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Review

In first lecture, we introduced the “Derivative cocycle”

D : GF → GL(n,R) , Dw (hτw,z ) = Dhτw,z |w

Maximal exponent along orbits of the geodesic flow gives a decomposition

M = MH ∪ MP ∪ ME

where the normal derivative for the geodesic flow of F satisfies:

• DϕFt is “transversally hyperbolic” on Q for Lw ⊂ MH

• DϕFt is bounded (in time) on Q for Lw ⊂ ME

• DϕFt has subexponential growth on Q (in time)

How do you tell whether MH is non-empty? Look at more examples!
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Some curious examples

In our first lecture, we started with some “standard” examples.

For this talk, we will start more curious examples.

First, consider the following three examples of complete 2 manifolds, all of
which are realized as leaves of foliations of 3-manifolds by “standard
constructions”.

From the examples, can you guess the dynamics?
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3 · ω

This is called the “Infinite Jungle Gym, appropriately enough.

It is a leaf of a circle bundle over a surface of genus three, where the
holonomy consists of three commuting rotations of the circle.
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ω2

This doesn’t have a name, but here is how you get it:
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ω2

As always, the picture credits go to Lawrence Conlon, circa 1992.

Steven Hurder (UIC) Dynamics of Foliations May 4, 2010 6 / 23



ℵ1

This manifold is said to be “tree-like”.
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The Hirsch Construction (circa 1974)

It is the last example that we want to consider more carefully.

Step 1: Choose an analytic embedding of S1 in the solid torus D2 × S1 so
that its image is twice a generator of the fundamental group of the solid
torus. Remove an open tubular neighborhood of the embedded S1.
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The Hirsch Construction, step 2

Step 2: What remains is a three dimensional manifold N1 whose boundary
is two disjoint copies of T2. D2 × S1 fibers over S1 with fibers the 2-disc.
This fibration – restricted to N1 – foliates N1 with leaves consisting of
2-disks with two open subdisks removed.

Identify the two components of the boundary of N1 by a diffeomorphism
which covers the map z 7→ z2 of S1 to obtain the manifold N. Endow N
with a Riemannian metric; then the punctured 2-disks foliating N1 can
now be viewed as pairs of pants.
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The Hirsch Construction, last step

Step 3: The foliation of N1 is transverse to the boundary, so the punctured
2-disks assemble to yield a foliation of foliation F on N, where the leaves
without holonomy (corresponding to irrational points for the chosen
doubling map of S1) are infinitely branching surfaces, decomposable into
pairs-of-pants which correspond to the punctured disks in N1.

The curious point is that this works for any covering map f : T2 → T2

homotopic to the doubling map along a meridian.

In particular, as Hirsch remarked in his paper, the proper choice of such a
map results in a codimension-one, real analytic foliation, such that all
leaves accumulate on an exceptional minimal set.

Steven Hurder (UIC) Dynamics of Foliations May 4, 2010 10 / 23



The Hirsch Construction, last step

Step 3: The foliation of N1 is transverse to the boundary, so the punctured
2-disks assemble to yield a foliation of foliation F on N, where the leaves
without holonomy (corresponding to irrational points for the chosen
doubling map of S1) are infinitely branching surfaces, decomposable into
pairs-of-pants which correspond to the punctured disks in N1.

The curious point is that this works for any covering map f : T2 → T2

homotopic to the doubling map along a meridian.

In particular, as Hirsch remarked in his paper, the proper choice of such a
map results in a codimension-one, real analytic foliation, such that all
leaves accumulate on an exceptional minimal set.

Steven Hurder (UIC) Dynamics of Foliations May 4, 2010 10 / 23



Instability in the geodesic flow

The Hirsch foliation always has a leaf as follows:

Consider the behavior of the geodesic flow, starting at a “bottom point”
w ∈ Lw . For a each radius R � 0, the terminating points of the geodesic
rays of length at most R will “jump” between µR ends, for some µ > 1.

