show that

h * _ h
lim CD(‘PIGN P26N,P35N) lim CD(PlY’zsN,?SGN).
Newo N2

To this end consider

Tr(F[F,PlﬁN*?zéN][F,PSGNJ) - Tr(F[F,P1P25NJ[F,P36N])

and observe that it will be sufficient to look at
*
[F.PlsN .5

= * - 1
[P P51 = [F,P 6,*P, 6, -F P,5].

U 1°N "2°N 1 2N

But 5N satisfies
* ~
li&y* (P,8y) .8 Il — 0

which yields the result.j§}

86 The n-invariant and the renormalized transverse cocycle

In this section we will establish a direct relation between Tcg and the
n-invariant. Our starting point is the following formula. Let p = e0 n €

Cm(Tz), where p is identified with a unitary representation p:Sl —_— Sl. with

deg(po) = n.

h -1
Theorem 6.1: CD(paN.p GN) = Sf(D,aN.a,r) - Sf(D.pGN.a.r).
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‘Proof: We have
ooy T6y) =
cg(zpko’1,_1.§p_lk0'J'_J) -
E Cg(ko,i,—i+p’k0,j,—j—p)'
i,j

Next, note that a single term in the sum satisfies

A
Cp (oK

-1
A 0,1+p,-i-p>® Ko,1,-1)

CD(

if i=j+p
k .

¢ tepo g5~}
0,i,-i+p’70,j,-j-p 0 otherwise

Thus, adding up we obtain,

h -1 _ iy
CD(pGN.p 8§) =2 Cl(pk

. i P
N |i]<N D 0,i+p,~i-p

Finally, we note that each term in this sum is equal to [ai] - [a(i+p)] which
is equal to Sf(D,i,«,7) - Sf(D,i+p,a,7). The result follows immediately from

this.f§

The final step is contained in the next result.

Theorem 6.2: lim [Sf(D,&N,a,r) - Sf(D,pGN,a,r)] = Eta(D,p.a,7)
Neao

Proof :We have

23
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(1) g(D@V I) - ¢(D®I) = Eta(D,i,a,7) - Sf(D,i,a,r)
ia
and
(2) g(D@V I) - ¢(D®I) = Eta(D,i+p,a,7) - Sf(D,i+p,a, 7).
‘ (i+p)a
Now, f(D@V 1) - f(D@V I) = {ali+p)} - {ai), and Eta(D,i+p,a,7) -
(i+p)a ia

Eta(D,i,a,7) = -ap, a guantity independent of i. Thus, subtracting (1) and

(2), summing from -N to N and dividing by 2N+1 we obtain that Eta(D,p,a,7) =

1

lim T

{E SE(D.1,a,7) - st(o,1+p,a.r)}.|
1] <N .

Corollary: Tcg(p,p—l) = Eta(D,p,&,7).
h -1
" -1 Ch(p8y.0 "6y)
Proof: We have TCD(p,p )y = lim ———— =~ =

N-wo TI‘LZ(Sl)(BN)

lim (2N+1)—1[Sf(D,6N,a,T) - Sf(D,p8.a,7)] = Eta(D,p,q,7)
Nopo

87 The longitudinal cocycle

In this section we describe a second cocycle based on the ellipticity of
the operator D along the leaves. Its value on unitary elements of Cm(Tz) gives

the index of Toeplitz operators along the leaves of the foliation.
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Let W*(Ta,?d) denote the von Neumann algebra of the foliation ?a defined
using the trace Tru determined by Haar measure on 51;[6],[15]. There is a
natural representation of v‘(TZ,?a) on L2(T2xR). If P e Cm(Tz), then as a
leafwise multiplication operatoy it defines an elemént MP € z(Lz(TaxR)). Since
the operator 6 is self-adjoint and acts along the leaves one can take its
leafwise positive projection P € x(Lz(szR)). Let F = 2P - I. Then the

* . .
element F[F,MP ][F.MP ] will belong to ¥ (Ta,?d) and have finite trace if ¥
1 2

1J.S

in Cw(Tz) for i=1,2.

