The Intersection Product of
Transverse Invariant Measures

S. HURDER & Y. MITSUMATSU

ABSTRACT. We show that the self-intersection homology class
of a Ruelle-Sullivan foliation cycle is completely determined
by the self-intersection classes of the compact leaves in the
support of the cycle. For a cycle obtained from an invariant
transverse measure with no atoms, we conclude that the self-
intersection class vanishes.

1. Introduction and Main Theorems. Let y denote a transverse, holonomy
invariant measure for a Cl-foliation F of codimension ¢ on a compact oriented
manifold M of dimension m. We assume that the tangent bundle to the leaves
of F is oriented and that p is finite on compact transversals (i.e., p is locally
finite). Then the transverse measure defines an asymptotic homology class [C,] €
H,(M;R), where p is the leaf dimension. For flows (p = 1), this class is called the
Schwartzman asymptotic cycle [13]; for the general case p > 1, it was constructed
by Ruelle and Sullivan [12].

The existence of a transverse invariant measure for a foliation has implica-
tions for its leaf dynamics (cf. [8, 11, 12, 14].) One approach to understanding
the relation between transverse measures and dynamics is to study the values of
cohomology invariants for the foliation, restricted to the support of the measure
(cf. [3]). This program has been studied for the secondary invariants of foliations
by the first author [4, 5], and the second author [8] considered it for two of the
primary invariants of a measured foliation: the Euler class of the normal bundle,
and the self-intersection of the Ruelle-Sullivan class,

(1) [CM] n [CM] € Hp—q(M§R)-

In this paper, we address the question of how the self-intersection product
(1) depends upon the geometry of the support of the measure p. For example,
if 4 is defined by a closed g-form w on M, then the wedge product w Aw = 0,
and the intersection product also vanishes. The vanishing of the self-intersection
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product in this case corresponds to a well-known result in measure theory: for
a Borel measure space {X,u}, the measure p has no atoms if and only if the
diagonal A C X x X has measure zero for the product measure p X u. We use
this principle to give a complete evaluation of the self-intersection product (1)
of a transverse invariant measure.

Our first result, Theorem 1, shows that this intersection reduces to the self-
intersections of the atoms of the transverse measure. We then establish a second
result, Proposition 1, giving a simple geometric criterion for the vanishing of these
atomic self-intersections. One application of this result is Corollary 1, which
shows that the atoms of the measure p which have non-zero self-intersection
are isolated. The self-intersection of an atomic measure equals the evaluation
of the transverse Euler class on the atom by standard methods. These results
are combined in Corollary 2, to obtain a complete evaluation of (1). Corollary 3
summarizes the criteria for the vanishing of (1) that we obtain.

We say that a leaf L of F is an atom for p if there exists e, > 0 so that for
every sufficiently small transversal disc to F, ¢ : D¢ — M, which intersects L,
then

(2) /D it 2 e

where |i*(dp)| = i*(du)t —i*(dp)~ denotes the positive, unsigned measure as-
sociated to the signed measure i*(du). Otherwise, we say that L is a leaf of
continuity for ;. We then have the following properties of the atoms of a trans-
verse measure.

Remark 1. If L is an atom for a locally finite transverse invariant mea-
sure 1, then L is a compact leaf.

Proof. If L is non-compact, then it has a point of accumulation z € M, and
every open transversal through x intersects L infinitely often. The holonomy
invariance of 4 and Estimate (2) then imply that every open transversal through
z has infinite 4 mass, contradicting that u is locally finite. O

Remark 2. The set of leaves for F which are atoms for u is countable.

Let A(p) denote the countable set of leaves in M which are atoms for u.
Define the atomic part of 1 to be the transverse measure

(3) pa= D, mL)pr

LeA(pn)

where puy, is the “Dirac” transverse measure associated to the oriented compact
leaf L (cf. Plante [11]). The term u(L) is the y-measure of L intersected with
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a small transversal. That is, choose a sequence of transverse embedded discs,
{in : D - M} whose image limits to a point z € L, then

n—oo

uw(L) = lim [ ig(dp).
D¢

Define the continuous part of u to be the difference y, = p — pu,. We say that p
is a continuous measure if it has no atoms.

Remark 3.

