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Some basic examples

Many talks on with “foliations” in the title start with this example,

the 2-torus foliated by lines of irrational slope:

Never trust a talk which starts with this example! It is just too simple.
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Some basic examples

Although, the example can be salvaged, by considering that the “same
example” might have leaves that look like this:

The suspension construction an its generalizations are very useful for
producing examples.
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Some basic examples, 2

More interesting are talks which discuss more irregular flows such as this:

Every orbit limits into the circle, so at least things have a direction.

Steven Hurder (UIC) Dynamics of Foliations May 3, 2010 4 / 19



Some basic examples, 2

More interesting are talks which discuss more irregular flows such as this:

Every orbit limits into the circle, so at least things have a direction.

Steven Hurder (UIC) Dynamics of Foliations May 3, 2010 4 / 19



Some basic examples, 3

Earnest foliation talks start with this example, immortalized by Reeb:

Now begins the real questions – what does it mean to discuss “foliation
dynamics”? What is “dynamic” about this example?
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Foliation dynamics

• Study the asymptotic properties of leaves of F -

What is the topological shape of minimal sets?

Invariant measures: can you quantify their rates of recurrence?

• Directions of “stability” and “instability” of leaves -

Exponents: are there directions of exponential divergence?

Stable manifolds: dynamically defined transverse invariant manifolds?

• Quantifying chaos -

Define a measure of transverse chaos – foliation entropy

Estimate the entropy using linear approximations

• Shape of minimal sets -

Hyperbolic exotic minimal sets

Distal exceptional minimal sets

Steven Hurder (UIC) Dynamics of Foliations May 3, 2010 6 / 19



Foliation dynamics

• Study the asymptotic properties of leaves of F -

What is the topological shape of minimal sets?

Invariant measures: can you quantify their rates of recurrence?

• Directions of “stability” and “instability” of leaves -

Exponents: are there directions of exponential divergence?

Stable manifolds: dynamically defined transverse invariant manifolds?

• Quantifying chaos -

Define a measure of transverse chaos – foliation entropy

Estimate the entropy using linear approximations

• Shape of minimal sets -

Hyperbolic exotic minimal sets

Distal exceptional minimal sets

Steven Hurder (UIC) Dynamics of Foliations May 3, 2010 6 / 19



Foliation dynamics

• Study the asymptotic properties of leaves of F -

What is the topological shape of minimal sets?

Invariant measures: can you quantify their rates of recurrence?

• Directions of “stability” and “instability” of leaves -

Exponents: are there directions of exponential divergence?

Stable manifolds: dynamically defined transverse invariant manifolds?

• Quantifying chaos -

Define a measure of transverse chaos – foliation entropy

Estimate the entropy using linear approximations

• Shape of minimal sets -

Hyperbolic exotic minimal sets

Distal exceptional minimal sets

Steven Hurder (UIC) Dynamics of Foliations May 3, 2010 6 / 19



Foliation dynamics

• Study the asymptotic properties of leaves of F -

What is the topological shape of minimal sets?

Invariant measures: can you quantify their rates of recurrence?

• Directions of “stability” and “instability” of leaves -

Exponents: are there directions of exponential divergence?

Stable manifolds: dynamically defined transverse invariant manifolds?

• Quantifying chaos -

Define a measure of transverse chaos – foliation entropy

Estimate the entropy using linear approximations

• Shape of minimal sets -

Hyperbolic exotic minimal sets

Distal exceptional minimal sets

Steven Hurder (UIC) Dynamics of Foliations May 3, 2010 6 / 19



First definitions

M is a compact Riemannian manifold without boundary.

F is a codimension q-foliation, transversally C r for r ∈ [1,∞).

Transition functions for the foliation charts ϕi : Ui → [−1, 1]n ×Ti are C∞

leafwise, and vary C r with the transverse parameter:

Steven Hurder (UIC) Dynamics of Foliations May 3, 2010 7 / 19



Holonomy - flows

Recall for a flow ϕt : M → M the orbits define 1-dimensional leaves of F .

Choose a cross-section N ⊂ M which is transversal to the orbits, and
intersects each orbit (so N need not be connected) then for each x ∈ T
there is some least τx > 0 so that ϕτx (x) ∈ N – the return time for x .

The induced map f (x) = ϕτx (x) is a Borel map f : N → N
the holonomy of the flow.
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Holonomy - foliations

Let Lw be leaf of F containing w – no such concept as “future” or “past”.

Rather, choose z ∈ Lx and smooth path τw ,z : [0, 1]→ Lw .

Cover path τw ,z by foliation charts and slide open subset Uw of transverse
disk Sw along path to open subset Wz of transverse disk Sz
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Holonomy pseudogroup

Standardize above by choosing finite covering of M by foliation charts,
with transversal sections T = T1 ∪ · · · Tk ⊂ M.

The holonomy of F defines pseudogroup GF on T which is compactly
generated in sense of Haefliger.

Given w ∈ T , z ∈ Lw ∩ T and path τw ,z : [0, 1]→ Lw from w to z , we
obtain hτw,z : Uw →Wz where now

*) hτw,z depends on the leafwise homotopy class of the path

*) maximal sizes of the domain Uw and range Wz depends on τw ,z

*) {hτw,z : Uw →Wz} generates GF .

