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Half a dozen reasons to study foliations . . .
Origins began around 1952 with the theses of George Reeb and André
Haefliger, and prior work of Charles Ehresmann. Since then many new
applications and techniques have been developed:

1 Generalized dynamical systems (Reeb, Godbillon, Sacksteder, Anosov,
Smale, Hirsch, Shub, . . . )

2 Representation theory: cocycles, co-orbit spaces, W ∗ & C ∗-algebras
(Murray – von Neumann, Mackey, Kirillov, Kasparov, Renault, . . . )

3 Topology of classifying spaces (Bott, Haefliger, Gelfand-Fuks, Mather,
Thurston, Tsuboi, . . . )

4 Geometry: laminations, 3-manifolds, isoparametric structures
(Lawson, Winkelnkemper, Thurston, Gabai, Palais & Terng, . . . )

5 Physics & Non-Commutative Geometry, quasicrystals (Bellisard,
Connes, . . . )

6 Descriptive Set Theory & Complexity (Kechris, Foreman, Hjorth,
Louveau, Simon, . . . )

Steven Hurder (UIC) Classifying Foliations February 26, 2009 2 / 35



Half a dozen reasons to study foliations . . .
Origins began around 1952 with the theses of George Reeb and André
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A foliation F of dimension p on a manifold Mm is a decomposition into
“uniform layers” – the leaves – which are immersed submanifolds of
codimension q: there is an open covering of M by coordinate charts so
that the leaves are mapped into linear planes of dimension p, and the
transition function preserves these planes.

A leaf of F is a connected component of the manifold M in the “fine”
topology induced by charts.
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Examples in 2-dimensions
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Foliations by surfaces

Reeb Foliation of the solid torus
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Classifying foliations

Problem: “Classify” the foliations on a given manifold M.

Multiple classification schemes have been developed since 1970:

1 “homotopy properties” and classifying spaces;

2 “dynamical properties” and invariants;

3 “classify” von Neumann and C ∗-algebras of foliations;

4 “complexity theory” of Borel equivalence relations.

All are long-term research topics, dating from the 1970’s.

Question: How are these classifications schemes related to one another?

See “Classifying foliations”, to appear in Proceedings of Rio de Janeiro
Conference in 2007, Foliations, Topology and Geometry, Contemp. Math.,
American Math. Soc., 2009. Or, download from website.
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Homotopy classification

q is the codimension, p is the leaf dimension of the foliation F .

BΓr
q denotes the “classifying space” of (smooth) codimension

q-foliations with transverse differentiability C r , introduced by André
Haefliger in 1970. The homotopy fiber FΓr

q → BΓr
q → BO(q)

classifies foliations with framed normal bundles.

Theorem: (Haefliger) Each C r -foliation F on M of codimension q
determines a well-defined map hF : M → BΓr

q whose homotopy class
in uniquely defined by F .

Theorem: (Thurston) Each “natural” map hF : M → BΓr
q × BOp

corresponds to a C r -foliation F on M, whose concordance class is
determined by hF .

Classification of F on M ↔ calculate homotopy sets [M,BΓr
q]

How does this solve anything? Typical optimism of the 1970’s.
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Cohomology: Secondary classes

Theorem: (Godbillon-Vey [1971]) For each codimension q, there is a
secondary invariant GV (F) = ∆(h1c

q
1 ) ∈ H2q+1(M; R).

Theorem: (Bott-Haefliger, Gelfand-Fuks, Kamber-Tondeur [1972])
For each codimension q, and r ≥ 2, there is a non-trivial space of
secondary invariants H∗(Wq) and functorial characteristic map whose
image contains the Godbillon-Vey class

H∗(FΓr
q; R)

?�
�
�3

h∗F
∆̃

∆
H∗(Wq) −→ H∗(M; R)

Classification of F on M ↔ calculate secondary classes for examples

Last new examples by Heitsch in 1978, Hurder in 1985. Need examples!
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C 2 is essential !

One clue (and caution) to the study of homotopy classification:

Theorem: (Tsuboi [1989]) The classifying map of the normal bundle
ν : BΓ1

q → BO(q) for foliations of transverse differentiability class C 1 is a
homotopy equivalence.

The proof is a technical tour-de-force, using Mather-Thurston type
techniques for the study of BΓr

q.