1. The measures p, and p. are holonomy invariant and locally finite;
2. For every transverse disc {i : D1 — M}, there is the estimate

(@ L < [ il

3. Every leaf of F is continuous for ..

Proof. Holonomy invariance of u, follows from that of each “Dirac measure”
pr. The remaining assertions are standard properties of the decomposition of a
measure into its continuous and atomic parts, in this case applied to *(du) on
each transversal D9Y. ]

We say that F is a C'-foliation if the bundle TF C TM of vectors tangent
to the leaves of F is a C'-vector subbundle.

Theorem 1. Let F be a C'-foliation of the closed oriented manifold M,
and suppose that the tangent bundle to the leaves TF is also oriented. Let
be a locally-finite transverse invariant measure. Then the self-intersection of the
Ruelle-Sullivan current for p is given by the sum

(5) [CM] n [Cu] = [Cua] n [Cua]
(6) = Y w@DX[LIN[L)}
LeA(p)

The proof of Theorem 1 is given in Section 2. The reduction from (5) to
(6) follows from the interpretation of the intersection product as a geometric
intersection, which for disjoint leaves is always zero. The evaluation of the self-
intersection product is reduced by (6) to the study of the self-intersections [L] N
[L] of the compact leaves of F. We make an observation, which is the basis for
Proposition 1 below, that further simplifies the sum in (6).

The orientation on TF orients the compact leaves of F, so each compact
leaf L determines a homology class [L] € H,(M;R). We say that two leaves L
and L' are hp-equivalent (for homology projective) if they determine the same
ray in the real homology group H,(M;R). For example, if H,(M;R) = R, then
any two compact leaves of F which are non-zero in homology are hp-equivalent.
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Proposition 1. Let L be a compact leaf of F. Suppose there exists a dis-
tinct compact leaf L' of F which is hp-equivalent to L. Then the self-intersection
[LIN[L] = 0.

Proof. The intersection product [L)N[L'] € H,_4(M;R) of two p-cycles can
be calculated geometrically for homology classes represented by closed oriented
submanifolds: choose a perturbation of L' to a closed submanifold L" C M,
so that L" is homologous to L' and is in general position with respect to L.
Then the connected components of the geometric intersection, L N L”, consist of
closed submanifolds of M of dimension (p —g), and inherit orientations from L
and L". Each component therefore determines a homology class in H,_4(M;R),
and their total homology class equals [L] N [L].

Consider a compact submanifold L' € M of dimension p which is hp-
equivalent to the class [L]. Then either both classes [L] and [L’] vanish, and
[L]N[L] = 0 is obvious, or [L'] = C-[L] for a non-zero constant C. In the lat-
ter case, observe that [L]N[L'] = C([L]N[L]), so that if L and L’ are disjoint
(e.g., they are distinct leaves of F), then they are in general position, and their
cap product equals the homology class of their geometric intersection, which is
Zero. O

The evaluation of the self-intersection of a compact leaf has a traditional
interpretation in terms of the normal Euler class of the embedding L «— M. Let
v — M denote the oriented normal bundle to F, and v, — L the restriction
of v to an individual leaf L. The orientations of TM and T'F endow v and
v(L) with orientations. Let E(v) € HY(M;R) be the Euler class for v, and
E(vy) € HY(L;R) the Euler class of vy,.

Remark 4. Let L be a compact leaf of F.
1. E(v) and E(vy) vanish if q is odd;

2. E(vr) is the Poincaré dual of the self-intersection class

(L)N[L] = {[L]\ E(vL)} € Hp—q(L;R).

Proof. (cf. [1], Section 11). m|

Fix a Riemannian metric on TM. For a leaf L of F, let N(L) — L denote

the unit disc subbundle in vy, and let Ly C N(L) denote the embedding of L as
the zero section.

Corollary 1. Let L be a compact leaf of F. Suppose there exists an
embedding f : N(L) — M such that f|L, : Lo — M is a diffeomorphism onto L,
and there is a compact leaf L' # L of F with L' C f(N(L)). Then [L]N[L] = 0.
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Proof. The orientation of TF orients the open set U(L) = f(N(L)), and
L’ has orientation compatible with the core L of U(L), so the homology class
[L'] € Hy(U(L);R) is a positive multiple of [L]. In particular, L and L' are
hp-equivalent and disjoint, so we can apply Proposition 1. [m}

We combine Theorem 1 and Proposition 1 with Remark 4 to obtain the
following forumla for (1). A compact leaf L C M is said to be isolated if L
admits an open tubular neighborhood U(L), as in Corollary 1, such that there
are no compact leaves of F completely contained in U(L). Let Ag(p) denote the
subset of the atoms for y which are isolated compact leaves.

