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Positive entropy ↔ chaos ↔ ??

Let F be a C r -foliation of a compact manifold M, r ≥ 1.

Problem 1: If h(GF ) > 0, what conclusions can we reach about the
dynamics of F?

Problem 2: What hypotheses on the dynamics of F are sufficient to
imply that h(GF ) > 0?

Problem 3: Are there cohomology hypotheses on F which would
“improve” our understanding of its dynamics? How does leafwise
cohomology H∗(F) influence dynamics? Secondary invariants for F?
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Foliated dynamics toolbox

There are limited sets of techniques applicable to foliation dynamics.

Principle difficulty has been there is no good groupoid replacement for the
notion of “uniform recurrence” in the support of an invariant measure,
which we have for flows.

The following result has various applications, especially in codimension
one. Best news – it introduces a new technique.

Theorem: [G-L-W 1998] Let M be compact with a C 1-foliation F of
codimension q ≥ 1. If h(GF ) = 0, then the action of GF on T admits an
invariant probability measure.
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Three Theorems

Theorem: [H 2000] Let M be compact with a C r -foliation F of
codimension-q. If q = 1 and r ≥ 1, or q ≥ 2 and r > 1, then

F distal =⇒ h(GF ) = 0

Theorem: [H 2000] Let M be compact with a codimension one,
C 1-foliation F . Then

h(GF ) > 0 =⇒ F has a resilient leaf

Theorem: [H & Langevin 2000] Let M be compact with a codimension
one, C 2-foliation F . Then

0 6= GV (F) ∈ H3(M,R) =⇒ h(GF ) > 0
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Positive exponents

Proposition: Let F be C 1, and suppose h(GF ) > 0. Then there is a
transversally hyperbolic invariant probability measure µ∗ for the foliation
geodesic flow.

The proof illustrates the tools available.

Assume h(GF ) = 2λ. Then for sufficiently small ε > 0, for d � 0 there
exists E = {w1, . . . ,w`} where ` > exp{d · λ}, so that for wi 6= wj there
exists some path τi ,j : [0, 1]→ Lwi with

dT (hτi,j (wi ), hτi,j (wj)) ≥ ε

By counting, there is some pair with dT (wi ,wj) < diam(T )/`

Mean Value Theorem =⇒ h′τi,j (w
′
i ) > exp{d · λ}
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Quivers

Actually, Pigeon Hole Principle implies there are closed neighborhoods
D(w , δ) ⊂ T containing an exponential number of such points:

These are call quivers.
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Hyperbolic measures

If we choose a sequence of such paths, in the limit they define an invariant
measure for the geodesic flow, with positive exponent.

Proposition: Let F be C 1 and suppose that h(GF ) > 0. Then there
exists an exponential collection of leafwise geodesic segments
{γ` : [0,∞)→ M along which the normal derivative cocycle Dhγ` has
exponentially decreasing directions.
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Stable manifolds

Theorem: Let F be C 1+α and suppose that h(GF ) > 0. Then there
exists an exponential collection of leafwise geodesic segments
{γ` : [0,∞)→ M with stable transverse manifolds.

Corollary: Let F be a codimension one, C 1-foliation, or codimension
q > 1 C 1+α-foliation. Then GF distal implies that h(GF ) = 0.
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Ping-pong games

Theorem: Let F be C 1 and suppose that h(GF ) > 0. Then GF acting on
T admits a “ping-pong game” which implies the existence of a resilient
leaf for F .
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Problemos de la diá

Monday [3/5/2010]: Characterize the transversally hyperbolic invariant
probability measures µ∗ for the foliation geodesic flow of a given foliation.

Tuesday [4/5/2010]: Classify the foliations with subexponential orbit
complexity and distal transverse structure.

Wednesday [5/5/2010]: Find conditions on the geometry of a foliation
such that exponential orbit growth implies positive entropy.

Thursday [6/5/2010]: Find conditions on the Lyapunov spectrum and
invariant measures for the geodesic flow which implies positive entropy.

Friday [7/5/2010]: Characterize the exceptional minimal sets of zero
entropy.
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