The longitudinal cocycle is defined, for Pl,? € Cw(Tz) by

2

L )
CD(PI,PZ) = Tru(F[F.M?I][F.M?Z)).

Proposition 7.1: Let ¥ € Cw(TZ) and let TP denote the Toeplitz operator on

p(1.2(T%)) defined by T, = PMP. If ¥ is invertible, then T, is Fredholm and

L -1
Index(TP) = CD(P.P )

Proof:13)] or [8].8
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Although, in form, the cocycles C; and Cg are similar, there are many

differences. An essential point is that CB is defined on the commutative

algebra Cw(Tz), while Cg is defined on the non-commutative convolution algebra
c®(rxst).

There is a formula for Index(TP) in terms of ¥.

Proposition 7.2: Index(T,) = lim 5%(argP(—t) - arge(t)}.
£ 00

Proof: [3].R

The map P:T2 — s1 yields an element of [Tz,Slj = Hl(Sl.Z) = 202.
Suppose that P corresponds to (m,n) under this identification. There is a
topological formula for Index(T?), which is also meaningful for more general

foliations.

Proposition 7.3: Index(T,) = j Toh(¥) Todd(17_) ch(o, (D))du.
S(TF )
[o 8
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Here, Tch(¥) is the differential form mde + (an)de, ch(ol(D)) =

{ 1 12x{1)

2 and Todd(T?a) = 1. Thus, Index(TP) = m + na.
0 T x{-1}

88 The relation between the transverse and longitudinal cocycles

To relate the renormalized transverse cocycle to the longitudinal cocycle

it is convenient to consider "approximate" cocycles. These are formed by using

smooth approximations to the positive projection assocliated to D. Using the

functional calculus on L2(T2) we set Fe = he(D)' where he ¢ CW(R) is a family

of functions with graphs

1 x20
satisfying hé(x) > 0 if |x] < e, lim he(x) = ho(x) = {

monotonically.
€0 -1 x<0

. 1 © 2
Define Ke(Pl,Pz) = ZFe[Fe,Plj[Fe,Pz], where Pi € C (T7).
it is necessary now to shift our point of view and notation a little.

Recall that there is a representation of the smooth convolution operator of the



28 DOUGLAS, HURDER, and KAMINKER
. o 2 2,2 o 2 1
foliation 7d. Cc(1 xR), on L(T"). (The analogous represntation of C (T "x8")

on Lz(Tz) was used in &3 in comstructing Cg.) In general this representation

may not extend to the entire foliation algebra, but in the present case it

does. Using the Fourier transform we will represent the foliation algebra,
*

c (Tz,?a), on 02(22), rather than L2(T2), It is the subalgebra of 2(82(22))

generated by operators of the form & de, where f € CO(R), 6( denotes

{m,n) m,n)

translation by (m,n), and La(m,n) = m+na, and ftq(m.n) = f(m+nx). This is
easily checked to be the Fourier transform of the standard representation of

* 2 2,.2 . . . _ * 2
c (T ,?a) on L™(T ), and hence is faithful. There is a trace on C (T .?a)

which is given in this representation by

ff(x)dx if (m.n) = (0,0)
r(& R

0 if (m,n) # (0,0)

Proposition 8.1: The operator xe(Pl,Pz) is in C:(szm) and has finite trace.

Proof: Observe that [Fe.P] is of the form

z Am,nb(m,n)f(m,n)ta

where A is rapidly decreasing and f € C:(R). Thus [Fe.P] belongs to

(m,n) {m,n)
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C:(szR) and hence xe(Pl,Pz) does as well.|§

2

Let 4 denote 3%2 acting on L2(T2) and let e—td denote the associated heat

t

kernel. In general, neither Ke(Pl,Pz) nor e 4 will be trace class. However,

we have the following result.

APZ) is trace class on ez(Zz).