Corollary 2. Let F and p be as in Theorem 1. Then

(7) [CanCil= Y w@*LI\EW)}.

LeAo(p)

There is another natural invariant for measured foliations with even codi-
mension, the slant-product of the classes [Cy]\ E(v) € Hp_q(M;R). For an
atomic measure y = pur, the above discussion shows that this invariant reduces
to the self-intersection product of [C,,]. For more general measures, this need
not be true. The second author has shown in [9] that the Milnor inequality
(cf. [7]) extends to this measured Euler invariant for 2-dimensional oriented fo-
liations on oriented closed 4-manifolds. More generally, the previous discussion
suggests the general problem of determining what geometric hypotheses on F are
sufficient for the vanishing of the measured Euler class [C,]\ E(v). The paper
[6] addresses this question in detail.

We conclude with a summary of the conditions which are sufficient to force
the vanishing of the self-intersection class (1):

Corollary 3. Let F and p be as in Theorem 1, and suppose that at least
one of the following conditions is satisfied:

1. Every leaf of F is continuous for u;
2. u has no isolated atoms;
3. The normal Euler class E(v) = 0.

Then the self-intersection product [Cy,]N[C,] = 0.

2. Vanishing for a Continuous Measure. Let F be a C!-foliation of the
compact oriented manifold M, and let po and ;3 be holomomy invariant, locally-
finite transverse measures for F. We will assume also that pg is continuous for
F; that is, po has no atoms. There are corresponding Ruelle-Sullivan closed
foliation p-currents, C,,, and Cy,, with Poincaré dual cohomology classes [wy,],
[wy,] € HI(M;R). The main result of this section is then:
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Proposition 2. Let pg and py be transverse invariant measures for F
which are finite on compact transversals, and assume that each leaf of F is
continuous for po. Let [w,,], denote the Poincaré dual cohomology class to the
Ruelle-Sullivan current [C,,], for i = 0,1. Then the cohomology cup-product

[Wio] U Wiy ] = 0.

Proposition 2 implies Theorem 1 by first noting that the intersection product
on homology is a bi-linear pairing, and then we use the standard properties of
the correspondence between cup and cap products under Poincaré duality.

The proof of Proposition 2 is modeled on a seemingly unrelated result in
measure theory. We include the simple proof of the following lemma, as it
provides a guide to the proof of the proposition.

Lemma 1. Let X be a separable Borel space with two Borel probability
measures mg and my. If mg has no atoms, then the diagonal A = {(z,z) €
X x X |z € X} has measure 0 for the product measure mg X m;.

Proof. For € > 0, the hypothesis that mg has no atoms implies there exists
a finite partition of X into disjoint Borel subsets, X = |_|f’ X; where each X; has

my-measure less than €. The collection of product sets {X; x X; |1 <i < N}is
a covering of the diagonal A, and we have the estimate

N
mg X ml(A) S mg X m;y (I__IX’ X Xi)

N
=D {mo(X;) -my(Xy)} <e-my(X) =e.

As ¢ is arbitrary, mg x m; (A) = 0. O

The first step in the proof of Proposition 2 is to construct closed g-forms
representing the dual classes [wy,] and [w,,]. This follows the standard method
for constructing the Poincaré dual of a cycle, using the Thom class of the normal
bundle to the cycle. For foliation cycles, it is necessary to average this normal
bundle Thom class over the transverse measure (cf. [12], Proposition 1). Evalu-
ating the cup product of the foliation cycles obtained from po and p; involves
integrating a form over a neighborhood of the diagonal Az to the transverse
space of F with respect to the product measure pg X p1. The key technical re-
sult, Proposition 4 below, states that this form can be localized to arbitrarily
small neighborhoods of the diagonal, and stays uniformly bounded. The method
of proof of Lemma 1 then shows that the cup product vanishes in cohomology.
We begin with some technical preliminaries.
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Fix a Riemannian metric on TM, and let dvy denote the corresponding
leafwise volume-form. Let v; C v — M denote the unit disc subbundle of the
normal bundle v to F. The Riemannian metric defines a C*-embedding v C TM,
so that we can restrict the geodesic exponential map exp : TM — M x M to the
subbundle v. The exponential map exp is C* when restricted to a C!-distribution
(cf. [2], page 95, Theorem 3.1). For each s > 0, define a scaled, C'-exponential
map

exp,: v — M x M,
(8)

(z,7) — (z,exp,{s-7}).

