Lecture 1: Derivatives

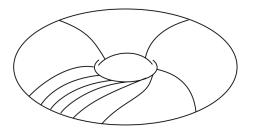
Steven Hurder

University of Illinois at Chicago www.math.uic.edu/ \sim hurder/talks/

1 / 19

Some basic examples

Many talks on with "foliations" in the title start with this example, the 2-torus foliated by lines of irrational slope:

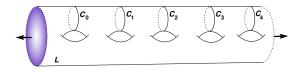


Never trust a talk which starts with this example! It is just too simple.

2 / 19

Some basic examples

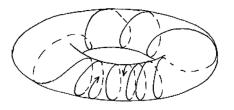
Although, the example can be salvaged, by considering that the "same example" might have leaves that look like this:



The suspension construction an its generalizations are very useful for producing examples.

Some basic examples, 2

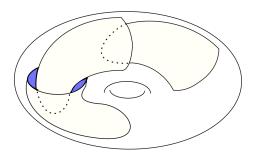
More interesting are talks which discuss more irregular flows such as this:



Every orbit limits into the circle, so at least things have a direction.

Some basic examples, 3

Earnest foliation talks start with this example, immortalized by Reeb:



Now begins the real questions – what does it mean to discuss "foliation dynamics"? What is "dynamic" about this example?

5 / 19

Foliation dynamics

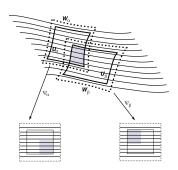
- Study the asymptotic properties of leaves of F What is the topological shape of minimal sets?
 Invariant measures: can you quantify their rates of recurrence?
- Directions of "stability" and "instability" of leaves Exponents: are there directions of exponential divergence?
 Stable manifolds: dynamically defined transverse invariant manifolds?
- Quantifying chaos Define a measure of transverse chaos foliation entropy
 Estimate the entropy using linear approximations
- Shape of minimal sets -Hyperbolic exotic minimal sets Distal exceptional minimal sets

First definitions

M is a compact Riemannian manifold without boundary.

 \mathcal{F} is a codimension q-foliation, transversally C^r for $r \in [1, \infty)$.

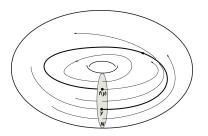
Transition functions for the foliation charts $\varphi_i \colon U_i \to [-1,1]^n \times T_i$ are C^{∞} leafwise, and vary C^r with the transverse parameter:



Holonomy - flows

Recall for a flow $\varphi_t \colon M \to M$ the orbits define 1-dimensional leaves of \mathcal{F} .

Choose a cross-section $\mathcal{N}\subset M$ which is transversal to the orbits, and intersects each orbit (so \mathcal{N} need not be connected) then for each $x\in\mathcal{T}$ there is some least $\tau_x>0$ so that $\varphi_{\tau_x}(x)\in\mathcal{N}$ – the return time for x.



The induced map $f(x) = \varphi_{\tau_x}(x)$ is a Borel map $f: \mathcal{N} \to \mathcal{N}$ the holonomy of the flow.

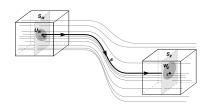
∢ロト ∢団ト ∢速ト ∢速ト 達 り९℃

Holonomy - foliations

Let L_w be leaf of $\mathcal F$ containing w – no such concept as "future" or "past".

Rather, choose $z \in L_x$ and smooth path $\tau_{w,z} \colon [0,1] \to L_w$.

Cover path $\tau_{w,z}$ by foliation charts and slide open subset U_w of transverse disk S_w along path to open subset W_z of transverse disk S_z



Holonomy pseudogroup

Standardize above by choosing finite covering of M by foliation charts, with transversal sections $\mathcal{T} = \mathcal{T}_1 \cup \cdots \mathcal{T}_k \subset M$.

The holonomy of \mathcal{F} defines pseudogroup $\mathcal{G}_{\mathcal{F}}$ on \mathcal{T} which is compactly generated in sense of Haefliger.