When the C 1 and C 2 situations are radically different, one asks if there is
some aspects of dynamical systems involved? (There are other reasons to
ask this question, too.)
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Foliation dynamics

A continuous dynamical system on a compact manifold M is a flow
ϕ : M × R→ M, where the orbit Lx = {ϕt(x) = ϕ(x , t) | t ∈ R} is
thought of as the time trajectory of the point x ∈ M. The trajectories
of the points of M are necessarily points, circles or lines immersed in
M, and the study of their aggregate and statistical behavior is the
subject of ergodic theory for flows.

In foliation dynamics, we replace the concept of time-ordered
trajectories with multi-dimensional futures for points. The study of
the dynamics of F asks for properties of the limiting and statistical
behavior of the collection of its leaves.

First step – look for topological properties of the leaves.
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Limit sets

are where the orbits accumulate:

Let ϕt : M → M be a flow on a compact manifold M, and x ∈ M, then

ωx(ϕ) =
∞⋂

n=1

{ϕt(x) | t ≥ n}

is a compact set which is a union of flow lines for ϕ.

x is recurrent if x ∈ ωx(ϕ).

Circle is only recurrent orbit
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A leaf L ⊂ M of a foliation F inherits a quasi-isometry class of
Riemannian metric from TM, and a metric topology.

The ω-limit set of the leaf Lx through x is

ωx(F) =
⋂

Y⊂Lx
Y compact

Lx − Y

Lx is ω-recurrent if x ∈ ω(Lx) ⇒ Lx ⊂ ω(Lx).

Boundary torus is only recurrent leaf
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Minimal sets

Dynamics on minimal sets for a foliation is first approximation to
understanding its global dynamics. A closed subset Z ⊂ M is minimal if

• Z is a union of leaves,
• each leaf L ⊂ Z is dense

Z minimal ⇒ ωx(Lx) = Z for all x ∈ Z

First, can we describe their shape?

For each x ∈ Z , there is a neighborhood Ux ⊂ Z

Ux
∼= (−1, 1)p × K

where K ⊂ Rq is a closed. If K is not finite, then K is perfect.

If K has no interior points, then Z is called exceptional.
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Shape of minimal sets

For F codimension q = 1, Z exceptional ⇔ K is a Cantor set.

For F codimension q ≥ 2, the possibilities for K include:

• Compact submanifolds of Rq

• Fractals defined by Iterated Function Systems
• Julia sets of Rational Polynomials & Holomorphic Dynamics
• Limit sets of Schottky Groups

Each of these categories of “wild topology” for K is more complicated
than we can hope to fully understand.
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Wild Topology, I

Fractal Tree
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Wild Topology, II

Limit set of Schottky Group
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Wild Topology, III

Sierpinski Pyramid
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Shape invariants

Z ⊂ M a minimal set of F always has a “neighborhood system”

Z ⊂ · · ·Ui ⊂ · · · ⊂ U1 , K =
∞⋂
i=1

Ui

where the Ui are open. The system defines the shape of K .

Definition: A minimal set Z ⊂ M is moveable (or stable) if it has a
neighborhood system such that for i � 1 the inclusions Ui+1 ⊂ Ui are
homotopy equivalences.

Remark: All of the minimal sets illustrated above are stable.

How to obtain an unstable minimal set?
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Wild Topology, IV

Cantor Set → Solenoid

The leaves of F give a “twist” to the points of K . Because it is also a
foliation, there is also a “twist” imparted to every open neighborhood of K .

The picture above suggests the proof that solenoids are not stable.

Solenoids naturally arise as hyperbolic attractors of smooth flows.

But they are also part of the dynamics of foliations.
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A construction

Theorem: [Clark & Hurder (2008)] For p ≥ 1 and q ≥ 2n, there exists
commuting diffeomorphisms ϕi : Sq → Sq, 1 ≤ i ≤ p, so that the
suspension of the induced action Zp on Sq yields a smooth foliation F
with solenoidal minimal set S, such that:

• The leaves of F restricted to S are all isometric to Rp

• Action of Zp on Cantor set K = S ∩ Sq has a unique invariant
probability measure (action is equivalent to generalized odometer)

• Every open neighborhood of K contains periodic domains for the
action of Zp on Sq

• The isotropy groups of periodic orbits form a profinite series

· · · Γi ⊂ · · · Γ1 ⊂ Γ0 = Zn , Γi = ~ni · Zp

• K is an “{~ni}-adic” completion of Zp: K ∼= lim
←

(Γ0/Γi ).