The product of the leafwise volume form dvr with the transverse measure
1; defines a locally finite measure on M, denoted by fi;. Let us briefly recall its
definition. For f : M — R a continuous function with support in the domain of
a local foliation coordinate chart,

¢Y:U - DPxDY D= (-1,1),

we set

(9) [ sdai= /D{ mfow-lduf} dus

The holonomy invariance of the transverse measure y; implies that the pairing
(9) is independent of the choice of foliation chart (U,v). We then extend the
definition (9) to all continuous functions which are finite sums of those supported
in foliation charts. A partition-of-unit argument shows that these are all of
C°(M), as M is compact. In particular, note that [, 1dg; is finite.

Our next step is to choose a covering of M by regular foliation charts which
play the role of the sets X; in the proof of Lemma 1 with respect to uo and p;.
Recall that a foliation chart ¢ : U — DP x Q, for Q C R? a bounded convex open
set, is regular if there is an open neighborhood U D U containing the closure of
U, and an extension of ¥ to a foliation chart

P:U — (-1-61+6)PxQ,

for some 6§ > 0 and some open subset ! C R which contains the closure of
Q. For example, if @ = DY, then we can require that Q = (—1—6,1+6)%.
The following construction of foliation coordinates makes essential use of the
hypothesis that po has no atoms.
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Lemma 2. There exist constants K, N > 0 so that for € > 0 sufficiently
small, there ezists a finite covering

{"/)a5Va-’DpXQa|a€A}

of M by regular foliation charts (where Q, is an open subset of D? as determined
in the proof below) with foliation chart extensions

{@a:VaﬁDpralaeAe},
satisfying:

1. The po-mass of the transversal T, = ;7 1(0 x Q) is less than ¢;
2. Let xy, denote the characteristic function of the open set Va, then

10 /x~ dj SK-/ld“;
(10) ZMV,,M | Ldin

aGAs

3. For each a € A, the cardinality of the set {b € A | V.0V, # @} is at most
N.

Proof. Choose a covering {(Uy,¢a) | @ € A} of M by regular foliation
charts. For an open convex set W C (—1,1)9, we obtain a new foliation chart
Yaw — DP X W, by restricting ¢, to the inverse image open set Uy w =
P~ 1(DP x W).

Continuity of the measure po implies that there exists a 6(¢) > 0 so that
any Borel subset W C D? with diameter less than §(¢) has po-mass at most €
(and this can be chosen so that it holds for all @ € A). Choose an integer N, > %
so large that any cube of side 2/N, in D? has diamter less than é%el‘ Make a
regular subdivision of the cube DY into closed subcubes with side lengths 2/N,
labeled {D] | 1 < i < N2}. Note that this is not a disjoint subdivision of D?, as
the faces of the cubes overlap. We need to also choose Borel subsets E; C DY so
that the interior of E; equals the interior of DY, and the collection of Borel sets
{E; |1 <1< NJ} is a disjoint decomposition of D4.

For each cube D? in this subdivision, let Q; denote an open convex neigh-
borhood of the Borel subset E;, such that the pp-mass of €); is at most twice the
po-mass of E;, and Qi is contained in the ﬂfl-open neighborhood of D}. Then
choose an open, convex neighborhood 2; of E; whose closure is contained in Q.

Note that the pg-masses of Q; and €; are at most ¢, as these sets have diameter
less than 6(¢).
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Define an open cover of M by the charts {Uy0, | @ € A, 1 < i < N4}
The corresponding foliation charts then satisfy (2.1). Property (2.2) also follows
from this construction, where we take K = 22:16 A i) M X, Gfa, using that the
collection {E; | 1 <1 < N2} is a disjoint decomposition of D? and the po-mass
of €; is at most twice that of E;. Property (2.3) is a standard consequence of the
combinatorics of regular subdivisions of a given fixed covering (cf. [15], Section
5).

We then rename the open sets V, = U, o, where now a € A, for A, = A x
{1,...,NJ}, with corresponding transverse factors £,. The coordinate functions
are similarly renamed ¢, = 9q,;-

Fix a covering of M by regular foliation charts {(Uq,%a)|a € A} as in the
proof of Lemma 2. For ¢ > 0, we also assume fixed a covering {(Vg,%,) | a € Ac}
of M by regular foliation charts, constructed as in Lemma 2. Choose in addition
a collection of smooth, non-negative functions {A, | a € A.} which form a
partition-of-unity for M subordinate to this covering.

