Homogeneous matchbox manifolds

Steven Hurder

University of Illinois at Chicago www.math.uic.edu/~hurder

Groupoidfest 2009, October 24, 2009

Definition: A *continuum* is a compact and connected metrizable space.

Definition: An *indecomposable continuum* is a continuum that is not the union of two proper subcontinua.

Definition: A *continuum* is a compact and connected metrizable space.

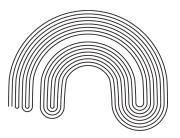
Definition: An *indecomposable continuum* is a continuum that is not the union of two proper subcontinua.

Examples: The circle \mathbb{S}^1 is decomposable.

Definition: A *continuum* is a compact and connected metrizable space.

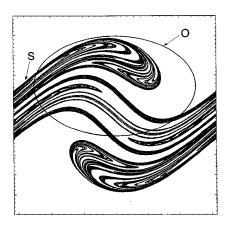
Definition: An *indecomposable continuum* is a continuum that is not the union of two proper subcontinua.

Examples: The circle \mathbb{S}^1 is decomposable. The Knaster Continuum (or *bucket handle*) is indecomposable.



This is one-half of a Smale Horseshoe. The 2-solenoid over \mathbb{S}^1 is a branched double-covering of it.

Indecomposable continuum arise naturally as invariant closed sets of dynamical systems; e.g., attractors and minimal sets for diffeomorphisms.



A Conjecture ...

Definition: A space X is homogeneous if for every $x,y\in X$ there exists a homeomorphism $h\colon X\to X$ such that h(x)=y. Equivalently, X is homogeneous if the group $\operatorname{Homeo}(X)$ acts transitively on X.

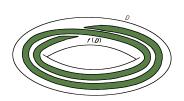
Question: [Bing1960] If X is a homogeneous continuum and if every proper subcontinuum of X is an arc, must X then be a circle or a solenoid?

A Conjecture ...

Definition: A space X is homogeneous if for every $x, y \in X$ there exists a homeomorphism $h \colon X \to X$ such that h(x) = y. Equivalently, X is homogeneous if the group $\operatorname{Homeo}(X)$ acts transitively on X.

Question: [Bing1960] If X is a homogeneous continuum and if every proper subcontinuum of X is an arc, must X then be a circle or a solenoid?

Theorem: [Hagopian 1977] Let X be a homogeneous continuum such that every proper subcontinuum of X is an arc, then X is an inverse limit over the circle \mathbb{S}^1 .



Matchbox manifolds

Question: Let X be a homogeneous continuum such that every proper subcontinuum of X is an n-dimensional manifold, must X then be an inverse limit of normal coverings of compact manifolds?

Matchbox manifolds

Question: Let X be a homogeneous continuum such that every proper subcontinuum of X is an n-dimensional manifold, must X then be an inverse limit of normal coverings of compact manifolds?

We rephrase the context:

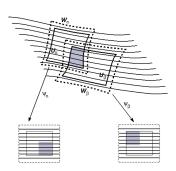
Definition: An *n*-dimensional *matchbox manifold* is a continuum \mathfrak{M} which is a foliated space with leaf dimension n, and codimension zero.

 $\mathfrak M$ is a foliated space if it admits a covering $\mathcal U=\{\varphi_i\mid 1\leq i\leq \nu\}$ with foliated coordinate charts $\varphi_i\colon U_i\to [-1,1]^n\times \mathfrak T_i$. The compact metric spaces $\mathfrak T_i$ are totally disconnected $\Longleftrightarrow \mathfrak M$ is a matchbox manifold.

The leaves of $\mathcal F$ are the path components of $\mathfrak M$.

Smooth matchbox manifolds

Definition: \mathfrak{M} is a *smooth foliated space* if the leafwise transition functions for the foliation charts $\varphi_i \colon U_i \to [-1,1]^n \times \mathfrak{T}_i$ are C^{∞} , and vary continuously on the transverse parameter in the leafwise C^{∞} -topology.



A "smooth matchbox manifold" \mathfrak{M} is analogous to a compact manifold, with the transverse dynamics of the foliation \mathcal{F} on the Cantor-like fibers \mathfrak{T}_i representing fundamental groupoid data. They naturally appear in:

- dynamical systems, as minimal sets & attractors
- geometry, as laminations
- complex dynamics, as universal Riemann surfaces
- algebraic geometry, as models for "stacks".

