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Introduction

A generalized lamination is a compact connected metric space 901,
which admits a covering by open sets, each homeomorphic to a
product of a totally disconnected space with an open subset of
euclidean space R”. The path components of 9t define the leaves
of dimension n and form a foliation F of 9.

e A lamination is a hybrid of a compact manifold and a profinite
group or groupoid structure.

e We call these matchbox manifolds in our works, following usage
introduced by Aarts & Oversteegen.

e These arise in the study of aperiodic tilings, minimal sets for
dynamical systems, the study of complex rational maps, . ...
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Definition: 91 is an n-dimensional matchbox manifold if:
e 1 is a continuum = a compact, connected metric space;

e 1 admits a covering by foliated coordinate charts
U={pi: U= [-1,1]" x X [1 < i < k};

e each X; is a clopen subset of a totally disconnected space X;
e plaques Pi(z) = ¢; *([~1,1]" x {z}) are connected, z € X;;

e for U; N U; # (), each plaque P;(z) intersects at most one
plaque Pj(Z'), and change of coordinates along intersection is
smooth diffeomorphism;

+ some other technicalities.

The path connected components of 9t are the leaves of the
foliation F.
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The charts ¢;: U; — [—1,1]" x X; on the open covering satisfy a
compatibility condition on their overlaps.
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Problem: Given matchbox manifolds 99t; and 91, of the same leaf
dimension n > 1, find invariants which are sufficient to imply that
the spaces are homeomorphic.

“Manifold invariants” + “algebraic invariants” = “Classification”

Problem: Given a matchbox manifold 9)t, what are the properties
of the group of self-homeomorphisms Homeo(1).

e M is homogeneous if Homeo(9M) acts transitively on 9.

Problem: [Bing] Characterize the homogeneous laminations.



Introduction

Theorem: [Hagopian (1977), Aarts, Hagopian & Oversteegen
(1991)] The homogeneous 1-dimensional matchbox manifolds are
precisely the Vietoris solenoids.

Theorem: [Fokkink (1991), Aarts and Oversteegen (1995)]
Two orientable, minimal, 1-dimensional matchbox manifolds are
homeomorphic if and only if they are return equivalent.

Theorem: [Clark & Hurder (2013)] The homogeneous
n-dimensional matchbox manifolds are precisely the regular
solenoids.



Solenoids

Classic example: Vietoris solenoid (1927), defined by tower of
coverings:

P 4
P = ... .St P Pygt Pl

where each py is a covering map of degree ny > 1.

P is called a presentation. Set np = {ny, na, n3,...}. Can assume
that each n; > 1 is prime, otherwise randomly chosen.

SPEM {prg1: St —shY CH st
£>0

Sp is given the (relative) product topology.

Proposition: The space Sp is a matchbox manifold, for which
every leaf is diffeomorphic to R, and dense in Sp.
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Van Dantzig - Vietoris solenoid
The case where n; =2 forall i > 1
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Proposition: The homeomorphism type of Sp depends only on
the set of integers np.

More is true. Let P and Q be presentations, and let P be the
infinite set of prime factors of the integers in the set np, included
with multiplicity, and Q the same of ng.

Theorem: [Bing (1960), McCord (1965), Aarts & Fokkink (1991)]
The solenoids Sp and Sg are homeomorphic, if and only if there is
a bijection between a cofinite subset of P = (p1, p2,...) with a
cofinite subset of Q@ = (g1, q2,...).

Conclusion: no matter how chaotic the choice of the sequence of
primes, the classification reduces to an analytic problem in the
sense of descriptive set theory.
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A weak solenoid Sp is obtained by considering a closed connected
n-manifold M, and a presentation

P ={pe+1: M1 — My | £ = 0}

which is a collection of maps satisfying:
e M, is a connected compact manifold of dimension n;

e each bonding map pyy1 is a proper covering map. Then set

Sp=lim {per1: M — M} < [T M
>0
e Sp is given the restriction of the product topology.

Proposition:[McCord (1965)] A weak solenoid is a matchbox
manifold.
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Examples: 2-dimensional matchbox manifolds.

My is the 2-torus, T? = R?/7Z2.

Suppose that A € GL(2,Z) C GL(2,R) is a 2 x 2 invertible integer
matrix, then T4 = A - Z? is a subgroup of finite index in [y = Z2.

Then there is an induced proper covering map ¢4: T? — T?,
where the degree of the covering is the index of [ 4 in [g, which
equals the determinant det(A) € Z.