Proposition 8.2: The operator xe(e—tAS"l,e_t

Proof: We note that [Fe,e—tA?] = e—tA[Fe,P] € 2(82(22)), since 4 commutes with

~

D, so that it will be sufficient to check that the trace nornm, He_tA[Fe.P]HI,
. . © 2 . -t4
is finite for any ¥ € C (T"). For this one observes that lle [Fe,P]II1 <

Tr(e—tA)EIAn | where ¥ = ZA Since ¥ is smooth the Fourier

e .
ym n,m n,m

coefficients An n are rapidly decreasing and the result follows.J}

A basic result which we will need is the following.

-t -t

Trpzigz (e (e “\rl,e Arz))

Theorem 8.3: lim = Tr (& _(¥,,P.)).

—_— ~-2t4 Me 172
t-0 TI‘Lz(s;)(e )

29
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Proof: We start off with a lemma whose proof is in an appendix.

Lemma 8.4: Let f € C:(R). Then one has

2

nsz(mﬂxn)e—tn
lim 2 = f f(x)dx
t-0 -tn? R
z e
n

It is a consequence of Lemma 8.4 that

-t4
TrLz(Tz)(e s(m,n)fLa) i
Tr (e—tA) )

L2(s!) 0 if {m,n) # (0,0)

{ f(x)dx if (m,n) = (0,0)
. R

lim
t-0

-td4 ~t4
FelFe'e Pl][Fe,e ¥

I

-t4 -t
Now, note that Ke(e Pl.e APz) 2]

-t4

-2t4 ~-td
e Fe[Fe'PI][Fe'Pz] + e {e ,Fe[Fe,Pl]][Fe,Pz]. It is necessary to show

that

Lemma 8.5: Let ¥Y_,P, € Cm(Tz). Then one has

1’72
-td, -ta4
. TrLz(Tz)(e [e 'Fe[Fe'Pll][Fe'PZ])
lim —ta =0
t-0 TPLZ(SL)(Q )

This shall be done in an appendix. Granted this, we then have

(xe(e_tAPI,e—tAPZ)) Tr. 2,2 (e_ZtAKe(Pl,Pz))

= lim
(E—th) £0 2t4)

Tr. 2,m2
L) If one now

1im =
t-0 TPLZ(S") TrLz(Sl)(e

expresses xe(Pl,Pz) as Z A then we obtain

m,né(m,n)f(m,n)‘a
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-2ta ~2td
C Trpagpzyle Tk (R0 Trpeery(e 80y Emnyta))
lim = lim {ZA =
m,n 2t4

£40 TrLz(s,)(e"th) =0 (24

TrLz(Sl)

J f(o o) (X)dx = Tr (& (P.¥,)).0

In 83 we defined the renormalized transverse cocycle via the approximate

unit GN' We now choose a different approximate unit, evtA, and perform an

analogous construction. It will be shown in the end that the resulting

cocycles are the same. Thus, we set

-t4 -t
TPLz(Tz)(Ke(e Pl'e Arz))

(e—ZtA) ’

h .
M.yt " e
L2(s!)
L -
and set CD,e(Pl’PZ) = Tru(xe(Pl,Pz)). Then a restatement of what we have

proved is the following.

Theorem 8.6: 1f ¥, e ¢®(1%) then

L A
Cp,e(fy:¥p) = TC, (¥.7,).0

'

The final step is to show that, for ¥ ,, P, € Cw(Tz) one has Tcg(Pl.Pz) =

1 2

31
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C;(PI,PZ). We accomplish this in several steps.
" CS(PIGN,PZ(SN)
Recall that TCD(P],PZ) = lim —-"r "~ where 6N is an approximate
Nwoo TrLz(Sl)(aN)
identity for Cw(Taxsl). Let
TrLz(Tz) (Ke(PIBN,‘PzﬁN))

¥(e,N) =
TrLz(S‘)(sN)

The essential point is the following interchange of limits formula.