A "smooth matchbox manifold" \mathfrak{M} is analogous to a compact manifold, with the transverse dynamics of the foliation \mathcal{F} on the Cantor-like fibers \mathfrak{T}_i representing fundamental groupoid data. They naturally appear in:

- dynamical systems, as minimal sets & attractors
- geometry, as laminations
- complex dynamics, as universal Riemann surfaces
- algebraic geometry, as models for "stacks".

Bing Question: For which \mathfrak{M} is the group $\operatorname{Homeo}(\mathfrak{M})$ transitive?

A "smooth matchbox manifold" \mathfrak{M} is analogous to a compact manifold, with the transverse dynamics of the foliation \mathcal{F} on the Cantor-like fibers \mathfrak{T}_i representing fundamental groupoid data. They naturally appear in:

- dynamical systems, as minimal sets & attractors
- geometry, as laminations
- complex dynamics, as universal Riemann surfaces
- algebraic geometry, as models for "stacks".

Bing Question: For which $\mathfrak M$ is the group $\operatorname{Homeo}(\mathfrak M)$ transitive?

Klein Question: Do the Riemannian symmetries of $\mathfrak M$ characterize it?

A "smooth matchbox manifold" \mathfrak{M} is analogous to a compact manifold, with the transverse dynamics of the foliation \mathcal{F} on the Cantor-like fibers \mathfrak{T}_i representing fundamental groupoid data. They naturally appear in:

- dynamical systems, as minimal sets & attractors
- geometry, as laminations
- complex dynamics, as universal Riemann surfaces
- algebraic geometry, as models for "stacks".

Bing Question: For which $\mathfrak M$ is the group $\operatorname{Homeo}(\mathfrak M)$ transitive?

Klein Question: Do the Riemannian symmetries of $\mathfrak M$ characterize it?

Zimmer Question: What countable groups Λ act effectively on \mathfrak{M} ?

A "smooth matchbox manifold" \mathfrak{M} is analogous to a compact manifold, with the transverse dynamics of the foliation \mathcal{F} on the Cantor-like fibers \mathfrak{T}_i representing fundamental groupoid data. They naturally appear in:

- dynamical systems, as minimal sets & attractors
- geometry, as laminations
- complex dynamics, as universal Riemann surfaces
- algebraic geometry, as models for "stacks".

Bing Question: For which $\mathfrak M$ is the group $\operatorname{Homeo}(\mathfrak M)$ transitive?

Klein Question: Do the Riemannian symmetries of $\mathfrak M$ characterize it?

Zimmer Question: What countable groups Λ act effectively on \mathfrak{M} ?

Haefliger Question: What are the topological invariants associated to matchbox manifolds, and do they characterize them in some fashion?

A solution to the Bing Question

Theorem [Clark & Hurder 2009] Let \mathfrak{M} be an orientable homogeneous smooth matchbox manifold. Then \mathfrak{M} is homeomorphic to a McCord (or normal) solenoid. In particular, \mathfrak{M} is minimal, so every leaf is dense.

A solution to the Bing Question

Theorem [Clark & Hurder 2009] Let \mathfrak{M} be an orientable homogeneous smooth matchbox manifold. Then \mathfrak{M} is homeomorphic to a McCord (or normal) solenoid. In particular, \mathfrak{M} is minimal, so every leaf is dense.

When the dimension of \mathfrak{M} is n=1 (that is, \mathcal{F} is defined by a flow) then this recovers the result of Hagopian, but the proof is much closer in spirit to the later proof of this case by [Aarts, Hagopian and Oversteegen 1991].

The case where \mathfrak{M} is given as a fibration over \mathbb{T}^n with totally disconnected fibers was proven in [Clark, 2002].

The key to the proof in the general case is the extensive use of pseudogroups and groupoids – in place of Lie group actions.

Two applications

Here are two consequences of the Main Theorem:

Corollary: Let \mathfrak{M} be an orientable homogeneous *n*-dimensional smooth matchbox manifold, which is embedded in a closed (n+1)-dimensional manifold. Then \mathfrak{M} is itself a manifold.

