Solenoidal minimal sets in foliations

Steven Hurder

University of Illinois at Chicago www.math.uic.edu/~hurder

Special Session on Smooth Dynamical Systems DePaul University, Chicago, Illinois

Laminations - back to the 60's

A *p*-dimensional lamination \mathcal{L} is a compact foliated space \mathbb{X} modeled transversally on a continua: there is a compact metric space \mathcal{T} and an open covering of \mathbb{X} by flow-boxes

$$\{\phi_{\ell} \colon (-1,1)^{p} \times V_{\ell} \to U_{\ell} \subset \mathbb{X} \mid 1 \leq \ell \leq k\} \ , \ V_{\ell} \subset \mathcal{T}$$

so that if $U_k \cap U_\ell \neq \emptyset$, then $\phi_{\ell k} = \phi_\ell \circ \phi_k^{-1}$ maps open subsets of the "horizontal" slices $(-1, 1)^p \times \{x\}$ to horizontal slices, where defined.

Laminations - back to the 60's

A *p*-dimensional lamination \mathcal{L} is a compact foliated space \mathbb{X} modeled transversally on a continua: there is a compact metric space \mathcal{T} and an open covering of \mathbb{X} by flow-boxes

$$\{\phi_{\ell} \colon (-1,1)^{p} \times V_{\ell} \to U_{\ell} \subset \mathbb{X} \mid 1 \leq \ell \leq k\} \ , \ V_{\ell} \subset \mathcal{T}$$

so that if $U_k \cap U_\ell \neq \emptyset$, then $\phi_{\ell k} = \phi_\ell \circ \phi_k^{-1}$ maps open subsets of the "horizontal" slices $(-1, 1)^p \times \{x\}$ to horizontal slices, where defined.

The leaf of \mathcal{L} through $x \in \mathbb{X}$ is the connected component L_x of \mathbb{X} containing x, where \mathbb{X} is given the fine topology generated by the open subsets of the form $\phi_{\ell}(W \times \{y\})$ where $W \subset (-1,1)^p$ is open and $y \in V_{\ell}$.

 \mathcal{L} is *minimal* if every leaf L_x is dense in \mathbb{X} for the metric topology.

Minimal sets in foliations

Let \mathcal{F} be a codimension q, C^r -foliation of a closed manifold M, for $r \geq 0$.

Minimal sets in foliations

Let \mathcal{F} be a codimension q, C^r -foliation of a closed manifold M, for $r \geq 0$.

For each leaf L of \mathcal{F} , its closure $\mathbb{K} = \overline{L}$ is a minimal set for \mathcal{F} if for each $y \in \mathbb{K}$, the closure of the leaf through y is all of $\mathbb{K} : \overline{L_y} = \mathbb{K}$.

Zorn's Lemma \implies closure of any leaf L contains a minimal set.

Minimal sets in foliations

Let \mathcal{F} be a codimension q, C^r -foliation of a closed manifold M, for $r \geq 0$.

For each leaf L of \mathcal{F} , its closure $\mathbb{K} = \overline{L}$ is a minimal set for \mathcal{F} if for each $y \in \mathbb{K}$, the closure of the leaf through y is all of $\mathbb{K} : \overline{L_y} = \mathbb{K}$.

Zorn's Lemma \implies closure of any leaf L contains a minimal set.

Basic Fact: Let \mathbb{K} be a minimal set for \mathcal{F} then the restriction $\mathcal{F}|\mathbb{K}$ is a minimal lamination.

Basic Problem: Can you characterize the minimal laminations which arise as minimal sets of C^r -foliations, $r \ge 0$?

• • = • •

Basic Problem: Can you characterize the minimal laminations which arise as minimal sets of C^r -foliations, $r \ge 0$?

Remark: For a \mathbb{K} which is the minimal set of a foliation, the model space \mathcal{T} has natural local embeddings into Euclidean space \mathbb{R}^q where q is the codimension of \mathcal{F} .