We want to count this µ, generically!
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Orbits

Recall the holonomy pseudogroup GF constructed in Lecture 1, modeled
on a complete transversal T = T1 ∪ · · · ∪ Tk associated to a finite
covering of M by foliations charts. Given w ∈ T and z ∈ Lw ∩ T and a
leafwise path τw ,z joining them, we obtain an element hτw,z ∈ GF .

Definition: The orbit of w ∈ T under GF is

O(w) = Lw ∩ T = {z ∈ T | g(w) = z , g ∈ GF ,w ∈ Dom(g)}

The second description allows us to decompose the orbit into “periods”.
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Lengths of orbits

For g ∈ GF we say that ‖g‖ ≤ d , if g can be expressed as a product of at
most d maps obtained as the holonomy of adjacent open charts:

g = hi0,i1 ◦ hi1,i2 ◦ · · · ◦ hid−1,id |Dom(g)

where Ui`−1
∩ Ui` 6= ∅ for all 1 ≤ ` ≤ k .

The groupoid norm ‖γw‖ = d , if d is the least such integer such that
there exists g ∈ GF with germ γw = [g ]w and [g ]w ≤ d . The norm of the
identity is always 0.

Define the “orbit of radius d in the groupoid word norm” to be:

Od (w) = {z ∈ T | g(w) = z , g ∈ GF ,w ∈ Dom(g), ‖[g ]w‖ ≤ d}
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Growth types of orbits

Definition: The growth function of an orbit is Gr(w , d) = #Od (w).

Of course, this depends upon almost all choices! However, its “growth type
function” is an independent of all choices, as observed by Plante in 1975.

Definition: w ∈ T has exponential orbit growth type if Gr(w , d) behaves
like an exponential function of d ; polynomial growth type if it behaves like
a polynomial function of d ; and subexponential if dominated by every
exponential function of d .
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Growth of groups

Growth functions for finitely generated groups are a basic object of study
in geometric group theory in recent years.

Let Γ = 〈γ0 = 1, γ1, . . . , γk〉. Then γ ∈ Γ has norm

‖γ‖ ≤ d ⇐⇒ γ = γ±i1 · · · γ
±
id

Γd ≡ {γ ∈ Γ | ‖γ‖ ≤ d}

The growth function Gr(Γ, d) = #Γd depends upon the choice of basis for
Γ, but its growth type does not. Perhaps most famous theorem of Gromov:

Theorem: Suppose Γ has polynomial growth type for some generating set.
Then there exists subgroup of finite index Γ′ ⊂ Γ such that Γ′ is a
nilpotent group.
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Growth of leaves

The homogeneity of groups makes their growth functions “amenable” to
study - the growth rate is the same for balls in the word metric about any
point γ0 ∈ Γ.

For foliation pseudogroups, this is one of the basic open questions:

Problem: How does the class of the function w 7→ Gr(w , d) behave, as a
Borel function of w ∈ T ?

Examples of Ana Rechtman show that even for smooth foliations of
compact manifolds, this function is not uniform as function of w ∈ T .

Very surprising!
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Uniform growth of leaves

One of the first “classifying” results about the measurable orbit
equivalence type of foliations:

Theorem:[Series 1977] If the growth type of all functions Gr(w , d) are
polynomial, then the equivalence relation on T defined by GF is
hyperfinite.

A hyperfinite foliation is the measurable limit of Borel equivalence
relations with finite orbits.

Theorem: [Dye 1957] A foliation defined by a non-singular flow is always
hyperfinite.

Theorem: [Connes-Feldman-Weiss 1982] If F is defined by the suspension
of the action of a finitely generated group Γ, where Γ is amenable, then
the equivalence relation on T it defines is hyperfinite.
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Topological classification

Problem: Is there a special subclass of minimal hyperfinite foliations
which can be topologically classified?

Maybe...

In the late 1970’s and early 1980’s, Cantwell & Conlon, Hector, Nishimori,
Tsuchiya in particular studied the case of codimension one foliations.