Given an infinite collection A = {A; € GL(2,Z) | £ =1,2,...} set
pe = ¢4, and we obtain a presentation

Pa={p:T>?=>T?|¢=1,2,...}

which defines a solenoid S(A).

Fact: The solenoids of the form S(.A) are not classifiable.
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Examples: 2-dimensional matchbox manifolds.

Let My = >4 be a Riemann surface of genus g > 2, pick a
basepoint xo € Mg and let g = 71 (Mo, xo).

o is residually finite, and each subgroup I' C Iy of finite index
defines a proper covering m: Xr — X,. Given an infinite
descending chain of subgroups with ;1 finite index in [},

QEFODF13F23~--

Let My =%, and ppy1: My — My be the induced proper
covering maps. Then this defines a presentation Pg and a
corresponding solenoid S(G).

Note that the intersection ﬂ I, need not be the trivial group.
n>0

Fact: The solenoids of the form S(G) are not classifiable.
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Examples: 3-dimensional matchbox manifolds.

Let /\7/0 = H be the real Heisenberg group, presented in the form
H = (R3, *) with the group operation  given by

(x,y,2)x (X', y',2") = (x+ X',y +y',z+ 2z + xy’). This operation
is standard addition in the first two coordinates, and addition with
a twist in the last coordinate. Let H = (Z3,*) be the integer
lattice subgroup, so that My = H/H is a compact 3-manifold.

Consider subgroups of H which can be written in the form

I = MZ? x mZ where M = < ;( Jl > is a 2-by-2 matrix with
non-negative integer entries and m > 0 is an integer. Then y €
is of the form v = (ix + jy, kx + ly, mz) for some x,y,z € Z. A
straightforward computation gives the following lemma.
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n
Theorem: [Dyer, Hurder, Lukina (2015)] Let A, = ( % qu )

p and q are distinct primes. Define the group chain Go = H,
{Gp}n>1 = {AnZ? x p"Z}p>1. Then the weak solenoid S({A,})
defined by the coverings of My associated to this chain is not
homogeneous.

Note that the intersection ﬂ G, = {0}.

n>0
This implies the leaves of the foliation F on S({A,}) are all
isometric to the real Heisenberg group H.

By a result of Clark, Hurder & Lukina (2013), the classification
problem for the Heisenberg solenoids reduces to an algebraic
problem, as we discuss next.
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Definition: Let G be a finitely generated group. A group chain
G ={G;|i> 0}, with Gy = G, is a properly descending chain of
subgroups of G, such that |G : G;| < co for every i > 0.

Definition: [Rogers & Tollefson (1971)] Let G be a finitely
generated group, and {G;}i>o and {H;};>0 be group chains with
Gp = Hp = G. We say they are equivalent, if and only if, there is a
group chain {Kj}i>o and infinite subsequences {Gj, } x>0 and
{ij}kzo such that Ky, = G,'k and Kyq1 = ij for k > 0.

{Gi}i>0 and {H;}j>0 are weakly equivalent if there exists ip > 0
and jo > 0 such that the subchains {G;}i>, and {H,};>j, are
equivalent.
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Definition: [Fokkink & Oversteegen (2002)] Let G be a finitely
generated group, and {G;}i>o and {H;};>0 be group chains with
Gp = Hp = G. We say they are conjugate equivalent, if and only if,
there exists a collection (gj) € G, such that the group chains
{g,-G,-gl-_l},-Zo and {Hi}iZO are equivalent. Here g;G; = gJG, for all
i>0andallj>i

{Gi}i>0 and {H;};>0 are weakly conjugate equivalent if there
exists ip > 0 and jo > 0 such that the subchains {G;};>j, and
{H;}j>j, are conjugate equivalent.

e G abelian = conjugate equivalence = equivalence.
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Let G be a finitely generated group. Denote by & the collection of
all possible nested proper chains of subgroups of finite index.

Proposition: (Weak) equivalence and conjugate equivalence of
group chains form equivalence relations on &.

Problem: Let G be a finitely generated group. Determine the
(weak) equivalence and conjugate equivalence classes in &.
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Let G be a finitely generated group, and G € & a group chain.

X =Gy = hﬁ{G/G, — G/G,'_l}
is a Cantor set, and there is a minimal action ¢: G — Homeo(X)
given by left multiplication on each factor.

This is a Cantor minimal system, and is equicontinuous.

Equicontinuous < orbits of pairs of points stay uniformly close.
Expansive < orbits of pairs of points spread uniformly apart.