For a codimension-one foliation \mathcal{F} , the model space \mathcal{T} must either be Euclidean space, or a Cantor set. But do not have a quasi-isometric characterization of the possible Cantor sets.

Basic Problem: Can you characterize the minimal laminations which arise as minimal sets of C^r -foliations, $r \ge 0$?

Remark: For a \mathbb{K} which is the minimal set of a foliation, the model space \mathcal{T} has natural local embeddings into Euclidean space \mathbb{R}^q where q is the codimension of \mathcal{F} .

For a codimension-one foliation \mathcal{F} , the model space \mathcal{T} must either be Euclidean space, or a Cantor set. But do not have a quasi-isometric characterization of the possible Cantor sets.

Open Question: If \mathcal{F} is codimension-one C^2 -foliation and \mathbb{K} is a minimal set modeled on a Cantor set, must \mathbb{K} have Lebesgue measure zero?

Basic Problem: Can you characterize the minimal laminations which arise as minimal sets of C^r -foliations, $r \ge 0$?

Remark: For a \mathbb{K} which is the minimal set of a foliation, the model space \mathcal{T} has natural local embeddings into Euclidean space \mathbb{R}^q where q is the codimension of \mathcal{F} .

For a codimension-one foliation \mathcal{F} , the model space \mathcal{T} must either be Euclidean space, or a Cantor set. But do not have a quasi-isometric characterization of the possible Cantor sets.

Open Question: If \mathcal{F} is codimension-one C^2 -foliation and \mathbb{K} is a minimal set modeled on a Cantor set, must \mathbb{K} have Lebesgue measure zero?

Starter Problem: Given a class of laminations, construct foliations which have minimal sets homeomorphic to laminations in this class.

Special laminations: Solenoids

Let $L_{\ell} = L$ be a closed *p*-dimensional manifold for all $\ell \geq 0$.

Let $f: L \rightarrow L$ be a non-trivial covering map.

Set $f_{\ell} = f \colon L_{\ell} \to L_{\ell-1}$ for $\ell > 0$.

Definition: $S = \lim \{f_{\ell} : L_{\ell} \to L_{\ell-1}\}$ is the solenoid defined by $f : L \to L$.

Special laminations: Solenoids

Let $L_{\ell} = L$ be a closed *p*-dimensional manifold for all $\ell \geq 0$.

Let $f: L \rightarrow L$ be a non-trivial covering map.

Set $f_{\ell} = f \colon L_{\ell} \to L_{\ell-1}$ for $\ell > 0$.

Definition: $S = \lim_{\leftarrow} \{f_{\ell} : L_{\ell} \to L_{\ell-1}\}$ is the solenoid defined by $f : L \to L$.

Example: $f: \mathbb{S}^1 \to \mathbb{S}^1$, where $f(z) = z^k$ for some integer k > 1.

Generalized solenoids

In the most general case, let $f_{\ell}: L_{\ell} \to L_{\ell-1}$ be a sequence of non-trivial covering maps of closed (branched) manifolds, for $\ell \ge 1$. Then the (generalized) solenoid defined by this data is

$$\mathcal{S} = \lim_{\leftarrow} \{ f_{\ell} \colon L_{\ell} \to L_{\ell-1} \}$$

イロト 不得下 イヨト イヨト 二日

Generalized solenoids

In the most general case, let $f_{\ell} \colon L_{\ell} \to L_{\ell-1}$ be a sequence of non-trivial covering maps of closed (branched) manifolds, for $\ell \ge 1$. Then the (generalized) solenoid defined by this data is

$$\mathcal{S} = \lim_{\leftarrow} \left\{ f_{\ell} \colon L_{\ell} \to L_{\ell-1} \right\}$$

Problem: Given a generalized solenoid S with *p*-dimensional leaves, when does there exists a C^r -foliation \mathcal{F} of a compact manifold such that S is homeomorphic to a minimal set for \mathcal{F} ?

Let \mathcal{F} be a C^r -foliation of a smooth compact manifold M, for $r \geq 1$.