Steven Hurder (UIC) Classifying Foliations February 26, 2009 20 / 35



A construction

Theorem: [Clark & Hurder (2008)] For p ≥ 1 and q ≥ 2n, there exists
commuting diffeomorphisms ϕi : Sq → Sq, 1 ≤ i ≤ p, so that the
suspension of the induced action Zp on Sq yields a smooth foliation F
with solenoidal minimal set S, such that:

• The leaves of F restricted to S are all isometric to Rp

• Action of Zp on Cantor set K = S ∩ Sq has a unique invariant
probability measure (action is equivalent to generalized odometer)

• Every open neighborhood of K contains periodic domains for the
action of Zp on Sq

• The isotropy groups of periodic orbits form a profinite series

· · · Γi ⊂ · · · Γ1 ⊂ Γ0 = Zn , Γi = ~ni · Zp

• K is an “{~ni}-adic” completion of Zp: K ∼= lim
←

(Γ0/Γi ).

Steven Hurder (UIC) Classifying Foliations February 26, 2009 20 / 35



A construction

Theorem: [Clark & Hurder (2008)] For p ≥ 1 and q ≥ 2n, there exists
commuting diffeomorphisms ϕi : Sq → Sq, 1 ≤ i ≤ p, so that the
suspension of the induced action Zp on Sq yields a smooth foliation F
with solenoidal minimal set S, such that:

• The leaves of F restricted to S are all isometric to Rp

• Action of Zp on Cantor set K = S ∩ Sq has a unique invariant
probability measure (action is equivalent to generalized odometer)

• Every open neighborhood of K contains periodic domains for the
action of Zp on Sq

• The isotropy groups of periodic orbits form a profinite series

· · · Γi ⊂ · · · Γ1 ⊂ Γ0 = Zn , Γi = ~ni · Zp

• K is an “{~ni}-adic” completion of Zp: K ∼= lim
←

(Γ0/Γi ).

Steven Hurder (UIC) Classifying Foliations February 26, 2009 20 / 35



A construction

Theorem: [Clark & Hurder (2008)] For p ≥ 1 and q ≥ 2n, there exists
commuting diffeomorphisms ϕi : Sq → Sq, 1 ≤ i ≤ p, so that the
suspension of the induced action Zp on Sq yields a smooth foliation F
with solenoidal minimal set S, such that:

• The leaves of F restricted to S are all isometric to Rp

• Action of Zp on Cantor set K = S ∩ Sq has a unique invariant
probability measure (action is equivalent to generalized odometer)

• Every open neighborhood of K contains periodic domains for the
action of Zp on Sq

• The isotropy groups of periodic orbits form a profinite series

· · · Γi ⊂ · · · Γ1 ⊂ Γ0 = Zn , Γi = ~ni · Zp

• K is an “{~ni}-adic” completion of Zp: K ∼= lim
←

(Γ0/Γi ).

Steven Hurder (UIC) Classifying Foliations February 26, 2009 20 / 35



A construction

Theorem: [Clark & Hurder (2008)] For p ≥ 1 and q ≥ 2n, there exists
commuting diffeomorphisms ϕi : Sq → Sq, 1 ≤ i ≤ p, so that the
suspension of the induced action Zp on Sq yields a smooth foliation F
with solenoidal minimal set S, such that:

• The leaves of F restricted to S are all isometric to Rp

• Action of Zp on Cantor set K = S ∩ Sq has a unique invariant
probability measure (action is equivalent to generalized odometer)

• Every open neighborhood of K contains periodic domains for the
action of Zp on Sq

• The isotropy groups of periodic orbits form a profinite series

· · · Γi ⊂ · · · Γ1 ⊂ Γ0 = Zn , Γi = ~ni · Zp

• K is an “{~ni}-adic” completion of Zp: K ∼= lim
←

(Γ0/Γi ).

Steven Hurder (UIC) Classifying Foliations February 26, 2009 20 / 35



A construction

Theorem: [Clark & Hurder (2008)] For p ≥ 1 and q ≥ 2n, there exists
commuting diffeomorphisms ϕi : Sq → Sq, 1 ≤ i ≤ p, so that the
suspension of the induced action Zp on Sq yields a smooth foliation F
with solenoidal minimal set S, such that:

• The leaves of F restricted to S are all isometric to Rp

• Action of Zp on Cantor set K = S ∩ Sq has a unique invariant
probability measure (action is equivalent to generalized odometer)

• Every open neighborhood of K contains periodic domains for the
action of Zp on Sq

• The isotropy groups of periodic orbits form a profinite series

· · · Γi ⊂ · · · Γ1 ⊂ Γ0 = Zn , Γi = ~ni · Zp

• K is an “{~ni}-adic” completion of Zp: K ∼= lim
←

(Γ0/Γi ).