For $\mathfrak M$ a homogeneous continuum with a non-singular flow, this was a question/conjecture of Bing, solved by [Thomas 1971]. Non-embedding for solenoids of dimension $n \geq 2$ was solved by [Clark & Fokkink, 2002]. Proofs use shape theory and Alexander-Spanier duality for cohomology.

Two applications

Here are two consequences of the Main Theorem:

Corollary: Let \mathfrak{M} be an orientable homogeneous *n*-dimensional smooth matchbox manifold, which is embedded in a closed (n+1)-dimensional manifold. Then \mathfrak{M} is itself a manifold.

For $\mathfrak M$ a homogeneous continuum with a non-singular flow, this was a question/conjecture of Bing, solved by [Thomas 1971]. Non-embedding for solenoids of dimension $n \geq 2$ was solved by [Clark & Fokkink, 2002]. Proofs use shape theory and Alexander-Spanier duality for cohomology.

Corollary: Let \mathfrak{M} be the tiling space associated to a tiling \mathcal{P} of \mathbb{R}^n . If \mathfrak{M} is homogeneous, then the tiling is periodic.

Generalized solenoids

Let M_{ℓ} be compact, orientable manifolds of dimension $n \geq 1$ for $\ell \geq 0$, with orientation-preserving covering maps

$$\stackrel{p_{\ell+1}}{\longrightarrow} \textit{M}_{\ell} \stackrel{p_{\ell}}{\longrightarrow} \textit{M}_{\ell-1} \stackrel{p_{\ell-1}}{\longrightarrow} \cdots \stackrel{p_2}{\longrightarrow} \textit{M}_1 \stackrel{p_1}{\longrightarrow} \textit{M}_0$$

Generalized solenoids

Let M_{ℓ} be compact, orientable manifolds of dimension $n \geq 1$ for $\ell \geq 0$, with orientation-preserving covering maps

$$\stackrel{p_{\ell+1}}{\longrightarrow} \textit{M}_{\ell} \stackrel{p_{\ell}}{\longrightarrow} \textit{M}_{\ell-1} \stackrel{p_{\ell-1}}{\longrightarrow} \cdots \stackrel{p_2}{\longrightarrow} \textit{M}_1 \stackrel{p_1}{\longrightarrow} \textit{M}_0$$

The p_{ℓ} are called the bonding maps for the solenoid

$$S = \lim_{\leftarrow} \{ p_{\ell} \colon M_{\ell} \to M_{\ell-1} \} \subset \prod_{\ell=0}^{\infty} M_{\ell}$$

Generalized solenoids

Let M_{ℓ} be compact, orientable manifolds of dimension $n \geq 1$ for $\ell \geq 0$, with orientation-preserving covering maps

$$\stackrel{p_{\ell+1}}{\longrightarrow} \textit{M}_{\ell} \stackrel{p_{\ell}}{\longrightarrow} \textit{M}_{\ell-1} \stackrel{p_{\ell-1}}{\longrightarrow} \cdots \stackrel{p_{2}}{\longrightarrow} \textit{M}_{1} \stackrel{p_{1}}{\longrightarrow} \textit{M}_{0}$$

The p_{ℓ} are called the bonding maps for the solenoid

$$S = \lim_{\leftarrow} \{ p_{\ell} \colon M_{\ell} \to M_{\ell-1} \} \subset \prod_{\ell=0}^{\infty} M_{\ell}$$

Choose basepoints $x_{\ell} \in M_{\ell}$ with $p_{\ell}(x_{\ell}) = x_{\ell-1}$. Set $G_{\ell} = \pi_1(M_{\ell}, x_{\ell})$.

Then we have a descending chain of groups and injective maps

$$\stackrel{p_{\ell+1}}{\longrightarrow} G_{\ell} \stackrel{p_{\ell}}{\longrightarrow} G_{\ell-1} \stackrel{p_{\ell-1}}{\longrightarrow} \cdots \stackrel{p_2}{\longrightarrow} G_1 \stackrel{p_1}{\longrightarrow} G_0$$

Set $q_{\ell} = p_{\ell} \circ \cdots \circ p_1 : M_{\ell} \longrightarrow M_0$.