Let \mathcal{F} be a C^r -foliation of a smooth compact manifold M, for $r \geq 1$.

Theorem: (Reeb [1952]) Let *L* be a compact leaf of a codimension one foliation \mathcal{F} such that $\pi_1(L, x) = 0$. Then there exists an open saturated neighborhood $L \subset U$ such that $\mathcal{F} \mid U$ is a product foliation.

Let \mathcal{F} be a C^r -foliation of a smooth compact manifold M, for $r \geq 1$.

Theorem: (Reeb [1952]) Let *L* be a compact leaf of a codimension one foliation \mathcal{F} such that $\pi_1(L, x) = 0$. Then there exists an open saturated neighborhood $L \subset U$ such that $\mathcal{F} \mid U$ is a product foliation.

Theorem: (Thurston [1974]) Let *L* be a compact leaf of a codimension one foliation \mathcal{F} such that $H^1(L, \mathbb{R}) = 0$. Then there exists an open saturated neighborhood $L \subset U$ such that $\mathcal{F} \mid U$ is a product foliation.

Let \mathcal{F} be a C^r -foliation of a smooth compact manifold M, for $r \geq 1$.

Theorem: (Reeb [1952]) Let *L* be a compact leaf of a codimension one foliation \mathcal{F} such that $\pi_1(L, x) = 0$. Then there exists an open saturated neighborhood $L \subset U$ such that $\mathcal{F} \mid U$ is a product foliation.

Theorem: (Thurston [1974]) Let *L* be a compact leaf of a codimension one foliation \mathcal{F} such that $H^1(L, \mathbb{R}) = 0$. Then there exists an open saturated neighborhood $L \subset U$ such that $\mathcal{F} \mid U$ is a product foliation.

Theorem: (Stowe [1983]) Let L be a compact leaf of a codimension q foliation \mathcal{F} such that $H^1(L, \mathbb{V}) = 0$ for all flat finite-dimensional vector bundles associated to a representation of $\pi_1(L, x)$. Then there exists an open saturated neighborhood $L \subset U$ such that if \mathcal{F}' is a sufficiently C^1 close to \mathcal{F} , then $\mathcal{F}' \mid U$ is a product foliation.

イロト 不得 トイヨト イヨト 二日

Instability of leaves

Theorem 1: (Clark & Hurder [2006]) \mathcal{F} is a codimension $q \ C^1$ -foliation. Let L be a compact leaf with $H^1(L, \mathbb{R}) \neq 0$, and $L \subset U$ is a saturated open neighborhood for which $\mathcal{F} \mid U$ is a product foliation. Then there exists a C^1 -foliation \mathcal{F}' arbitrarily C^1 -close to \mathcal{F} such that

- U is saturated for \mathcal{F}' ,
- $\mathcal{F} = \mathcal{F}'$ on M U,
- $\mathcal{F}' \mid U$ contains a solenoidal distal minimal set $\mathbb{K} \subset U$.

For example, if p = 2 and L is an oriented surface with $H^1(L; \mathbb{R}) \neq 0$, then there exists C^1 -perturbations of \mathcal{F} for which the leaf L has nearby solenoidal minimal sets.

Realization of solenoids

The construction technique used to prove the Theorem 1 has other applications. For example:

Fix an integer $N \ge 2$. Let Γ_{ℓ} be a sequence of finite groups, for $\ell \ge 1$, such that their orders satisfy a uniform bound $2 \le |\Gamma_{\ell}| \le N$.

Let $\mathbf{K} = \prod_{\ell=1}^{\infty} \Gamma_{\ell}$ be the product (Cantor) space, with the sequence metric.

Realization of solenoids

The construction technique used to prove the Theorem 1 has other applications. For example:

Fix an integer $N \ge 2$. Let Γ_{ℓ} be a sequence of finite groups, for $\ell \ge 1$, such that their orders satisfy a uniform bound $2 \le |\Gamma_{\ell}| \le N$.