Steven Hurder (UIC) Classifying Foliations February 26, 2009 20 / 35



The standard construction makes use of infinitely repeated iteration of
embeddings, disks inside of disks:

First stage of inductive construction

At each stage of the iteration:
• Keep a center disk Dq

ε′ on which the action is a rotation about center
• View actions of Zp as deformations of finite representations into SO(q)
• View process as sequence of inductive surgeries on suspended foliations

See “Solenoidal minimal sets for foliations”, Clark & Hurder 2008
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Comments

At each stage of the construction, there is a choice Γi+1 ⊂ Γi .

For rank p ≥ 2, the “~n-adic” completions of Zp cannot be “classified by
invariants”. See “The classification problem for torsion-free abelian groups
of finite rank” by S. Thomas, J. Amer. Math. Soc., 2003.

Problem: Can one “classify”, in the sense of descriptive set theory, the
solenoidal minimal sets?

The study of “unstable” minimal sets for foliations has great complexity.

In our construction, we force the existence of periodic disks for the action
of the group Zp: Every open neighborhood of the minimal Cantor set K
for the Zp-action has infinitely many essential local actions of finite groups
whose orders tends to infinity. This encodes the algebraic data of the
Zp-action into the dynamical data, and as homotopical data.

An aside . . .
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Topological dynamics

Theorem: Let F be a C r -foliation of M, r ≥ 0. Then there is a disjoint
Borel decomposition of M into F-saturated subsets

M = E ∪ P ∪H

• The dynamical system defined by F restricted to E is equicontinuous,
and E is the largest such Borel saturated subset.

• The set P consists of the points for which the dynamical system is
distal, minus the equicontinuous set.

• The set H is the complementary set of points where the foliation
dynamical system is proximal.

In the case where r ≥ 1, H can be considered as the set of points where
the dynamics are non-uniformly partially hyperbolic.
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Junk dynamics

The sets E and P are traditionally considered part of the “junk” dynamics
of F , while the hyperbolic set H is the “active” part of the dynamics.

Theorem: [Hurder, 1987, . . . , 2007] Secondary cohomology invariants of
F are “supported” on H.

The study of non-uniformly partially hyperbolic dynamics of flows is a
major area of current research in smooth dynamical systems.

Solenoidal minimal sets are contained in the equicontinuous set E .

Their shape neighborhoods are often contained in E ∪ P.

But are the non-hyperbolic sets “junk”? Hardly. There is lots of
cohomology data to be extracted from the “junk”.
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Classifying spaces

“Milnor join” construction ⇒ classifying space BG of a Lie group G

Generalized by [Haefliger (1970), Segal (1975)] to a classifying space for a
topological groupoid Γ. The space BΓ ≡ ‖Γ‖ is the “semi-simplicial fat
realization” of the groupoid Γ.

In general, the space BΓ is as obscure as the nomenclature suggests.

Most well-known: the “universal classifying space” of codimension-q
foliations, BΓr

q introduced above. The objects of Γr
q are points of Rq, and

morphisms are germs of local C r -diffeomorphisms of Rq.

The foliation F on M has a well-defined homotopy class hF : M → BΓr
q.

For any open set U ⊂ M, the restriction F | U defines a groupoid ΓU|F .

There is a natural map of its realization BΓU|F → BΓr
q.
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Exotic cohomology

A neighborhood system of a minimal set Z ⊂ M yields directed system of
spaces {BΓUi+1|F → BΓUi |F}

∞
i=1.

Definition: H∗(Z ,F) ≡ lim
→
{H∗(BΓUi |F )→ H∗(BΓUi+1|F )}

Example: Suppose that Z is a periodic orbit of a flow, defined by the
suspension of an effective Γ = Z/pZ-action on a disk D2 fixing the origin.
This is a finite group action, so is an example of “junk” dynamics.
However,

H(Z ,F ; Z/pZ) = H∗(BΓ; Z/pZ) ∼= (Z/pZ)[e1]

is a polynomial ring generated by the Euler class e1 of degree 2.