We comment, for the reader’s benefit, that in the following we are essen-
tially working with both sets of foliation coverings of M simultaneously, and
use essentially that the second is a refinement of the first. All estimates are
obtained using the initial covering {(Ua,%q) | @ € A}, while the calculation of
the cup-product is made for the refined coverings {(Va,%,) | a € Ac} of M.

Let us next construct closed ¢-forms on M which are dual to the foliation
cycles [Cy;]. For each a € A, and u € Q,, the plague of F in V, through the
point 1;1(0,y) is the set

Pa(y) = vg ' (D” x {y}),

which is relatively open in a leaf of F. The restriction of the unit normal disc
subbundle v, to the plaque P,(y) is denoted by

vi(a,y) = v1|p,(y) = Pa(y)-

For s > 0 sufficiently small, for all a € Ac and y € ,, the scaled exponential
map (8) restricts to a local diffeomorphism into,

(11) exp(a,y,s) = exp, : v1(a,y) — M.

Let ® be a smooth closed ¢g-form on the open manifold vy which represents
the Thom class of 7 : ¥ — M, and has support contained in the subdisc bundle
v1/2 of vectors with length at most § (cf. [1], Section 12).

For a € A., y € Q, and s > 0 fixed as above, let Ao = 7 {Aalp, ()} be
the lift to the local bundle v4(a,s) of the partition function A, restricted to the
plaque P,(y). Then define a ¢g-form ®(e,a,y,s) on M:

(12) ®(e,a,y,3) = exp(a,y, 8)s(Aq - ®).
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Note that the support of 5\,, -® does not intersect the boundary of v (a,y), so
®(¢,a,y,s) is a smooth g-form on M. Moreover, there exists a constant € > s, >

0, independent of y and a, so that for 0 < s < s, the support of ®(¢,a,y,s) is
contained in the open star of V:

star{V}def U Vp.
beA.
VsNVa#0

Remark 5. Observe that there are at most N indices b € A, which appear
in the union in star{V,} by Lemma 2. Therefore, there are at most N? indices
b € A so that ®(e,a,y,s) A ®(e,b,y,s) # 0.

Finally, we average these forms over the parameters a and y with respect to
the measure p; for ¢ = 0,1:

(13) Bici0.9)= [ 00,09 dul)
YEQ,
(14) O(i,e,8) = Z ®(i,e,a,8).
a€A,

The following is standard (cf. [10], Proposition 2.2 or [12], Proposition 1):

Proposition 3. ®(i,e,s) is a closed q-form on M, and its deRham co-
homology class is independent of € and s, being equal to the Poincaré dual class
[wu,] € HI(M,R) of the Ruelle-Sullivan homology class [C,,].

We now come to the main idea of the proof of Proposition 2. We want to
show that ®(0,¢,s) A ®(1,¢,s) has total mass on M estimated by a fixed multiple
of e. We then let € tend to zero to obtain that this closed 2¢-form has cohomology
class zero. If both forms are actually in the dual bundle v* to F, then the wedge
product vanishes identically. In the general case, the product need not vanish,
and our idea is to use a measure-theoretic approach, as suggested by Lemma
1. The key to this approach is to construct the Poincaré dual forms via the
refined covering of M. In this process, we must control the support of the forms
®(i,¢,a,38), so that their overlaps correspond to the overlaps of the adjacent open
sets in the covering. This allows us to make a uniform estimate of the number
of non-vanishing overlaps, at most N2 by Remark 5. However, to obtain this
we require that 0 < s < s, so that the “diffusion parameter” s tends to zero,
and the push-forward forms ®(e,a,y,s) correspondingly diverge in the pointwise
norm on forms. It is therefore critical to obtain an estimate on the mass of the
wedge product which is independent of the parameter s. This is the content of
the next result, which is the technical basis for the proof of Proposition 2, and
hence of Theorem 1.
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Proposition 4. Let ¢ be a given closed (p — q)-form on M. Then there
exists a constant K () so that for every ¢ > 0 sufficiently small, for alla, b € A,
and 0 < s < s, there is the uniform estimate in y, y':

(15) /M|<1><e,a,y,s> AB(e,by',8) M| < K(0){volr {Pa(y)} ).