Let $\mathbf{K} = \prod_{\ell=1}^{\infty} \Gamma_{\ell}$ be the product (Cantor) space, with the sequence metric.

Theorem 2: There exists a C^0 -foliation \mathcal{F} of a compact manifold M with leaf dimension p = 2 and codimension q = N! which has a compact leaf $L_0 = \Sigma_N$ (surface of genus N) and a solenoidal minimal set \mathbb{K} near to L_0 so that the transverse geometry of \mathbb{K} is quasi-isometric to \mathbf{K} .

イロト イポト イヨト イヨト 二日

Choose a basepoint $x \in L$, and set $\Gamma = \pi_1(L, x)$.

 Γ acts on the right as deck transformations of the universal cover $\widetilde{L} \to L$.

Choose a basepoint $x \in L$, and set $\Gamma = \pi_1(L, x)$.

 Γ acts on the right as deck transformations of the universal cover $\widetilde{L} \to L$.

Let $\rho: \Gamma \to \mathbf{SO}(\mathbf{q})$ be an orthogonal representation.

 Γ acts on the left as isometries of \mathbb{R}^q by $\gamma \cdot \vec{v} = \rho(\gamma)\vec{v}$.

Choose a basepoint $x \in L$, and set $\Gamma = \pi_1(L, x)$.

 Γ acts on the right as deck transformations of the universal cover $\widetilde{L} \to L$. Let $\rho: \Gamma \to \mathbf{SO}(\mathbf{q})$ be an orthogonal representation.

 Γ acts on the left as isometries of \mathbb{R}^q by $\gamma \cdot \vec{v} = \rho(\gamma)\vec{v}$.

Define a flat \mathbb{R}^q -bundle with holonomy ρ by

$$\mathbb{E}_{\rho}^{q} = (\widetilde{L} \times \mathbb{R}^{q}) / (\widetilde{y} \cdot \gamma, \vec{v}) \sim (\widetilde{y}, \gamma \cdot \vec{v}) \longrightarrow L$$

Choose a basepoint $x \in L$, and set $\Gamma = \pi_1(L, x)$.

 Γ acts on the right as deck transformations of the universal cover $\widetilde{L} \to L$. Let $\rho: \Gamma \to \mathbf{SO}(\mathbf{q})$ be an orthogonal representation.

 Γ acts on the left as isometries of \mathbb{R}^q by $\gamma \cdot \vec{v} = \rho(\gamma)\vec{v}$.

Define a flat \mathbb{R}^q -bundle with holonomy ρ by

$$\mathbb{E}_{\rho}^{\boldsymbol{q}} = (\widetilde{L} \times \mathbb{R}^{\boldsymbol{q}}) / (\widetilde{\boldsymbol{y}} \cdot \boldsymbol{\gamma}, \vec{\boldsymbol{v}}) \sim (\widetilde{\boldsymbol{y}}, \boldsymbol{\gamma} \cdot \vec{\boldsymbol{v}}) \longrightarrow L$$

The most familiar example is for $L = \mathbb{S}^1$ and $\Gamma = \pi_1(\mathbb{S}^1, x) = \mathbb{Z} \to \mathbf{SO}(2)$. Then \mathbb{E}^2_{ρ} is the flat vector bundle over \mathbb{S}^1 with the foliation by lines of slope $\rho(1) = \exp(2\pi\sqrt{-1}\alpha)$.

In general, the bundle $\mathbb{E}^q_{\rho} \to L$ need not be a product vector bundle.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ● ●

Trivializing flat bundles

Proposition: Suppose that there exists a 1-parameter family of representations $\{\rho_t \colon \Gamma \to \mathbf{SO}(\mathbf{q})\}$ such that ρ_0 is the trivial map, and $\rho_1 = \rho$, then $\{\rho_t\}$ induces a vector bundle trivialization, $\mathbb{E}_{\rho}^q \cong L \times \mathbb{R}^q$.