McCord solenoids

Definition: \mathcal{S} is a McCord solenoid for some fixed $\ell_0 \geq 0$, for all $\ell \geq \ell_0$ the image H_ℓ of G_ℓ in $H_{\ell_0} \equiv G_{\ell_0}$ is a normal subgroup.

Theorem [McCord 1965] A McCord solenoid S is an orientable homogeneous smooth matchbox manifold.

McCord solenoids

Definition: S is a McCord solenoid for some fixed $\ell_0 \geq 0$, for all $\ell \geq \ell_0$ the image H_ℓ of G_ℓ in $H_{\ell_0} \equiv G_{\ell_0}$ is a normal subgroup.

Theorem [McCord 1965] A McCord solenoid \mathcal{S} is an orientable homogeneous smooth matchbox manifold.

Remark: $\pi_1(M_0, x_0)$ nilpotent implies that S is a McCord solenoid.

McCord solenoids

Definition: S is a McCord solenoid for some fixed $\ell_0 \geq 0$, for all $\ell \geq \ell_0$ the image H_ℓ of G_ℓ in $H_{\ell_0} \equiv G_{\ell_0}$ is a normal subgroup.

Theorem [McCord 1965] A McCord solenoid $\mathcal S$ is an orientable homogeneous smooth matchbox manifold.

Remark: $\pi_1(M_0, x_0)$ nilpotent implies that S is a McCord solenoid.

Caution: There are constructions of inverse limits \mathcal{S} as above where the bonding maps are not normal coverings, and the McCord condition does not hold, but \mathcal{S} is homogeneous [Fokkink & Oversteegen 2002].

Our technique of proof of the main theorem for such examples presents the inverse limit space ${\cal S}$ as homeomorphic to a normal tower of coverings.

Let X be a separable and metrizable topological space. Let G be a topological group with identity e.

For $U \subseteq G$ and $x \in X$, let $Ux = \{gx \mid g \in U\}$.

Definition: An action of *G* on *X* is *transitive* if Gx = X for all $x \in X$.

Let X be a separable and metrizable topological space. Let G be a topological group with identity e.

For $U \subseteq G$ and $x \in X$, let $Ux = \{gx \mid g \in U\}$.

Definition: An action of G on X is *transitive* if Gx = X for all $x \in X$.

Definition: An action of G on X is *micro-transitive* if for every $x \in X$ and every neighborhood U of e, Ux is a neighborhood of x.

Let X be a separable and metrizable topological space. Let G be a topological group with identity e.

For $U \subseteq G$ and $x \in X$, let $Ux = \{gx \mid g \in U\}$.

Definition: An action of G on X is *transitive* if Gx = X for all $x \in X$.

Definition: An action of G on X is *micro-transitive* if for every $x \in X$ and every neighborhood U of e, Ux is a neighborhood of x.

Theorem [Effros 1965] Suppose that a completely metrizable group G acts *transitively* on a second category space X, then it acts micro-transitively on X.

Let X be a separable and metrizable topological space. Let G be a topological group with identity e.

For $U \subseteq G$ and $x \in X$, let $Ux = \{gx \mid g \in U\}$.

Definition: An action of G on X is *transitive* if Gx = X for all $x \in X$.

Definition: An action of G on X is *micro-transitive* if for every $x \in X$ and every neighborhood U of e, Ux is a neighborhood of x.

Theorem [Effros 1965] Suppose that a completely metrizable group G acts *transitively* on a second category space X, then it acts micro-transitively on X.

Alternate proofs of have been given by [Ancel 1987] and [van Mill 2004]. Remarkably, Van Mill shows that Effros Theorem is equivalent to the *Open Mapping Principle* of Functional Analysis. This appeared in the American Mathematical Monthly, pages 801–806, 2004.

