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A generalized lamination is a compact connected metric space M,
which admits a covering by open sets, each homeomorphic to a
product of a totally disconnected space with an open subset of
euclidean space Rn. The path components of M define the leaves
of dimension n and form a foliation F of M.

• A lamination is a hybrid of a compact manifold and a profinite
group or groupoid structure.

• We call these matchbox manifolds in our works, following usage
introduced by Aarts & Oversteegen.

• These arise in the study of aperiodic tilings, minimal sets for
dynamical systems, the study of complex rational maps, . . . .
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Definition: M is an n-dimensional matchbox manifold if:

• M is a continuum ≡ a compact, connected metric space;

• M admits a covering by foliated coordinate charts
U = {ϕi : Ui → [−1, 1]n × Xi | 1 ≤ i ≤ k};

• each Xi is a clopen subset of a totally disconnected space X;

• plaques Pi (z) = ϕ−1
i ([−1, 1]n × {z}) are connected, z ∈ Xi ;

• for Ui ∩ Uj 6= ∅, each plaque Pi (z) intersects at most one
plaque Pj(z ′), and change of coordinates along intersection is
smooth diffeomorphism;

+ some other technicalities.

The path connected components of M are the leaves of the
foliation F .
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The charts ϕi : Ui → [−1, 1]n × Xi on the open covering satisfy a
compatibility condition on their overlaps.
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Problem: Given matchbox manifolds M1 and M2 of the same leaf
dimension n ≥ 1, find invariants which are sufficient to imply that
the spaces are homeomorphic.

“Manifold invariants” + “algebraic invariants” = “Classification”

Problem: Given a matchbox manifold M, what are the properties
of the group of self-homeomorphisms Homeo(M).

• M is homogeneous if Homeo(M) acts transitively on M.

Problem: [Bing] Characterize the homogeneous laminations.
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Theorem: [Hagopian (1977), Aarts, Hagopian & Oversteegen
(1991)] The homogeneous 1-dimensional matchbox manifolds are
precisely the Vietoris solenoids.

Theorem: [Fokkink (1991), Aarts and Oversteegen (1995)]
Two orientable, minimal, 1–dimensional matchbox manifolds are
homeomorphic if and only if they are return equivalent.

Theorem: [Clark & Hurder (2013)] The homogeneous
n-dimensional matchbox manifolds are precisely the regular
solenoids.
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Classic example: Vietoris solenoid (1927), defined by tower of
coverings:

P ≡ · · · −→ S1 p`+1−→ S1 p`−→ · · · p2−→ S1 p1−→ S1

where each p` is a covering map of degree n` > 1.

P is called a presentation. Set nP = {n1, n2, n3, . . .}. Can assume
that each ni > 1 is prime, otherwise randomly chosen.

SP ≡ lim
←−
{p`+1 : S1 → S1} ⊂

∏
`≥0

S1

SP is given the (relative) product topology.

Proposition: The space SP is a matchbox manifold, for which
every leaf is diffeomorphic to R, and dense in SP .
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Van Dantzig - Vietoris solenoid
The case where ni = 2 for all i ≥ 1
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Proposition: The homeomorphism type of SP depends only on
the set of integers nP .

More is true. Let P and Q be presentations, and let P be the
infinite set of prime factors of the integers in the set nP , included
with multiplicity, and Q the same of nQ.

Theorem: [Bing (1960), McCord (1965), Aarts & Fokkink (1991)]
The solenoids SP and SQ are homeomorphic, if and only if there is
a bijection between a cofinite subset of P = (p1, p2, . . .) with a
cofinite subset of Q = (q1, q2, . . .).

Conclusion: no matter how chaotic the choice of the sequence of
primes, the classification reduces to an analytic problem in the
sense of descriptive set theory.
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A weak solenoid SP is obtained by considering a closed connected
n-manifold M, and a presentation

P = {p`+1 : M`+1 → M` | ` ≥ 0}

which is a collection of maps satisfying:

• M` is a connected compact manifold of dimension n;

• each bonding map p`+1 is a proper covering map. Then set

SP ≡ lim
←−
{p`+1 : M`+1 → M`} ⊂

∏
`≥0

M`

• SP is given the restriction of the product topology.

Proposition:[McCord (1965)] A weak solenoid is a matchbox
manifold.
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Examples: 2-dimensional matchbox manifolds.

M0 is the 2-torus, T2 = R2/Z2.

Suppose that A ∈ GL(2,Z) ⊂ GL(2,R) is a 2× 2 invertible integer
matrix, then ΓA = A · Z2 is a subgroup of finite index in Γ0 = Z2.

Then there is an induced proper covering map φA : T2 → T2,
where the degree of the covering is the index of ΓA in Γ0, which
equals the determinant det(A) ∈ Z.

Given an infinite collection A ≡ {A` ∈ GL(2,Z) | ` = 1, 2, . . .} set
p` = φA`

and we obtain a presentation

PA = {p` : T2 → T2 | ` = 1, 2, . . .}

which defines a solenoid S(A).