Given $w \in \mathcal{T}$, $z \in L_w \cap \mathcal{T}$ and path $\tau_{w,z} : [0,1] \to L_w$ from w to z, we obtain h_{τ_w} : $U_w \to W_z$ where now

- *) h_{Tw} depends on the leafwise homotopy class of the path
- *) maximal sizes of the domain U_w and range W_z depends on $\tau_{w,z}$
- *) $\{h_{\tau_w}: U_w \to W_z\}$ generates $\mathcal{G}_{\mathcal{F}}$.

Proposition: We can assume $\tau_{w,z}$ is a leafwise geodesic path.

Proof: Each leaf L_w is complete for the induced metric.

Transverse differentials

Let $\varphi \colon \mathbb{R} \times M \to M$ be a smooth non-singular flow for vector field \vec{X} .

Defines foliation \mathcal{F} .

For $w = \varphi_t(w)$, the Jacobian matrix $D\varphi_t \colon T_w \to T_z M$.

Group Law
$$\varphi_s \circ \varphi_t = \varphi_{s+t} \Longrightarrow D\varphi_s(\vec{X}_w) = \vec{X}_z$$

(...boring!)

Normal bundle to flow $Q=TM/\langle \vec{X} \rangle = TM/T\mathcal{F} \subset T\mathcal{F}.$

Riemannian metric on TM induces metrics on Q_w for all $w \in M$.

Measure for norms of maps $D\varphi_t \colon Q_w \longrightarrow Q_z$.

Un poquito de Pesin Theory

Definition: $w \in M$ is hyperbolic point of flow if

$$e_{\mathcal{F}}(w) \equiv \lim_{T \to \infty} \sup_{s > T} \left\{ \frac{1}{s} \cdot \log \{ \| (D\varphi_t \colon Q_w \to Q_z)^{\pm} \| \} \mid -s \leq t \leq s \right\} > 0$$

Lemma: Set of hyperbolic points $\mathcal{H}(\varphi) = \{ w \in M \mid e_{\mathcal{F}}(w) > 0 \}$ is flow-invariant.

Pesin Theory of C^2 -flows studies properties of the set of hyperbolic points.

Proposition: Closure $\mathcal{H}(\varphi) \subset M$ contains an invariant ergodic probability measure μ_* for φ , for which there exists $\lambda > 0$ such that for μ_* -a.e. w,

$$e_{\mathcal{F}}(w) = \lim_{T \to \infty} \{ \frac{1}{T} \cdot \log \{ \|D\varphi_{T} \colon Q_{w} \to Q_{z} \| \} = \lambda$$

Proof: Just calculus! (plus usual subadditive tricks)

Foliation geodesic flow

Let $w \in M$ and consider L_w as complete Riemannian manifold.

For $\vec{v} \in T_w \mathcal{F} = T_w L_w$ with $\|\vec{v}\|_w = 1$, there is unique geodesic $\tau_{w,\vec{v}}(t)$ starting at w with $\tau'_{w,\vec{v}}(0) = \vec{v}$ Define

$$\varphi_{w,\vec{v}} \colon \mathbb{R} \to M$$
 , $\varphi_{w,\vec{v}}(w) = \tau_{w,\vec{v}}(t)$

Let $\widehat{M} = T^1 \mathcal{F}$ denote the unit tangent bundle to the leaves, then we obtain the foliation geodesic flow

$$\varphi_t^{\mathcal{F}} \colon \mathbb{R} \times \widehat{M} \to \widehat{M}$$

Remark: $\varphi_t^{\mathcal{F}}$ preserves the leaves of the foliation $\widehat{\mathcal{F}}$ on \widehat{M} whose leaves are the unit tangent bundles to leaves of \mathcal{F} .

 $\Longrightarrow D\varphi_{+}^{\mathcal{F}}$ preserves the normal bundle $\widehat{Q} \to \widehat{M}$ for $\widehat{\mathcal{F}}$.