Proof: The family of representations defines a family of flat bundles $\mathbb{E}_{\rho_t}^q$ over the product space $L \times [0, 1]$. This defines an isotopy between the bundles $\mathbb{E}_{\rho_0}^q$ and $\mathbb{E}_{\rho_1}^q$, which induces a bundle isomorphism between them. The initial bundle $\mathbb{E}_{\rho_0}^q$ is a product, hence the same holds for $\mathbb{E}_{\rho_1}^q$.

In the case of the example above over \mathbb{S}^1 the product structure can be written down explicitly, so that we can "view" the resulting 2-torus with foliation having lines of slope α .

A key point is that the bundle isomorphism between $\mathbb{E}_{\rho_0}^q$ and $\mathbb{E}_{\rho_1}^q$ depends smoothly on the path ρ_t .

イロト 不得 トイヨト イヨト 二日

Abelian representations

$$\begin{split} k &= \text{the greatest integer such that } 2k \leq q. \\ \mathbb{T}^k \subset \mathbf{SO}(\mathbf{q}) \text{ a maximal embedded } k\text{-torus.} \\ \xi &= (\xi_1, \dots, \xi_k) \colon \Gamma \to \mathbb{R}^k \text{ a representation. Define} \\ \rho_t^{\xi} \colon \Gamma \to \mathbf{SO}(\mathbf{q}) \\ \rho_t^{\xi}(\gamma) &= [\exp(2\pi t \sqrt{-1}\xi_1(\gamma), \dots, \exp(2\pi t \sqrt{-1}\xi_k(\gamma))] \end{split}$$

This is a 1-parameter family of orthogonal representations.

Abelian representations

$$\begin{split} k &= \text{the greatest integer such that } 2k \leq q. \\ \mathbb{T}^k \subset \mathbf{SO}(\mathbf{q}) \text{ a maximal embedded } k\text{-torus.} \\ \xi &= (\xi_1, \dots, \xi_k) \colon \Gamma \to \mathbb{R}^k \text{ a representation. Define} \\ \rho_t^{\xi} \colon \Gamma \to \mathbf{SO}(\mathbf{q}) \\ \rho_t^{\xi}(\gamma) &= [\exp(2\pi t \sqrt{-1}\xi_1(\gamma), \dots, \exp(2\pi t \sqrt{-1}\xi_k(\gamma))] \end{split}$$

This is a 1-parameter family of orthogonal representations. Set

$$\begin{aligned} \mathbb{D}_{\epsilon}^{q} &= \{(z_{1},\ldots,z_{q}) \mid z_{1}^{2}+\cdots z_{q}^{2} < \epsilon\} \subset \mathbb{R}^{q} \\ \mathbb{B}_{\epsilon}^{q} &= \{(z_{1},\ldots,z_{q}) \mid z_{1}^{2}+\cdots z_{q}^{2} \leq \epsilon\} \subset \mathbb{R}^{q} \\ \mathbb{S}_{\epsilon}^{q-1} &= \{(z_{1},\ldots,z_{q}) \mid z_{1}^{2}+\cdots z_{q}^{2} = \epsilon\} \subset \mathbb{R}^{q} \end{aligned}$$

Realizing abelian representations

Proposition: $\xi \colon \Gamma \to \mathbb{R}^k$ defines a flat bundle foliation \mathcal{F}_{ξ} of $L \times \mathbb{S}^{q-1}$ whose leaves cover *L*. Moreover, if the image of ξ is contained in the rational points $\mathbb{Q}^k \subset \mathbb{R}^k$, then all leaves of \mathcal{F}_{ξ} are compact.

Proof: ρ_t^{ξ} is an isotopy from ξ to the trivial representation. \Box

Realizing abelian representations

Proposition: $\xi: \Gamma \to \mathbb{R}^k$ defines a flat bundle foliation \mathcal{F}_{ξ} of $L \times \mathbb{S}^{q-1}$ whose leaves cover *L*. Moreover, if the image of ξ is contained in the rational points $\mathbb{Q}^k \subset \mathbb{R}^k$, then all leaves of \mathcal{F}_{ξ} are compact.