Fact: The solenoids of the form S(A) are not classifiable.
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Examples: 2-dimensional matchbox manifolds.

Let M0 = Σg be a Riemann surface of genus g ≥ 2, pick a
basepoint x0 ∈ M0 and let Γ0 = π1(M0, x0).

Γ0 is residually finite, and each subgroup Γ ⊂ Γ0 of finite index
defines a proper covering π : ΣΓ → Σg . Given an infinite
descending chain of subgroups with Γi+1 finite index in Γi ,

G ≡ Γ0 ⊃ Γ1 ⊃ Γ2 ⊃ · · ·

Let M` = ΣΓ`
and p`+1 : M`+1 → M` be the induced proper

covering maps. Then this defines a presentation PG and a
corresponding solenoid S(G).

Note that the intersection
⋂
n≥0

Γn need not be the trivial group.

Fact: The solenoids of the form S(G) are not classifiable.
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Examples: 3-dimensional matchbox manifolds.

Let M̃0 = H be the real Heisenberg group, presented in the form
H = (R3, ∗) with the group operation ∗ given by
(x , y , z) ∗ (x ′, y ′, z ′) = (x + x ′, y + y ′, z + z ′ + xy ′). This operation
is standard addition in the first two coordinates, and addition with
a twist in the last coordinate. Let H = (Z3, ∗) be the integer
lattice subgroup, so that M0 = H/H is a compact 3-manifold.

Consider subgroups of H which can be written in the form

Γ = MZ2 ×mZ where M =

(
i j
k l

)
is a 2-by-2 matrix with

non-negative integer entries and m > 0 is an integer. Then γ ∈ Γ
is of the form γ = (ix + jy , kx + ly ,mz) for some x , y , z ∈ Z. A
straightforward computation gives the following lemma.
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Theorem: [Dyer, Hurder, Lukina (2015)] Let An =

(
pn 0
0 qn

)
,

p and q are distinct primes. Define the group chain G0 = H,
{Gn}n≥1 = {AnZ2 × pnZ}n≥1. Then the weak solenoid S({An})
defined by the coverings of M0 associated to this chain is not
homogeneous.

Note that the intersection
⋂
n≥0

Gn = {0}.

This implies the leaves of the foliation F on S({An}) are all
isometric to the real Heisenberg group H.

By a result of Clark, Hurder & Lukina (2013), the classification
problem for the Heisenberg solenoids reduces to an algebraic
problem, as we discuss next.
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Definition: Let G be a finitely generated group. A group chain
G = {Gi | i ≥ 0}, with G0 = G , is a properly descending chain of
subgroups of G , such that |G : Gi | <∞ for every i ≥ 0.

Definition: [Rogers & Tollefson (1971)] Let G be a finitely
generated group, and {Gi}i≥0 and {Hi}i≥0 be group chains with
G0 = H0 = G . We say they are equivalent, if and only if, there is a
group chain {Ki}i≥0 and infinite subsequences {Gik}k≥0 and
{Hjk}k≥0 such that K2k = Gik and K2k+1 = Hjk for k ≥ 0.

{Gi}i≥0 and {Hj}j≥0 are weakly equivalent if there exists i0 ≥ 0
and j0 ≥ 0 such that the subchains {Gi}i≥i0 and {Hj}j≥j0 are
equivalent.
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Definition: [Fokkink & Oversteegen (2002)] Let G be a finitely
generated group, and {Gi}i≥0 and {Hi}i≥0 be group chains with
G0 = H0 = G . We say they are conjugate equivalent, if and only if,
there exists a collection (gi ) ∈ G , such that the group chains
{giGig

−1
i }i≥0 and {Hi}i≥0 are equivalent. Here giGi = gjGi for all

i ≥ 0 and all j ≥ i .

{Gi}i≥0 and {Hj}j≥0 are weakly conjugate equivalent if there
exists i0 ≥ 0 and j0 ≥ 0 such that the subchains {Gi}i≥i0 and
{Hj}j≥j0 are conjugate equivalent.

• G abelian =⇒ conjugate equivalence ≡ equivalence.
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Let G be a finitely generated group. Denote by G the collection of
all possible nested proper chains of subgroups of finite index.

Proposition: (Weak) equivalence and conjugate equivalence of
group chains form equivalence relations on G.

Problem: Let G be a finitely generated group. Determine the
(weak) equivalence and conjugate equivalence classes in G.
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Let G be a finitely generated group, and G ∈ G a group chain.

X = G∞ = lim
←−
{G/Gi → G/Gi−1}

is a Cantor set, and there is a minimal action φ : G → Homeo(X )
given by left multiplication on each factor.

This is a Cantor minimal system, and is equicontinuous.

Equicontinuous ⇔ orbits of pairs of points stay uniformly close.

Expansive ⇔ orbits of pairs of points spread uniformly apart.