Theorem 8.7: lim lim ¥(e,N) = lim 1im ¥(e,N)
N4 €0 e~+0 N0

Proof: One must show that lim ¥(e,N) exists uniformly in N, for then standard
€0

interchange of limit theorems yield the result. To justify this it is
sufficient to check that |¥(e,N)-¥(e’,N)}] — 0 as ¢ and ¢/ go to zero,
independently of N. For this note that KG(GNPI,GNPa) - xel(éNPl.SNPz) =

F_[F

e! e"aNPI][Fe—Fe"sNPZJ N Fe'lFe_Fel’éNPIJ[Fe’BNPZJ *

(Fe—Fe,)[Fe,sNPI][Fe,stzj. One must show that the trace of each term, divided
by Tt(éN), goes to 0 independently of N. We will carry out the computation for

the first term, the others being similar. It will be sufficient to do this
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with Pl and ¥, equal to G(i.j) and G(I,k)' respectively. Then
|Tr(F€,[Fe,,6NP1][Fe—FeI,BNPZ])I < const.Tr(IGN[Fe—Fe,,Pz]|). Now,
Tr(|8y[F -F ,.¢,|) = Tr([F -F_, P, 16,(F -F_,.¥,]) =(fk’)‘[—N,N1(“”"Cm,n;l,k
where 'Cm,n;l,kl < 2 and Cm,n;l,k = 0 unless |m+l+a(n+k)| < e and |l+ak| < €.

Using the fact that the numbers {ok} are equidistributed in [0,1} one can show

that the number of such pairs (1,k) in a box B c (as in Appendix 1) is less

L,

than 4el for L large and e¢ small. Dividing by Tr (GN). (restricted to the

LZ(st)

1
2L+1

box), we get an upper bound of (4el) and letting L go to infinity yields

the result.§

Next observe that, for each fixed e, one has

..tA .
_ TrLz(Tz)(Ke(PlsN.PZSN)) _ TPLz(Tz)-(Ke(e L ?,))
lim = lim

N0 TPLZ(SI)(sN) t-0

-2t4a
TPLz(Sx)(e )

One must now look at the longitudinal cocycle. Recall that there are two
. w2
representations of CC(T XR) -~ the one we have been using,
pC(TPxR) — 2(6%(2%)), and p:cT(1°xR) — 2(L2(1°xR)). Both are faithful

~

~ 1 - o~ . . . '
and pp (Ke(Pl‘Pz)) = «e(Pl,Pz) = Fe[Fe,Pl][Fe,Pz] where Fe = he(D) is obtained
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via functional calculus on LZ(szm) and Pi acts as a leafwise multiplier. Now,

Tr# is normal and each KG(PI'PZ) has finite trace as does the limit. Moreover,

xe(Pthz) —_— KO(PI,PZ) weakly and all are dominated by IKO(PI,PZ)I so we

obtain

-~ AL
Theorem 8.9: iig Tru(xe(PI,Pz)) = CD(PI,Pz).l

Combining these results we finally obtain
Theorem 8.10: TCA(P P.) = CL(P ¥.)
—_— DYV1’72 D12

Theorem 8.11: Let ¥ € Kl(Cw(Ta)) = 282, 1f ¥ corresponds to (m,n) under this
isomorphism, then

chh(p) Todd(T¥ ) ch(o,(D))du = <cf),v> - <TC$,P> - Eta(D,p,a).
S(TF )
o

Remark: This provides a direct proof, of a different nature than previous ones,

of the Atiyah-Patodi-Singer Theorem in this special case.
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89 Secondary invariants for elliptic operators

To indicate some of the possible applications of our results, we formulate
them in a more general, and functorial manner. We thank Alain Connes for
suggesting this point of view. Bather than restricting to S1 immediately, we
will work with Un at first. Let Eﬁn denote the fiber of the map BUﬁ — BUn
where Ug is the unitary group with the discrete topology. Then elements in

Kl(ﬁﬁn) are represented by triples (M,D,f), M a closed SpinC manifold, D a

self-adjoint elliptic operator on M and f:M —s Eﬁn a map. Recall that f
determines a homomorphism a:ﬂl(M) —_— Un and a trivialization O:Qxaun —_— MxUn
= V, where ﬁ is the universal cover of M. Note that V has a foliation, ?d, by
images of &x(g}, g € Un’ This is precisely the data needed to obtain an
operator longitudinally elliptic along the leaves ?f the foliation ?a and,
hence, an element lB] € KKI(C(V),C*(V,¥d)). Note that C*(V,?a) is Morita
equivalent to C(Un)xnl(M)/kera so there is a map from KKI(C(V),C*(V,?a)) to