Proof: ρ_t^{ξ} is an isotopy from ξ to the trivial representation. \Box

Basic Observation: Given a path $\lambda : [0, \epsilon] \to \operatorname{Rep}(\Gamma, \operatorname{SO}(q))$ of representations with $\lambda(\epsilon)$ the trivial representation, we obtain a foliation \mathcal{F}_{λ} of $L \times \mathbb{D}_{\epsilon}^{q}$ so that

• the restriction of \mathcal{F}_{λ} to the spherical fiber $L \times \mathbb{S}_{s}^{q-1}$ is $\mathcal{F}_{\lambda(s)}$

• the restriction of \mathcal{F}_{λ} to the spherical fiber $L \times \mathbb{S}_{\epsilon}^{q-1}$ is the product foliation.

The basic plug

Suppose we are given a codimension-q, C^1 -foliation \mathcal{F} , a compact leaf L with $H^1(L, \mathbb{R}) \neq 0$, and $L \subset U$ is a saturated open neighborhood for which $\mathcal{F} \mid U$ is a product foliation. We can assume that $U = L \times \mathbb{D}_{\epsilon}^q$.

Fix a non-trivial representation $\xi_1 \colon \Gamma \to \mathbb{Q}^k$ which exists as $H^1(L, \mathbb{R}) \neq 0$.

The basic plug

Suppose we are given a codimension-q, C^1 -foliation \mathcal{F} , a compact leaf L with $H^1(L, \mathbb{R}) \neq 0$, and $L \subset U$ is a saturated open neighborhood for which $\mathcal{F} \mid U$ is a product foliation. We can assume that $U = L \times \mathbb{D}_{\epsilon}^q$.

Fix a non-trivial representation $\xi_1 \colon \Gamma \to \mathbb{Q}^k$ which exists as $H^1(L, \mathbb{R}) \neq 0$.

Let $0 < \epsilon/2 < \epsilon_1 < \epsilon$, and set $\epsilon'_1 = (\epsilon_1 + \epsilon)/2$. Choose a monotone decreasing smooth function $\mu_1 \colon [0, \epsilon] \to [0, 1]$ such that

$$\mu_1(s) = egin{cases} 1 & ext{if} \;\; 0 \leq s \leq \epsilon_1, \ 0 & ext{if} \;\; \epsilon_1' \leq s \leq \epsilon \end{cases}$$

Set $\rho_{1,s}^{\xi_1} = \rho^{\mu_1(s)\xi_1} \colon \Gamma \to \mathbf{SO}(\mathbf{q})$. Use this family of representations to define a foliation \mathcal{F}_1 of $N_1 = L \times \mathbb{D}_{\epsilon}^q$.

Note that \mathcal{F}_1 is the product foliation outside of $L \times \mathbb{D}^q_{\epsilon'_1}$, and has all leaves compact inside $L \times \mathbb{B}^q_{\epsilon_1}$ and outside of $L \times \mathbb{B}^q_{\epsilon'_1}$

イロト 不得 トイヨト イヨト 二日

Let L_1 be a generic leaf of \mathcal{F}_1 contained in $L \times \mathbb{S}_{\epsilon_1/2}^{q-1}$.

By construction, $L_1 \to L$ is the compact covering associated to the kernel $\Gamma_1 \subset \Gamma$ of the homomorphism $\rho^{\xi_1} \colon \Gamma \to \mathbf{SO}(\mathbf{q})$.

Next choose $0 < \epsilon_2 < \epsilon$ sufficiently small so that \mathcal{F}_1 restricted to the ϵ_2 -disk bundle N_2 about L_1 is a product foliation.

We now repeat the construction: choose a non-trivial map $\xi_2 \colon \Gamma_1 \to \mathbb{Q}^k$ and maps μ_2 as before.