Foliation exponents

Definitions:

(H) $\widehat{w} \in \widehat{M}$ is hyperbolic if

$$e_{\mathcal{F}}\big(\widehat{w}\big) \equiv \lim_{T \to \infty} \sup_{s \geq T} \ \{\frac{1}{s} \cdot \log\{\|(D\varphi_t^{\mathcal{F}} \colon \widehat{Q}_{\widehat{w}} \to Q_{\widehat{z}})^{\pm}\|\} \mid -s \leq t \leq s\} \ > \ 0$$

(E) $\widehat{w} \in \widehat{M}$ is *elliptic* if $e_{\mathcal{F}}(\widehat{w}) = 0$, and there exists $\kappa(\widehat{w})$ such that

$$\{\|(D\varphi_t^{\mathcal{F}}\colon \widehat{Q}_{\widehat{w}}\to Q_{\widehat{z}})^{\pm}\|\leq \kappa(\widehat{w}) \text{ for all } t\in\mathbb{R}$$

(P) $\widehat{w} \in \widehat{M}$ is parabolic if $e_{\mathcal{F}}(\widehat{w}) = 0$, and \widehat{w} is not elliptic.

Dynamical decomposition of foliations

Theorem: Let \mathcal{F} be a C^1 -foliation of a compact Riemannian manifold M. Then there exists a decomposition of M into \mathcal{F} -saturated Borel subsets

$$M = M_{\mathcal{H}} \cup M_{\mathcal{P}} \cup M_{\mathcal{E}}$$

where the derivative for the geodesic flow of \mathcal{F} satisfies:

- $D\varphi_{\star}^{\mathcal{F}}$ is "transversally hyperbolic" for $L_{w} \subset M_{\mathcal{H}}$
- $D\varphi_{+}^{\mathcal{F}}$ is bounded (in time) for $L_{W} \subset M_{\mathcal{E}}$
- $D\varphi_{\star}^{\mathcal{F}}$ has subexponential growth (in time), but is not bounded, for $L_{w} \subset M_{\mathcal{D}}$

Transversally hyperbolic measures

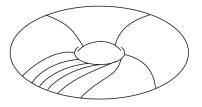
Definition: An invariant probability measure μ_* for the foliation geodesic flow on \widehat{M} is said to be transversally hyperbolic if $e_{\mathcal{F}}(\widehat{w}) = \lambda > 0$ for μ_* -a.e. \widehat{w} .

Theorem: Let \mathcal{F} be a C^1 foliation of a compact manifold. If $M_{\mathcal{H}} \neq \emptyset$, then the foliation geodesic flow has at least one transversally hyperbolic ergodic measure.

Proof: The proof is technical, but is actually just calculus applied to the foliation pseudogroup.

Standard examples, revisited: 1

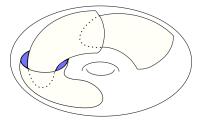
For the linear foliation, every point is elliptic (it is Riemannian!)



However, if \mathcal{F} is a C^1 -foliation which is topologically semi-conjugate to a linear foliation, so is a generalized Denjoy example, then $M=M_{\mathcal{P}}!$

Standard examples, revisited: 2

The case of the Reeb foliation on the solid torus is more interesting:



Pick $w \in M$ and a direction, $\vec{v} \in T_w L_w$, then follow the geodesic $\tau_{w,\vec{w}}(t)$. It is asymptotic to the boundary torus, so defines a limiting Schwartzman cycle on the torus for some flow. Thus, it limits on either a circle, or a lamination. This will be a hyperbolic measure if the holonomy of the compact leaf is hyperbolic. The exponent depends on the direction!

References

- S. Hurder, *Ergodic theory of foliations and a theorem of Sacksteder*, in **Dynamical Systems: Proceedings, University of Maryland 1986-87**. Lect. Notes in Math. Vol. 1342, pages 291–328, 1988.
- P. Walczak, *Dynamics of the geodesic flow of a foliation*, **Ergodic Theory Dynamical Systems**, 8:637–650, 1988.
- L. Barreira and Ya.B. Pesin, Lyapunov exponents and smooth ergodic theory, University Lecture Series, Vol. 23, AMS, 2002.