KKI(C(V),C(Un)x U:). Pairing an element [u] € KKl(t,C(V)) with the image of

[D] one obtains [u]®

- &
C(V)lD] € KO(C(Un)x Un)’ Now we look for cyclic classes in

HCeV(Cm(Un)x US). One possibility is the trace, [Tr], obtained from Haar
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measure on Un' If we specialize again to U] = Sl, then the results of this

paper show that

<[Tr},[p]® [6]> = Eta(D,p,qa).

c(r?)

This suggests that by using cyclic classes other than [Tr]} one will obtain

a useful family of higher order invariants of elliptic operators.
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Appendix 1: Proof of Lemma 8.4
Proof of lemma: Let B w be a box of width 2w and length 2k situated as in the

k,

picture

As

Let &, be the segment on y-ax = 0 cut off by B Let u(Bk w,t)

k,w’
—tn2 —tn2
=2 f(m+an)e and d(Bk w,t) =z e Then, setting ¢(k,t) =
m,neBk’w neprz(Bk'w)
u(Bk W,t)
———=— - we have that lim ¢(k,t) exists uniformly in t and lim ¢(k,t) exists
d(Bk w,t) Koo t-0

for each k, so the iterated limit exists and can be taken in k and t

simultaneously. We claim that lim ¢(k,t) = J f(x)dx. To see this, let Xk
4

(k. t) .

denote the points on “w obtained by intersecting lines through lattice points

in Bk w parallel to the sides corresponding to k. Then U Xk is equidistributed

and lim
ke |Xk]

{  f(m+an) } - Jaf(x)dx'

m,neBk’w w

For each k, there is a tk such that 0 < t < tk implies that
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1 e“t"2 1
—_—— € < < + €

k
]Xkl d(Bk,w’t) ]Xkl

Choosing ¢, to converge to zero sufficiently rapidly and summing appropriately,

k

the result is obtained.

Now, we let the box become wider. Let g(w,t) = lim ¢(w,k,t). Then lim
k0 €0

n{w,t) exists, uniformly in w and lim g(w,t) exists for each t. Thus f(x)dx
W R

en2

E f(mron)e

= 1lim lim g{w,t) = lim lim p{w,t) = lim =

W= to0 0 wo t-0 ~-tn
Z e

n

2 ) .

Appendix 2: Proof of Lemma 8.5.

First note that Fe[Fe,Plj = Zu (f jta) and [Fe,Pz] =

R R & g
1, 1,3 1,

A 5 (g ). Shift the first e "2 to the right inside the trace in the

[3
m,nmn "m,n«

(X)

numerator and denote the resulting operator by X. Then TrLZ(TZ)

2 2 2
>. Expanding this out yields Z C(l,k;m,n)e tk (e k™ _~tlken) )

m,n; 1.k

= Z <Xl 1
1,k 1,k" "1,k

where m,n and 1,k run through the lattice points in the plane. One can check

that it is enough to fix m,n and show that

: 2 2 2
lim{ z C(l,k;m,n)e_tk (e~tk -e_t(k+n) )—_l__E }

t-0'1,k Ze—tk

= 0. Let Ct(k,n) =
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—tk2 —t(k+n)2
(e -e ) and let 2t(l,k;m,n) be the other factor in each term. Then

the sum is Z Qt(l,k;m,n)ft(k,n), and we have the following properties: (i) for
1,k

each k,n lim Ct(k,n) =0, (ii) z wt(l.k;m,n) < o,
t-0 1,k

(iii) = wt(l,k;m.n)ct(k,n) < @, 'Moreover, |8t(k,n)| is uniformly bounded.
1,k

From this, an elementary argument yields the desired result.
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