Interpretation for compact metric spaces

The metric on the group $\operatorname{Homeo}(X)$ for (X, d_X) a separable, locally compact, metric space is given by

$$\begin{array}{rcl} d_{H}\left(f,g\right) & := & \sup\left\{d_{X}\left(f(x),g(x)\right) \mid x \in X\right\} \\ & & + \sup\left\{d_{X}\left(f^{-1}(x),g^{-1}(x)\right) \mid x \in X\right\} \end{array}$$

Interpretation for compact metric spaces

The metric on the group Homeo(X) for (X, d_X) a separable, locally compact, metric space is given by

$$d_{H}(f,g) := \sup \{d_{X}(f(x),g(x)) \mid x \in X\}$$

$$+ \sup \{d_{X}(f^{-1}(x),g^{-1}(x)) \mid x \in X\}$$

Corollary: Let X be a homogeneous compact metric space. Then for any given $\epsilon > 0$ there is a corresponding $\delta > 0$ so that if $d_X(x,y) < \delta$, there is a homeomorphism $h: X \to X$ with $d_H(h, id_X) < \epsilon$ and h(x) = y.

In particular, for a homogeneous foliated space $\mathfrak M$ this conclusion holds.

This observation was used by [Aarts, Hagopian, & Oversteegen 1991] and [Clark 2002] in their study of matchbox manifolds.

Holonomy groupoids

Let $\varphi_i : U_i \to [-1,1]^n \times \mathfrak{T}_i$ for $1 \leq i \leq \nu$ be the covering of \mathfrak{M} by foliation charts. For $U_i \cap U_i \neq \emptyset$ we obtain the holonomy transformation

$$h_{ji} \colon D(h_{ji}) \subset \mathfrak{T}_i \longrightarrow R(h_{ji}) \subset \mathfrak{T}_j$$

These transformations generate the holonomy pseudogroup $\mathcal{G}_{\mathcal{F}}$ of \mathfrak{M} , modeled on the transverse metric space $\mathfrak{T}=\mathfrak{T}_1\cup\cdots\cup\mathfrak{T}_{\nu}$

Typical element of $\mathcal{G}_{\mathcal{F}}$ is a composition, for $\mathcal{I} = (i_0, i_1, \dots, i_k)$ where $U_{i_{\ell}} \cap U_{i_{\ell-1}} \neq \emptyset$ for $1 \leq \ell \leq k$,

$$h_{\mathcal{I}} = h_{i_k i_{k-1}} \circ \cdots \circ h_{i_1 i_0} \colon D(h_{\mathcal{I}}) \subset \mathfrak{T}_{i_0} \longrightarrow R(h_{\mathcal{I}}) \subset \mathfrak{T}_{i_k}$$

 $x \in \mathfrak{T}$ is a point of holonomy for $\mathcal{G}_{\mathcal{F}}$ if there exists some $h_{\mathcal{T}} \in \mathcal{G}_{\mathcal{F}}$ with $x \in D(h_{\mathcal{I}})$ such that $h_{\mathcal{I}}(x) = x$ and the germ of $h_{\mathcal{I}}$ at x is non-trivial.

We say \mathcal{F} is without holonomy if there are no points of holonomy.

Definition: \mathfrak{M} is an *equicontinuous matchbox manifold* if it admits some covering by foliation charts as above, such that for all $\epsilon > 0$, there exists $\delta > 0$ so that for all $h_{\mathcal{I}} \in \mathcal{G}_{\mathcal{F}}$ we have

$$x, y \in D(h_{\mathcal{I}}) \text{ with } d_{\mathfrak{T}}(x, y) < \delta \implies d_{\mathfrak{T}}(h_{\mathcal{I}}(x), h_{\mathcal{I}}(y)) < \epsilon$$

Definition: \mathfrak{M} is an *equicontinuous matchbox manifold* if it admits some covering by foliation charts as above, such that for all $\epsilon > 0$, there exists $\delta > 0$ so that for all $h_{\mathcal{I}} \in \mathcal{G}_{\mathcal{F}}$ we have

$$x, y \in D(h_{\mathcal{I}}) \text{ with } d_{\mathfrak{T}}(x, y) < \delta \implies d_{\mathfrak{T}}(h_{\mathcal{I}}(x), h_{\mathcal{I}}(y)) < \epsilon$$

Theorem: A homogeneous matchbox manifold $\mathfrak M$ is equicontinuous without holonomy.

