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Hyperbolic normal forms

Recall a simple example from advanced calculus.

Let f (x) = x/2.

Let g(x) be smooth with g(0) = 0, g ′(0) = 1/2.

Then g ∼ f near x = 0. That is, for δ > 0 sufficiently small, there is a
smooth map h : (−ε, ε)→ R such that h−1 ◦ g ◦ h = f (x) for all |x | < δ.

Fact: Exponentially contracting (or simply hyperbolic) maps have a single
parameter (their derivative g ′(0) at the fixed point) for their germinal
conjugacy class.

For maps which are “completely flat” at the origin, where g(0) = 0,
g ′(0) = 1, gk(0) = 0 for all k > 1, no such classification exists.

Moral: Complexity is Simplicity.
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Foliation complexity

Let F be a foliation of a compact Riemannian manifold M.

For each w ∈ M the leaf Lw containing w inherits a Riemannian metric for
which Lw is geodesically complete.

Fix Lw and then count the number of points Gr(Lw , d) = #{Lw ∩ T }.
The rate of growth of the function d 7→ Gr(Lw , d) is a measure of the
complexity of the leaf.

Lw has exponential growth type if there exists λ > 0 and d0 ≥ 0 such that

Gr(Lw , d) ≥ exp{λ · d} , d ≥ d0

Lw has polynomial growth type if there exists m > 0 and d0 ≥ 0 such that

Gr(Lw , d) ≤ mk , d ≥ d0
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Subexponential complexity

Definition: A foliation F is uniformly subexponential if:

for all ε > 0, there exists Cε, dε so that for all w ∈ M,

Gr(Lw , d) ≤ Cε · exp{ε · d} , d ≥ dε

The celebrated theorem of Connes, Feldman and Weiss [1981] implies:

Theorem: If F is uniformly subexponential, then the equivalence relation
it defines on the transversal space T is amenable, hence hyperfinite.

The pseudogroup action GF on T is hyperfinite if it is measurably orbit
equivalent to an action of the integers Z on the interval [0, 1].

Moral: Subexponential complexity often leads to ambiguity.
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Expansion growth

We measure exponential complexity for pseudogroup actions, following
[Bowen 1971] and [Ghys, Langevin & Walczak 1988].

Let ε > 0 and d > 0. A subset E ⊂ T is said to be (ε, d)-separated if

• for all w ,w ′ ∈ E ∩ Ti
• there exists g ∈ GF with w ,w ′ ∈ Dom(g) ⊂ Ti , and ‖g‖ ≤ d

• then dT (g(w), g(w ′)) ≥ ε.
• If w ∈ Ti and w ′ ∈ Tj for i 6= j then they are (ε, d)-separated by default.

The “expansion growth function” counts the maximum of this quantity:

h(GF , ε, d) = max{#E | E ⊂ T is (ε, d)-separated}

If the pseudogroup consists of isometries, for example, then applying
elements of GF does not help to separate points, so these growth functions
remain polynomial as functions of d , for all ε.
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Foliation geometric entropy

The function d 7→ h(GF , ε, d) measures expansion growth at distance d -
sort of an integrated total exponent.

Define:

h(GF , ε) = lim sup
d→∞

ln {max{#E | E is (ε, d)-separated}}
d

h(GF ) = lim
ε→0

h(GF , ε)

Theorem: [GLW 1988] The quantity h(GF ) is finite if F is a C 1-foliation.

Moreover, the property h(GF ) > 0 is independent of all choices.

Theorem: If F is defined by a flow φt then h(GF ) = 2 · htop(φ1).
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Doubling maps have entropy ln(2) > 0

Exercise: The Hirsch foliations always have positive geometric entropy.

Solution: The holonomy pseudogroup GF of the Hirsch example is
topologically semi-conjugate to the pseudogroup generated by the
doubling map z 7→ z2 on S1.

After d-iterations, the inverse map to z 7→ z2d has derivative of norm 2d

so we have a rough estimate

h(GF , ε, d) ∼ (2π/ε) · 2d
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Orbit growth implies entropy

For the Hirsch example, notice as we wander out the tree-like leaf, we are
also wandering around the transversal space T .
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Manning’s Theorem

Let B be a compact manifold of non-positive curvature.

Let M = T 1B denote the unit tangent bundle to B.

Let φt : M → M be the geodesic flow of B.

Theorem: [Manning 1976] htop(φ) = Gr(π1(B, b0))

That is, the growth rate of the volume of balls in the universal covering of
B equals the entropy.

This is actually a theorem about foliation entropy and growth rates of
leaves.
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Fundamental domains

The assumption that B has non-positive curvature implies that its universal
covering B̃ is a disk, and we can “color” it with fundamental domains:

The proof of Manning’s Theorem follows from the picture.
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Weak stable foliations

Assume that B has uniformly negative sectional curvatures.

Let φt : M → M be the geodesic flow. Define an equivalence relation on
points of M:

w ∼φ w ′ ⇐⇒ dM(φt(w), φt(w ′)) ≤ C for t →∞

Then define
Lw = {w ′ ∈ M | w ′ ∼φ w}

Theorem: [Pugh-Shub 1974] The sets Lw form the leaves of a C 1-foliation
of M. The resulting foliation is called the weak-stable foliation for φt .

1) Each leaf Lw is a C∞-immersed submanifold of M.

2) The orbits of the geodesic flow φt(w) are contained in the leaves of F .
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Entropy for weak stable foliations

Theorem: Let B be a compact manifold of negative curvature, and let F
be the weak stable foliation for the geodesic flow φt . Then

h(GF ) = 2 · htop(φ1)

The proof that h(GF ) =≥ 2 · htop(φ1) is easy - we use the holonomy along
geodesic segments to separate points.

The other estimate requires knowing about the structure of the weak
stable foliations - the leaves are obtained by applying the geodesic flow to
the strong stable foliations, which are polynomial growth, so do not add
any exponential complexity.
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Entropy and chaos

Question: When is h(GF ) > 0?

• Expanding holonomy (Hirsch examples)

• Weak stable foliations (for Anosov flows)

• Ping-pong games (Resilient leaves in codimension one)

Are there other cnanoical situations where we can expect positive entropy?

For example, if F has leaves of exponential growth, doses there always
exist a C 1-close perturbation of F with positive entropy?

Next time, we discuss the relation between foliation entropy and the
existence of hyperbolic invariant measures for the foliation geodesic flow.
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Problemos de la diá

Monday [3/5/2010]: Characterize the transversally hyperbolic invariant
probability measures µ∗ for the foliation geodesic flow of a given foliation.

Tuesday [4/5/2010]: Classify the foliations with subexponential orbit
complexity and distal transverse structure.

Wednesday [5/5/2010]: Find conditions on the geometry of a foliation
such that exponential orbit growth implies positive entropy.

Thursday [6/5/2010]:

Friday [7/5/2010]:
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