Theorem: [Auslander, Glasner & Weiss (2007)] A Cantor minimal
system (X ,G , φ) is either equicontinuous or expansive. That is,
there are no distal Cantor minimal systems.
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Definition: Let (X1,G1, φ1) and (X2,G2, φ2) be a Cantor minimal
systems. A homeomorphism h : X1 → X2 is

• a conjugacy if
h(φ1(g))(x) = φ2(g)(h(x)) , ∀ g ∈ G1, x ∈ X1

• an orbit equivalence if
h ({φ1(g)(x) | g ∈ G1}) = {φ2(g)(h(x)) | g ∈ G2} , ∀ x ∈ X1.

The classification of Cantor minimal systems is a major industry,
especially for the case where G = Zn and the action is expansive.

Giordano, Matui, Putnam, Skau in a series of papers classified
these actions up to orbit equivalence.
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Definition: Aut(X ,G , φ) is the group of automorphisms of the
Cantor minimal system (X ,G , φ).

Definition: A Cantor minimal system (X ,G , φ) is:

• regular if the action of Aut(X ,G , φ) on X is transitive;
• weakly regular if the action of Aut(X ,G , φ) decomposes X into
a finite collection of orbits;
• irregular if the action of Aut(X ,G , φ) decomposes X into an
infinite collection of orbits.
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Let (X ,G , φ) be a Cantor minimal system. Each g ∈ G defines an
element φ̂(g) ∈ XX , and let

Ĝ = {φ̂(g) | g ∈ G} ⊂ XX

Endow the space Ĝ with the topology of pointwise convergence.

The closure E (X ,G , φ) is called the enveloping Ellis semi-group.
There is a natural embedding G ⊂ E (X ,G , φ).

For an expansive Cantor minimal system, E (X ,G , φ) is a monster.
Though for G amenable, it has been studied extensively.

Theorem: [Ellis (1960)] If (X ,G , φ) is equicontinuous, then the
topology on E (X ,G , φ) is separable, and E (X ,G , φ) is a Cantor
group which acts transitively on X .

Identify the action of G on X with the action of G on
E (X ,G , φ)/Hx where Hx is the isotropy subgroup at x .
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Let G be a finitely generated group, and G ∈ G a group chain.

X = G∞ = lim
←−
{G/Gi → G/Gi−1}

Define Ci =
⋂
g∈G

gGig
−1 which is the maximal normal subgroup of

Gi called the core of Gi in G .

Gi finite index in G =⇒ Ci has finite index in G .

The normal subgroups {Ci}i≥0 form a nested chain, and the
inverse limit space is a Cantor group,

C∞(φ) = lim
←−
{G/Ci → G/Ci−1}

Proposition: There is a natural topological isomorphism
C∞ ∼= E (X ,G , φ).
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For each x ∈ X , there is a natural map qx : C∞ → G∞ which is
the quotient of C∞ by the action of the subgroup

Dx = lim
←−
{Gi/Ci → Gi−1/Ci−1}.

Dx is called the discriminant group of (X ,G ,Φ) at x .

Proposition: There is a natural topological isomorphism
Dx
∼= Hx .

Thus, for an equicontinuous Cantor minimal system (X ,G , φ)
defined by the group chain G ∈ G, the abstract group Hx can be
calculated in terms of the quotient group chain {Gi/Ci | i ≥ 0}.
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Theorem: [Dyer, Hurder & Lukina (2015)] Let (X ,G ,Φ) be an
equicontinuous Cantor minimal system defined by a group chain
{Gi}i≥0 at x . Then

• The action (X ,G ,Φ) is regular if and only if D(φ)x is trivial for
some x ∈ X .
• The action (X ,G ,Φ) is weakly regular if D(φ)x is finite for
some x ∈ X .

Corollary: If the equicontinuous Cantor minimal system (X ,G ,Φ)
defined by the group chain {Gi}i≥0 is irregular, then D(φ)x is a
Cantor group for all x ∈ X .
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Theorem: [Dyer (2015)] The discriminant group D(φ)x for the
Cantor minimal system defined by the group chain G0 = H,
{Gn}n≥1 = {AnZ2 × pnZ}n≥1 in the discrete Heisenberg group H
is a Cantor group.

Thus, when we pass from the abelian case, where G = Zn, to the
next most complicated groups, the Heisenberg groups, the
structure of Aut(X ,G , φ) becomes non-trivial.

Correspondingly, the study of the conjugacy problems for weak
solenoids defined by such chains is much more delicate.
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Problem: Explore the relations between the dynamics of an
equicontinuous Cantor minimal system (X ,G ,Φ) and its
discriminant groups D(φ)x in the cases where this is Cantor group.

Problem: Explore the relations between the dynamics of an
expansive Cantor minimal system (X ,G ,Φ) and the Ellis
enveloping semi-group E (X ,G ,Φ).

Thank you for your attention!
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