Corollary 4. Let ¢ be a closed (p — q)-form on M. Then for ¢ sufficiently
small, and with notation as above,

(16) / |®(0,¢,5) A®(L,g,8)| < e-K~K(<p)N2-/ 1dj;.
M M
Hence, the cohomology pairing, which is independent of €, satisfies
/ ®(0,¢,8) AN®(1,e,8) Ap = 0.
M

Proof of Corollary 4. Let ¢ > 0 be sufficiently small so that Proposition 4
applies. Then make a calculation of (16), using the definitions and the estimates
of Lemma 2 and (15):

/ I@(O,e,se) A®(1,e,8:) A <p|
M

IA

S [ [ [eeans AR ) ] duolo) du)
a,be A, YED? Jy €D JVNV,

IN

> ke ., dialw) / AR i)
y q y’ q

a,bGAe
star{V, }Nstar{V;}#0

<e-K(p)N?- Z/ X, 41
beA. ' M

<e-K(p)KN?. / 1djy. m]
M

It remains to prove Proposition 4. Fix ¢ > 0, a € Ac and y € Q,. The
integrand in (15) is non-zero only when the supports of the forms ®(e,a,y,s)
and ®(¢,b,y’,s) overlap, so we can pull the integral back to the unit disc bundle

™ :vi(a,y) = Pa(y).
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Introduce a change-of-coordinates transformation, mapping an open subdomain
of v1(a,y) to an open subdomain of v, (b,y’):

(17) Eua(y,y',8) = exp(b,y’,5) "' oexp(a,y,s).
Also define

q)ba(y’yl73) = Eba(yaylas)*(;\b . Q)),

v(a,y,8) = exp(a’ya 8)* (),

(18)

and then observe that

(19) / |©(c,a,5,5) AB(e,b,5/,5) A g
M
- [ 13a® A Boa (4,4, 5) A 0(a,,5)].
Vl(a)y)

For ¢ fixed, the forms ¢(a,y,s) have uniform bounds independent of the
parameters. Thus, to obtain a uniform estimate of the integral (19), it suffices
to obtain pointwise estimates of the forms ®,(y,%’,s) independent of ¢, s, y
and y'. This will follow, in turn from a uniform estimate for the derivatives
of the coordinate change Fp,(y,y’,s). We next introduce natural, well-adapted
coordinates for the bundle v; and calculate the derivatives of Ep,(y,y’,s) with
respect to them.

For each a € A, the restricted bundle Vlﬁa is trivial, as U, is contractible.
Choose a C!-orthonormal framing {el,...,ed} of v over U, which is parallel
along the plaques P,(y) in U,. The closure of U, is compact and contained in

Ija, hence the restriction of this framing to U, has uniformly bounded covariant
derivative V(el). For ¢ > 0 given, the refinement {(V,,%,) | a € A.} of the
foliation cover {(Uqa,¢a) | @ € A} is formed from partitions of the open sets
U, in the transverse direction; we restrict the framing of v to the open subsets
{V. | a € A.} to obtain framings {el,...,ed} of the restricted bundles v (a,y)
which have uniformly bounded covariant derivatives.

Let z, € DP denote the coordinates on the plaque P,(y) induced by the
chart 1,. Let B? denote the unit ball in R9, with coordinate vector v € B9. Then
the orthonormal framing {el(z),...,ed(z)} of the fiber v(z) over 1, (z) € Po(y)
gives an identification of B? with the unit disc fiber »;(z). We combine these to
obtain “bundle coordinates” (z,v) on v1(a,y). When there is more than one set
of coordinates under consideration, we use the notation (z4,vs), (Zb,s), €tc., to
avoid confusion.
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Assume that (a,y) and (b,y’) are such that the supports of the forms
®(¢e,a,y,s) and &(e,b,y’,s) overlap. For s sufficiently small, we can assume that
the plaque Py(y’) intersects the coordinate chart (Va,d;a). Observe that this re-
striction on s depends only on the geometry of the cover {(Uy,%a) | o € A}
and its extension, so we will assume in the following that 0 < s < s¢ implies
that this condition holds. Let 2’ € fla denote the transverse coordinate of the
plaque P = b(y') in the coordinate chart (V,,1,). Then by the compactness of
M and the regularity of the initial foliation cover, there exists a constant K’ > 0,
depending only on the initial choices of Riemannian metric on TM and foliation

charts {(Ua,%q) | @ € A}, such that the Euclidean distance from y to 2’ is at
most sK' < eK'.
Introduce matrix notation for the derivatives of Ep,(y,9’,s) with respect to

the bundle coordinates (x4,v,) on the domain v;(a,y), and (zp,vs) on the range
Vl(b’ y,):