Definition: \mathfrak{M} is an *equicontinuous matchbox manifold* if it admits some covering by foliation charts as above, such that for all $\epsilon > 0$, there exists $\delta > 0$ so that for all $h_{\mathcal{I}} \in \mathcal{G}_{\mathcal{F}}$ we have

$$x, y \in D(h_{\mathcal{I}}) \text{ with } d_{\mathfrak{T}}(x, y) < \delta \implies d_{\mathfrak{T}}(h_{\mathcal{I}}(x), h_{\mathcal{I}}(y)) < \epsilon$$

Theorem: A homogeneous matchbox manifold $\mathfrak M$ is equicontinuous without holonomy.

The proof relies on one basic observation and extensive technical analysis.

Lemma: Let $h: \mathfrak{M} \to \mathfrak{M}$ be a homeomorphism. Then h maps the leaves of \mathcal{F} to leaves of \mathcal{F} . That is, every $h \in \operatorname{Homeo}(\mathfrak{M})$ is foliation-preserving.

Proof: The leaves of ${\mathcal F}$ are the path components of ${\mathfrak M}.$

Definition: \mathfrak{M} is an *equicontinuous matchbox manifold* if it admits some covering by foliation charts as above, such that for all $\epsilon > 0$, there exists $\delta > 0$ so that for all $h_{\mathcal{I}} \in \mathcal{G}_{\mathcal{F}}$ we have

$$x, y \in D(h_{\mathcal{I}}) \text{ with } d_{\mathfrak{T}}(x, y) < \delta \implies d_{\mathfrak{T}}(h_{\mathcal{I}}(x), h_{\mathcal{I}}(y)) < \epsilon$$

Theorem: A homogeneous matchbox manifold $\mathfrak M$ is equicontinuous without holonomy.

The proof relies on one basic observation and extensive technical analysis.

Lemma: Let $h: \mathfrak{M} \to \mathfrak{M}$ be a homeomorphism. Then h maps the leaves of \mathcal{F} to leaves of \mathcal{F} . That is, every $h \in \operatorname{Homeo}(\mathfrak{M})$ is foliation-preserving.

Proof: The leaves of ${\mathcal F}$ are the path components of ${\mathfrak M}.$

Theorem: An equicontinuous matchbox manifold $\mathfrak M$ is minimal.

Three Structure Theorems

We can now state the three main structure theorems.

Theorem 1: Let $\mathfrak M$ be an equicontinuous matchbox manifold without holonomy. Then $\mathfrak M$ is homeomorphic to a solenoid

$$\mathcal{S} = \lim_{\leftarrow} \ \{ p_{\ell} \colon M_{\ell} \to M_{\ell-1} \}$$

Three Structure Theorems

We can now state the three main structure theorems.

Theorem 1: Let $\mathfrak M$ be an equicontinuous matchbox manifold without holonomy. Then $\mathfrak M$ is homeomorphic to a solenoid

$$\mathcal{S} = \lim_{\leftarrow} \ \{ p_{\ell} \colon M_{\ell} \to M_{\ell-1} \}$$

Theorem 2: Let \mathfrak{M} be a homogeneous matchbox manifold. Then the bonding maps above can be chosen so that $q_{\ell} \colon M_{\ell} \longrightarrow M_0$ is a normal covering for all $\ell \geq 0$. That is, \mathcal{S} is McCord.

Three Structure Theorems

We can now state the three main structure theorems.

Theorem 1: Let $\mathfrak M$ be an equicontinuous matchbox manifold without holonomy. Then $\mathfrak M$ is homeomorphic to a solenoid

$$\mathcal{S} = \lim_{\leftarrow} \ \{ p_{\ell} \colon M_{\ell} \to M_{\ell-1} \}$$

Theorem 2: Let \mathfrak{M} be a homogeneous matchbox manifold. Then the bonding maps above can be chosen so that $q_{\ell} \colon M_{\ell} \longrightarrow M_0$ is a normal covering for all $\ell \geq 0$. That is, \mathcal{S} is McCord.

Theorem 3: Let $\mathfrak M$ be a homogeneous matchbox manifold. Then there exists a clopen subset $V\subset \mathfrak T$ such that the restricted groupoid $\mathcal H(\mathcal F,V)\equiv \mathcal G_{\mathcal F}|V$ is a group, and $\mathfrak M$ is homeomorphic to the suspension of the action of $\mathcal H(\mathcal F,V)$ on V. Thus, the fibers of the map $q_\infty\colon \mathfrak M\to M_0$ are homeomorphic to a profinite completion of $\mathcal H(\mathcal F,V)$.