Iterate for all $n \ge 2$. This yields:

• A descending sequence of subgroups $\Gamma \supset \Gamma_1 \supset \Gamma_2 \supset \cdots$

3. 3

A 🖓 h

Iterate for all $n \ge 2$. This yields:

- A descending sequence of subgroups $\Gamma \supset \Gamma_1 \supset \Gamma_2 \supset \cdots$
- \bullet An increasing sequence of open saturated subsets, $\mathit{V}_1 \subset \mathit{V}_2 \subset \cdots$ where

$$V_n = L imes \mathbb{D}^q_{\epsilon} - L_{n+1} imes \mathbb{B}^q_{\epsilon_{n+1}}$$

Iterate for all $n \ge 2$. This yields:

- A descending sequence of subgroups $\Gamma \supset \Gamma_1 \supset \Gamma_2 \supset \cdots$
- An increasing sequence of open saturated subsets, $V_1 \subset V_2 \subset \cdots$ where

$$V_n = L imes \mathbb{D}^q_{\epsilon} - L_{n+1} imes \mathbb{B}^q_{\epsilon_{n+1}}$$

• $\mathbf{K}_n = L \times \mathbb{D}_{\epsilon}^q - V_n$ forms a nested sequence of compact sets, $\mathbf{K}_n \supset \mathbf{K}_{n+1}$

Iterate for all $n \ge 2$. This yields:

- A descending sequence of subgroups $\Gamma \supset \Gamma_1 \supset \Gamma_2 \supset \cdots$
- An increasing sequence of open saturated subsets, $V_1 \subset V_2 \subset \cdots$ where

$$V_n = L imes \mathbb{D}^q_{\epsilon} - L_{n+1} imes \mathbb{B}^q_{\epsilon_{n+1}}$$

• $\mathbf{K}_n = L imes \mathbb{D}_{\epsilon}^q - V_n$ forms a nested sequence of compact sets, $\mathbf{K}_n \supset \mathbf{K}_{n+1}$

• Smooth foliations \mathcal{F}'_n of $L \times \mathbb{D}^q_{\epsilon}$, such that all leaves of the restriction $\mathcal{F}'_n | \mathbf{K}_n$ are coverings of L that have increasingly high order, bounded below by the orders of the subgroups Γ_n .

(4個) (4回) (4回) (5)

The perturbation \mathcal{F}^\prime

Proposition: If the maps ξ_n are suitably chosen (i.e., the images of the generators of Γ approach 0 in \mathbb{Q}^k sufficiently rapidly) then:

- the foliations \mathcal{F}'_n converge to a C^r -foliation \mathcal{F}' of $L \times \mathbb{D}^q_{\epsilon}$.
- **2** $\mathbf{K} = \bigcap_{n=1}^{\infty} \mathbf{K}_n$ is a saturated compact set.
- **3** $\mathcal{F}' \mid \mathbf{K}$ is a solenoid.

The perturbation \mathcal{F}^\prime

Proposition: If the maps ξ_n are suitably chosen (i.e., the images of the generators of Γ approach 0 in \mathbb{Q}^k sufficiently rapidly) then:

- the foliations \mathcal{F}'_n converge to a C^r -foliation \mathcal{F}' of $L \times \mathbb{D}^q_{\epsilon}$.
- **2** $\mathbf{K} = \bigcap_{n=1}^{\infty} \mathbf{K}_n$ is a saturated compact set.
- **3** $\mathcal{F}' \mid \mathbf{K}$ is a solenoid.

Question: If \mathcal{F} is C^1 , must the orders of the quotient groups Γ_n/Γ_{n+1} be unbounded?

Remark: The key property used above is that there is a representation $\rho: \Gamma = \pi_1(L) \rightarrow \mathbf{SO}(\mathbf{q})$ that is connected to the identity. This suggest the dichotomy: either $\Gamma = \pi_1(L)$ is a Kahzdan group, or there exists perturbations of \mathcal{F} with solenoidal minimal sets. No idea how to do this.

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = のQ⊙