The result was the “theory of levels” for foliations of class C 2, a form of
generalized Poincaré-Bendixson Theory for leaves of foliations.

For real analytic foliations, the results are very satisfying, regarding theory
for foliations with all leaves of polynomial growth. Closest approximation
to a generalized form of Gromov’s Theorem above.

But in general? There is no theory for C 1-foliations of codimension-one,
for example. Gilbert Hector was too busy making up nasty examples...
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generalized Poincaré-Bendixson Theory for leaves of foliations.

For real analytic foliations, the results are very satisfying, regarding theory
for foliations with all leaves of polynomial growth. Closest approximation
to a generalized form of Gromov’s Theorem above.

But in general? There is no theory for C 1-foliations of codimension-one,
for example. Gilbert Hector was too busy making up nasty examples...

Steven Hurder (UIC) Dynamics of Foliations May 4, 2010 18 / 23



Topological classification

Problem: Is there a special subclass of minimal hyperfinite foliations
which can be topologically classified? Maybe...

In the late 1970’s and early 1980’s, Cantwell & Conlon, Hector, Nishimori,
Tsuchiya in particular studied the case of codimension one foliations.

The result was the “theory of levels” for foliations of class C 2, a form of
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Topological dynamics

One approach to classification if to impose restrictions on the dynamics.

Definition: A pseudogroup GF acting on T is proximal if there exists
δ > 0 such that for all w ,w ′ ∈ T with dT (w ,w ′) < δ, then for all ε > 0
there exists hτw ,z ∈ GF with w ,w ′ ∈ Dom(hτw ,z ) and
dT (hτw ,z (w), hτw ,z (w ′)) < ε.

Definition: A pseudogroup GF acting on T is distal if it is not proximal.

Definition: A pseudogroup GF acting on T is equicontinuous if there
exists a metric d ′T on T equivalent to the Riemannian distance function,
such that for all w ,w ′ ∈ T and hτw ,z ∈ GF with w ,w ′ ∈ Dom(hτw ,z ),

d ′T (hτw ,z (w), hτw ,z (w ′)) = d ′T (w ,w ′)

These are very old concepts, dating from 1930’s, and extensively studied
for topological group actions in 1950’s and 1960’s.
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Equicontinuous matchbox manifolds

Definition: A minimal set M ⊂ M for a foliation F is exceptional if the
intersection M ∩ T is a Cantor set.

Thus, M is a foliated space, as studied by A. Candel and L. Conlon in
Chapter 11, of their text Foliations, I.

Exceptional minimal sets are special, though, as such M are transversally
zero-dimensional. Such foliated spaces are called “matchbox manifolds” in
the topological dynamics literature.

Theorem: [Clark-Hurder 2009] If M ⊂ M is an exceptional minimal set
for a foliation (that is, M is transversally a Cantor set), and the dynamics
of F restricted to M are equicontinuous, then M is homeomorphic as a
foliated space to a generalized solenoid. =⇒ F on M is hyperfinite.

Problem: Can the distal matchbox manifolds be classified?
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Growth and dynamics

One problem with the previous “counting argument”, especially as
concerns the Hirsch example, is that it just counts the number of times
the leaf crosses a transversal T in fixed distance, but does not take into
account whether these crossings are “nearby” or “far apart”.

There are Riemannian foliations with all leaves of exponential growth type.

In the Hirsch examples, the handles at the end of each “ball of radius d”
appear to be widely separated transversally, so somehow this is different.
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Hirsch examples, revisted

The holonomy pseudogroup GF of the Hirsch example is topologically
semi-conjugate to the pseudogroup generated by the doubling map z 7→ z2

on S1.

After d-iterations, the inverse map to z 7→ z2d
has derivative of norm 2d .

Thus, for a Hirsch foliation modeled on this map, every leaf is transversally
hyperbolic.

How to take this into account?

Introduce foliation “geometric entropy” of Ghys, Langevin and Walczak!

Next time...
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