Proposition: We can assume τw ,z is a leafwise geodesic path.

Proof: Each leaf Lw is complete for the induced metric.
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Transverse differentials

Let ϕ : R×M → M be a smooth non-singular flow for vector field ~X .

Defines foliation F .

For w = ϕt(w), the Jacobian matrix Dϕt : Tw → Tz M.

Group Law ϕs ◦ ϕt = ϕs+t =⇒ Dϕs(~Xw ) = ~Xz (. . . boring!)

Normal bundle to flow Q = TM/〈~X 〉 = TM/TF ⊂ TF .

Riemannian metric on TM induces metrics on Qw for all w ∈ M.

Measure for norms of maps Dϕt : Qw −→ Qz .
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Un poquito de Pesin Theory

Definition: w ∈ M is hyperbolic point of flow if

eF (w) ≡ lim
T→∞

sup
s≥T

{1

s
· log{‖(Dϕt : Qw → Qz )±‖} | − s ≤ t ≤ s} > 0

Lemma: Set of hyperbolic points H(ϕ) = {w ∈ M | eF (w) > 0} is
flow-invariant.

Pesin Theory of C 2-flows studies properties of the set of hyperbolic points.

Proposition: Closure H(ϕ) ⊂ M contains an invariant ergodic probability
measure µ∗ for ϕ, for which there exists λ > 0 such that for µ∗-a.e. w ,

eF (w) = lim
T→∞

{ 1

T
· log{‖DϕT : Qw → Qz‖} = λ

Proof: Just calculus! (plus usual subadditive tricks)
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Foliation geodesic flow

Let w ∈ M and consider Lw as complete Riemannian manifold.

For ~v ∈ TwF = Tw Lw with ‖~v‖w = 1, there is unique geodesic τw ,~v (t)
starting at w with τ ′w ,~v (0) = ~v Define

ϕw ,~v : R→ M , ϕw ,~v (w) = τw ,~v (t)

Let M̂ = T 1F denote the unit tangent bundle to the leaves, then we
obtain the foliation geodesic flow

ϕFt : R× M̂ → M̂

Remark: ϕFt preserves the leaves of the foliation F̂ on M̂ whose leaves
are the unit tangent bundles to leaves of F .

=⇒ DϕFt preserves the normal bundle Q̂ → M̂ for F̂ .
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Foliation exponents

Definitions:

(H) ŵ ∈ M̂ is hyperbolic if

eF (ŵ) ≡ lim
T→∞

sup
s≥T

{1

s
· log{‖(DϕFt : Q̂ŵ → Qẑ )±‖} | − s ≤ t ≤ s} > 0

(E) ŵ ∈ M̂ is elliptic if eF (ŵ) = 0, and there exists κ(ŵ) such that

{‖(DϕFt : Q̂ŵ → Qẑ )±‖ ≤ κ(ŵ) for all t ∈ R

(P) ŵ ∈ M̂ is parabolic if eF (ŵ) = 0, and ŵ is not elliptic.
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Dynamical decomposition of foliations

Theorem: Let F be a C 1-foliation of a compact Riemannian manifold M.
Then there exists a decomposition of M into F-saturated Borel subsets

M = MH ∪ MP ∪ ME

where the derivative for the geodesic flow of F satisfies:

• DϕFt is “transversally hyperbolic” for Lw ⊂ MH

• DϕFt is bounded (in time) for Lw ⊂ ME

• DϕFt has subexponential growth (in time), but is not bounded, for
Lw ⊂ MP
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Transversally hyperbolic measures

Definition: An invariant probability measure µ∗ for the foliation geodesic
flow on M̂ is said to be transversally hyperbolic if eF (ŵ) = λ > 0 for
µ∗-a.e. ŵ .

Theorem: Let F be a C 1foliation of a compact manifold. If MH 6= ∅,
then the foliation geodesic flow has at least one transversally hyperbolic
ergodic measure.

Proof: The proof is technical, but is actually just calculus applied to the
foliation pseudogroup.

Steven Hurder (UIC) Dynamics of Foliations May 3, 2010 16 / 19



Transversally hyperbolic measures

Definition: An invariant probability measure µ∗ for the foliation geodesic
flow on M̂ is said to be transversally hyperbolic if eF (ŵ) = λ > 0 for
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Standard examples, revisited: 1

For the linear foliation, every point is elliptic (it is Riemannian!)

However, if F is a C 1-foliation which is topologically semi-conjugate to a
linear foliation, so is a generalized Denjoy example, then M = MP !
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Standard examples, revisited: 2

The case of the Reeb foliation on the solid torus is more interesting:

Pick w ∈ M and a direction, ~v ∈ Tw Lw , then follow the geodesic τw ,~w (t).
It is asymptotic to the boundary torus, so defines a limiting Schwartzman
cycle on the torus for some flow. Thus, it limits on either a circle, or a
lamination. This will be a hyperbolic measure if the holonomy of the
compact leaf is hyperbolic. The exponent depends on the direction!
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