Theorem: [Auslander, Glasner & Weiss (2007)] A Cantor minimal
system (X, G, @) is either equicontinuous or expansive. That is,
there are no distal Cantor minimal systems.
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Definition: Let (X1, G1, ¢1) and (X2, G2, ¢2) be a Cantor minimal
systems. A homeomorphism h: X; — Xo is

e a conjugacy if
h(¢1(g))(x) = ¢2(g)(h(x)) . V g € G1, x € Xy

e an orbit equivalence if
h({01(g)(x) | g € G1}) = {d2(g)(h(x)) | g € G2} , V x € Xi1.

The classification of Cantor minimal systems is a major industry,
especially for the case where G = Z" and the action is expansive.

Giordano, Matui, Putnam, Skau in a series of papers classified
these actions up to orbit equivalence.
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Definition: Aut(X, G, ¢) is the group of automorphisms of the
Cantor minimal system (X, G, ¢).

Definition: A Cantor minimal system (X, G, ¢) is:

e regular if the action of Aut(X, G, ¢) on X is transitive;

e weakly regular if the action of Aut(X, G, ¢) decomposes X into
a finite collection of orbits;

e irregular if the action of Aut(X, G, ¢) decomposes X into an
infinite collection of orbits.
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Let (X, G, ) be a Cantor minimal system. Each g € G defines an
element ¢(g) € XX, and let

G={¢(g)| g€ G} cx¥

Endow the space G with the topology of pointwise convergence.

The closure E(X, G, ¢) is called the enveloping Ellis semi-group.
There is a natural embedding G C E(X, G, ¢).

For an expansive Cantor minimal system, E(X, G, ¢) is a monster.
Though for G amenable, it has been studied extensively.

Theorem: [Ellis (1960)] If (X, G, ¢) is equicontinuous, then the
topology on E(X, G, ¢) is separable, and E(X, G, ¢) is a Cantor
group which acts transitively on X.

Identify the action of G on X with the action of G on

E(X, G,¢)/Hx where H, is the isotropy subgroup at x.
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Let G be a finitely generated group, and G € & a group chain.

X = Gwzhﬁ{G/G,% G/G,'_l}

Define C; = ﬂ gGig ™! which is the maximal normal subgroup of

gea
G; called the core of G; in G.

G; finite index in G = C; has finite index in G.

The normal subgroups {C;}i>o form a nested chain, and the
inverse limit space is a Cantor group,

Coo(6) = lim{G/Ci = G/Cr_1}

Proposition: There is a natural topological isomorphism
Co Z E(X,G,0).
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For each x € X, there is a natural map gy : Coo — Goo Which is
the quotient of C, by the action of the subgroup

D, = ||<_m {G,'/C,' — G,'_1/Ci—1}-

Dy is called the discriminant group of (X, G, ®) at x.
Proposition: There is a natural topological isomorphism
Dy = Hy.

Thus, for an equicontinuous Cantor minimal system (X, G, ¢)
defined by the group chain G € &, the abstract group Hy can be
calculated in terms of the quotient group chain {G;/C; | i > 0}.
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Theorem: [Dyer, Hurder & Lukina (2015)] Let (X, G, ®) be an
equicontinuous Cantor minimal system defined by a group chain
{Gi}i>0 at x. Then

e The action (X, G, ®) is regular if and only if D(¢)y is trivial for
some x € X.

e The action (X, G, ®) is weakly regular if D(¢)y is finite for
some x € X.

Corollary: If the equicontinuous Cantor minimal system (X, G, ®)
defined by the group chain {G;};>¢ is irregular, then D(¢)y is a
Cantor group for all x € X.
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Theorem: [Dyer (2015)] The discriminant group D(¢)x for the
Cantor minimal system defined by the group chain Gog = H,
{Gp}n>1 = {AnZ? x p"Z}n>1 in the discrete Heisenberg group H
is a Cantor group.

Thus, when we pass from the abelian case, where G = Z", to the
next most complicated groups, the Heisenberg groups, the
structure of Aut(X, G, ¢) becomes non-trivial.

Correspondingly, the study of the conjugacy problems for weak
solenoids defined by such chains is much more delicate.
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Problem: Explore the relations between the dynamics of an
equicontinuous Cantor minimal system (X, G, ®) and its
discriminant groups D(¢)x in the cases where this is Cantor group.

Problem: Explore the relations between the dynamics of an
expansive Cantor minimal system (X, G, ®) and the Ellis
enveloping semi-group E(X, G, ®).

Thank you for your attention!
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