Coding & Quasi-Tiling

Let \mathfrak{M} be an equicontinuous matchbox manifold without holonomy.

Fix basepoint $w_0 \in int(\mathfrak{T}_1)$ with corresponding leaf $L_0 \subset \mathfrak{M}$.

The equivalence relation on \mathfrak{T} induced by \mathcal{F} is denoted Γ , and we have the following subsets:

$$\Gamma_{W} = \{(w, w') \mid w \in W , w' \in \mathcal{O}(w)\}
\Gamma_{W}^{W} = \{(w, w') \mid w \in W , w' \in \mathcal{O}(w) \cap W\}
\Gamma_{0} = \{w' \in W \mid (w_{0}, w') \in \Gamma_{W}^{W}\} = \mathcal{O}(w_{0}) \cap W$$

Note that Γ_W^W is a groupoid, with object space W. The assumption that \mathcal{F} is without holonomy implies Γ_W^W is equivalent to the groupoid of germs of local holonomy maps induced from the restriction of $\mathcal{G}_{\mathcal{F}}$ to W.

Equicontinuity & uniform domains

Proposition: Let $\mathfrak M$ be an equicontinuous matchbox manifold without holonomy. Given $\epsilon_*>0$, then there exists $\delta_*>0$ such that:

- for all $(w, w') \in \Gamma_W^W$ the corresponding holonomy map $h_{w,w'}$ satisfies $D_{\mathfrak{T}}(w, \delta_*) \subset D(h_{w,w'})$
- $d_{\mathfrak{T}}(h_{w,w'}(z),h_{w,w'}(z')) < \epsilon_*$ for all $z,z' \in D_{\mathfrak{T}}(w,\delta_*)$.

Equicontinuity & uniform domains

Proposition: Let \mathfrak{M} be an equicontinuous matchbox manifold without holonomy. Given $\epsilon_* > 0$, then there exists $\delta_* > 0$ such that:

- for all $(w, w') \in \Gamma_{w'}^W$ the corresponding holonomy map $h_{w,w'}$ satisfies $D_{\mathfrak{T}}(w, \delta_*) \subset D(h_{w,w'})$
- $d_{\mathfrak{T}}(h_{w,w'}(z),h_{w,w'}(z')) < \epsilon_*$ for all $z,z' \in D_{\mathfrak{T}}(w,\delta_*)$.

Let $W \subset \mathfrak{T}_1$ be a clopen subset with $w_0 \in W$. Decompose W into clopen subsets of diameter $\epsilon_{\ell} > 0$,

$$W=W_1^\ell\cup\cdots\cup W_{\beta_\ell}^\ell$$

Set $\eta_\ell = \min\left\{d_{\mathfrak{T}}(W_i^\ell,W_j^\ell) \mid 1 \leq i \neq j \leq \beta_\ell\right\} > 0$ and let $\delta_\ell > 0$ be the constant of equicontinuity as above.

The orbit coding function

- ullet The code space $\mathcal{C}_\ell = \{1,\ldots,eta_\ell\}$
- For $w \in W$, the \mathcal{C}_w^{ℓ} -code of $u \in W$ is the function $\mathcal{C}_{w,u}^{\ell} \colon \Gamma_w \to \mathcal{C}_{\ell}$ defined as: for $w' \in \Gamma_w$ set $\mathcal{C}_{w,u}^{\ell}(w') = i$ if $h_{w,w'}(u) \in W_i^{\ell}$.
- Define $V^\ell = \left\{ u \in W_1^\ell \mid C_{w_0,u}^\ell(w') = C_{w_0,w_0}^\ell(w') \text{ for all } w' \in \Gamma_0 \right\}$