This is just the “Borel construction” for the finite group action: a
fixed-point for a group action is not really a point; in homotopy theory, it
is BGx where Gx is the isotropy subgroup of the fixed-point x .
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Application

Each open neighborhood Ui of the minimal set Z yields is a natural map
BΓUi |F → BΓq, hence an induced map of the limit space

hZ : Ẑ ≡ lim
←
{BΓUi+1|F → BΓUi |F} −→ BΓq

Theorem: [Hurder (2008)] Let S be the solenoidal minimal set above.
Then the homotopy class of the induced map hS : Ŝ → BΓq is non-trivial:

h∗S : H4`−1(BΓq; R)→ H4`−1(S,F ; R) is non-trivial for ` > q/2

Proof: The Cheeger-Simons classes for C r -foliations, r ≥ 2, derived from
H∗(BSO(q); R) are in the image of h∗S . . . .
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Cheeger-Simons classes and solenoids

Question: How can these higher dimensional classes Cheeger-Simons
classes be non-zero for a solenoid defined by a flow on a 3-manifold? Or
an Rp-action on Tp × Dq?

Answer: For a solenoid S defined by an action of G = Zp on Dq, and an
open neighborhood S ⊂ U, the realization BΓU|F contains a copy of a
Borel space BGx for each fixed point x ∈ U with finite group action germ.
That is, the neighborhood of Ŝ in BΓ2

q contains infinitely many copies of
Borel spaces for finite group actions. In the limit, we obtain R-valued
Cheeger-Simons classes supported on the limit Ŝ, which is a shape cycle:

Ŝ is a semi-simplical measured lamination equipped with a foliated
microbundle structure, carrying non-trivial cohomology classes of BΓ2

q.
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An illustration

So, applying the classifying space functor yields a nested sequence of
“curled up leaves” clustering on the central stalk Ŝ. How to picture this?

Typical “shape cycle”
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Cheeger-Simons classes

Let p : E→ M be an oriented R2m-vector bundle over manifold M.

νE : M → BΓ+
2m → BSO(2m) is the classifying map for EF .

For example, m = 1 then BSO(2) ∼= S∞/S1.

H∗(BSO(2m); R) is generated as algebra by:

e ∈ H2m(BSO(2m); R) − The Euler Class
p` ∈ H4`(BSO(2m); R) − The Pontrjagin Classes

Set e(E) = ν∗E(e) ∈ H2m(M; R) and p`(E) = ν∗E(p`) ∈ H4`(M; R)

Consider the Bockstein maps:

· · · → H∗−1(M; R/Z)→ H∗(M; Z)→ H∗(M; R)→ · · ·

C ∈ ker{H∗(M; Z)→ H∗(M; R)}, “preimage” Ĉ ∈ H∗−1(M; R/Z)
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Let J = (j1 ≤ j2 ≤ · · · ≤ jk) and set pJ = pj1pj2 · · · pjk .

|J| = j1 + · · · jk and then deg pJ = 4|J|.

In the case where E has a foliation F transverse to the fibers, and
C = pJ(E) with |J| > m, we have:

Bott Vanishing Theorem: [1970] If E has a foliation F transverse to the
fibers of p : E→ M, then

ν∗E : H∗(BSO(2m); R)→ H∗(M; R) is trivial for ∗ > 2q = 4m.

The Bott Vanishing Theorem implies there exists pre-images

p̂J(E) ∈ H4|J|−1(M; R/Z). If E is a trivial bundle, then these “Bockstein
classes” lift to the Cheeger-Simons classes for F :

T (pJ) ∈ H4|J|−1(M; R)

T (em) ∈ H2m−1(M; R)
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Generalized winding numbers

For m = 1, F foliation transverse to D2-bundle E→ M, then have

T (e`1) ∈ H2`−1(M; R) , ` > 2

Each class T (e`1) is a “generalized winding invariant” for the holonomy of
the foliation F on the fibers of E→ M.

For m > 1, F foliation transverse to D2m-bundle E→ M, then for each
p ∈ H∗(BSO(2m); Z) there is a “generalized non-commutative winding
invariant”

T (p) ∈ H∗−1(M; R) , ∗ > 4m
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Heitsch Thesis (1970)

Theorem: The Bott Vanishing Theorem is false for Z coefficients!

Example, continued: Let (Z/pZ)m act on D2m via rotations
{ϕ1, . . . , ϕm} with period p on each of the m-factors of D2.

Form the suspension flat bundle

E = S∞ × D2m/ϕ

Then the composition

ν∗E : H∗(BSO(2m); Z/pZ)→ H∗(BΓ+
2m; Z/pZ)→ H∗(E; Z/pZ)

is injective. Let p →∞.
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Remarks

After 40 years, the study of the classification problem for foliations has
produced wide-ranging new techniques, and new perspectives on more
traditional subjects and more recent topics.

The study of foliations, and the “classification problem” first formulated
by Haefliger in 1970, benefits from all of these developments.

As for “What is BΓr
q?” it seems we are still not even close to an answer.

Thanks . . .
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