DEypo(y,y',8)  [A(8,%a,va) B(8,%4,v4)
/ — 2 7%a\d»d »7) _ ylaysVa »asVal |
(20)  Joa(y¥'%arv0) = D(z,v) C(8,Za,ve) D(8,Za,va)

The foliation chart (V,,1,) induces coordinates on V, denoted by (Z,§) =
(Za,¥a), for £ € DP and §j € Q,. Given b € A, and y' € Qp, we give v1(b,y’) the

bundle coordinates (xp,vp). We then have the “exponential” change of coordi-
nates,

(21) (Za,0a) = exp(b,y’,s)(zs, v).

Introduce the derivative matrix for this change of coordinates:

Dexp(b,y’,s) MZ(s,zp,v5) MZE(s,zp,vp)
22 M, Y/, ,Tp, i 2 ek A A z \9bs v \8)Lb, )
(22) o(Y", 8,20, ) D(zp,vp) MY (s,zo,v) MY (s,20,05)

Lemma 3.

1. There exist matrices MZ(zp,v5) and MJ(xp,vp) which are continuous in
(zb,vp) so that

(23) Mf(s,a:b,vb) =s- Mf(xb,vb)
(24) MY (s,xp,vp) = 8+ MI(zp,0p);

2. There is a uniform estimate on the matriz norm

(25) 1M (s, 25, v)ll = O(slup)).
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Proof. The first part is elementary, as M2 (s, zp,vp) and MJ(s,zs,vs) are the
partial derivatives of exp(b,y’,s) = exp, |u, (5,y') With respect to the coordinate
vy, and exp, is simply the rescaling of the map exp,; by the factor s in the
v-coordinate. Thus, we can take for MZ(zp,vp) and MJ(zp,vp) the matrix of
partials of exp, with respect to v, evaluated at the point (zp,svp).

The estimate on the norm || MJZ(s,zs,vp)|| is more geometric in origin. The
framing {e},...,el} is parallel along the plaque Py(y’), which implies that the
matrix of partial derivatives of the §,-coordinates of exp, |,,(s,) With respect
to zp vanishes identically for vy = 0. Let pg : Vo — (), denote the projection
onto the second coordinate. The map exp is smooth on TM, and the coordinates
(zp,vp) are C*, so there is a uniform estimate

ng o exp, |V1 (b,y")
Daxy,

(26) (@b, v8) || = O(|vy])-

The maps exp, are obtained by precomposing with the s-scaling map in the
vp-coordinate, which replaces (xp,vp) With (zp,s - vp), so the chain rule yields a
uniform estimate

~ ’
(27) I Dpj oexp(b,y,s)

Duxy,

(zo,v8)|| = O(|s - vs)

which is equivalent to (25). |

We can now finish the proof of Proposition 4, which has been reduced to
obtaining a uniform estimate on the derivative matrix of

(28) Eba(yayl,s) = exp(b, y’,S)(.’I}b,’Ub)—l ° exP(a’y’s)(xmva)'

In order for the integrand of (15) to be non-zero, we must have that y
and 2’ be at most eK’ apart in the transversal space (—1—§,1+ 6)7 for the
chart J)a, where a = (a,i). The exponential map exp is a quasi-isometry in
the normal parameter v when restricted to the unit disc bundle vq, so there
exists a second constant, K", so that if the integrand (15) is non-zero, then
|s-vg] < eK”. Interchanging the roles of y and y’' gives the corresponding
estimate |s-vp| < eK".

The derivative matrix of (28) has the matrix factorization

Y

A cofactor calculation of the inverse matrix in (29) and the matrix esti-
mates (23), (24) and (25), yields that the product in (29) is uniformly bounded
by a factor proportional to |s-v,| and |s-vs|. Then by the previous remarks,
the estimate on the distance from y to 2’ forces the estimates |s-v,| < eK”
and |s-vp| < eK”, from which we get a uniform estimate on the product (29),
independent of s.

| - o
(8,%a,va) My MY Mg MY (8,%a,va)

(s,zb,vp)
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