The orbit coding function

- ullet The code space $\mathcal{C}_\ell = \{1,\ldots,eta_\ell\}$
- For $w \in W$, the \mathcal{C}_w^{ℓ} -code of $u \in W$ is the function $C_{w,u}^{\ell} : \Gamma_w \to \mathcal{C}_{\ell}$ defined as: for $w' \in \Gamma_w$ set $C_{w,u}^{\ell}(w') = i$ if $h_{w,w'}(u) \in W_i^{\ell}$.
- Define $V^\ell = \left\{u \in W_1^\ell \mid C_{w_0,u}^\ell(w') = C_{w_0,w_0}^\ell(w') \text{ for all } w' \in \Gamma_0 \right\}$

Lemma: If $u, v \in W$ with $d_{\mathfrak{T}}(u, v) < \delta_{\ell}$ then $C^{\ell}_{w,u}(w') = C^{\ell}_{w,v}(w')$ for all $w' \in \Gamma_w$. Hence, the function $C^{\ell}_w(u) = C^{\ell}_{w,u}$ is locally constant in u.

Thus, V^{ℓ} is open, and the translates of this set define a Γ_0 -invariant clopen decomposition of W.

The coding decomposition

The Thomas tube $\widetilde{\mathfrak{N}}_{\ell}$ for \mathfrak{M} is the "saturation" of V^{ℓ} by \mathcal{F} .

The saturation is necessarily all of \mathfrak{M} . But the tube structure comes with a vertical fibration, which allows for collapsing the tube in foliation charts. This is the basis of the main technical result:

The coding decomposition

The Thomas tube $\widetilde{\mathfrak{N}}_{\ell}$ for \mathfrak{M} is the "saturation" of V^{ℓ} by \mathcal{F} .

The saturation is necessarily all of \mathfrak{M} . But the tube structure comes with a vertical fibration, which allows for collapsing the tube in foliation charts. This is the basis of the main technical result:

Theorem: For $\operatorname{diam}(V^{\ell})$ sufficiently small, there is a quotient map $\Pi_{\ell} \colon \widetilde{\mathfrak{N}}_{\ell} \to M_{\ell}$ whose fibers are the transversal sections isotopic to V^{ℓ} , and whose base if a compact manifold. This yields compatible maps $\Pi_{\ell} \colon \mathfrak{M} \to M_{\ell}$ which induce the solenoid structure on \mathfrak{M} .

Furthermore, if $\mathfrak M$ is homogeneous, then $\operatorname{Homeo}(\mathfrak M)$ acts transitively on the fibers of the tower induced by the maps $\Pi_\ell \colon \mathfrak M \to M_\ell$, hence the tower is normal.

Leeuwenbrug Conjecture

Conjecture: Let \mathfrak{M} be an equicontinuous matchbox manifold, and $V \subset \mathfrak{T}$ a clopen set. Then \mathfrak{M} is characterized up to homeomorphism by the restricted groupoid $\mathcal{H}(\mathcal{F},V) \equiv \mathcal{G}_{\mathcal{F}}|V$ and any partial quotient M_{ℓ} .

That is, for matchbox manifolds, Kakutani equivalence implies homeomorphism (modulo some obvious additional conditions.)

Leeuwenbrug Conjecture

Conjecture: Let \mathfrak{M} be an equicontinuous matchbox manifold, and $V \subset \mathfrak{T}$ a clopen set. Then \mathfrak{M} is characterized up to homeomorphism by the restricted groupoid $\mathcal{H}(\mathcal{F},V)\equiv \mathcal{G}_{\mathcal{F}}|V$ and any partial quotient M_{ℓ} .

That is, for matchbox manifolds, Kakutani equivalence implies homeomorphism (modulo some obvious additional conditions.)

This is known for flows [Dye 1957, Fokkink 1991].

Leeuwenbrug Conjecture

Conjecture: Let \mathfrak{M} be an equicontinuous matchbox manifold, and $V \subset \mathfrak{T}$ a clopen set. Then \mathfrak{M} is characterized up to homeomorphism by the restricted groupoid $\mathcal{H}(\mathcal{F},V) \equiv \mathcal{G}_{\mathcal{F}}|V$ and any partial quotient M_{ℓ} .

That is, for matchbox manifolds, Kakutani equivalence implies homeomorphism (modulo some obvious additional conditions.)

This is known for flows [Dye 1957, Fokkink 1991].

Happy Birthday, Jean!

Jean Renault - Boulder 1999