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A Riemannian foliation is one whose holonomy pseudogroup is
generated by local isometries of a Riemannian manifold.

Bruce Reinhart: “Foliated manifolds with bundle-like metrics”,
Ann. of Math, 69:119–132, 1959

Pierre Molino: Feuilletages riemanniens, Montpellier, 1983
& Riemannian Foliations, Birkhauser, 1988.

An equicontinuous foliated space is one whose holonomy
pseudogroup is equicontinuous ∼ isometric.

Problem: How much of the theory of Riemannian foliations in
Molino’s book can be extended to equicontinuous foliated spaces?
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This question has been studied in the works of Jesús Álvarez López:

? (with Alberto Candel),
“Equicontinuous foliated spaces”,

Math. Z., 263 (2009), 725–774.

? (with Manuel Moreira Galicia),
“Topological Molino’s theory”,

Pacific J. Math., 280 (2016), 257–314.

? (with Ramón Barral Lijó),
“Molino’s description and foliated homogeneity”,

Topology Appl., 260 (2019), 148–177.
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Our interest is the special case where the foliated spaces are
transversally totally disconnected:

The objects of study are called various names in the literature:

• Generalized laminations, [Ghys, Lyubich & Minsky]

• Matchbox manifolds, [Aarts & Martens, Clark & Hurder]

• Solenoidal manifolds, [Sullivan]

All are foliated spaces as introduced in the book

• Moore & Schochet, Global Analysis on Foliated Spaces,
1988.
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Theorem [Clark-Hurder, 2013] Let M be an equicontinuous
matchbox manifold. Then M is homeomorphic to a weak solenoid.

If M is homogeneous space, then the weak solenoid is a profinite
group fibration over a compact manifold.

If M is not homogeneous, then it is homeomorphic to a quotient of
a profinite group fibration by a non-trivial closed subgroup.

Alex Clark & S.H., “Homogeneous matchbox manifolds”,
Transactions A.M.S., 365 (2013), 3151-3191.
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Weak Solenoids

• M is compact manifold without boundary

• G = π1(M, x0) is finitely generated group.

M = M0
p1←− M1

p2←− M2
p3←− M3 · · ·

Choose x` ∈ M` with p`(x`) = x`−1, set G` = π1(M`, x`)

Inclusion maps q` : G` ⊂ G`−1, descending chain of groups

G = G0
q1←− G1

q2←− G2
q3←− G3 · · ·

Tower of coverings is normal if each G` ⊂ G0 is a normal subgroup.

Example: Vietoris solenoid is given coverings of S1, so is
determined by a chain of normal subgroups of Z.
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Inverse limit space for a tower of coverings:

M∞ = lim←− {p
`
`+1 : M`+1 → M` | ` ≥ 0}

= {(y0, y1, y2, . . .) | p``+1(y`+1) = y` | ` ≥ 0}

⊂
∏
`≥0

M`

is a compact connected metrizable space called a (weak) solenoid.

For each ` > 0, there is a fibration map Π` : M∞ → M`.

For fixed x` ∈ M` the fiber X` = Π−1
` (x`) ⊂ X0 is a Cantor space.

• The path connected components of M∞ are manifolds,

• leaves are non-compact covering spaces of M0,

• M∞ is a foliated space with Cantor transversals.
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The monodromy action on the fiber, Φ: G0 × X0 → X0

Fundamental group G0 = π1(M0, x0) acts on the fiber X0 via lifts
of paths in M0 to the leaves of FM.

This action is

• minimal = the orbit of each point is dense in X0.

• equicontinuous: for every ε > 0 there exists δ > 0 such that

dX(x , y) < δ =⇒ dX(ϕ(g)(x), ϕ(g)(y)) < ε for all g ∈ G .

Cantor action (X,G ,Φ) ≡ minimal & equicontinuous

Conclusion of works with Clark & Lukina can be summarized:

Analyze/Classify weak solenoids⇔ Analyze/Classify Cantor actions
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Profinite model for Cantor action (X,G ,Φ).

Definition: G(Φ) = HΦ = closure of HΦ = Φ(G ) ⊂ Homeo(X)
in the uniform topology on maps. G(Φ) is profinite group.

For x ∈ X, Dx = {ĥ ∈ HΦ | ĥ · x = x} (isotropy group)

Lemma: Left action of G(Φ) on X is transitive. Hence

• X ∼= G(Φ)/Dx

• Dx independent of the choice of basepoint x .

The normal core of G` is C` =
⋂

g∈G gG`g
−1 ⊂ G`

Theorem [Dyer-Hurder-Lukina, 2016]

Dx
∼= lim←− {π`+1 : G`+1/C`+1 → G`/C` | ` ≥ 0} .
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1. Dx is trivial for Cantor action (X,G ,Φ) with G abelian.

2. Dx can be a Cantor group for a Cantor action (X,G ,Φ) when
G is 3-dimensional Heisenberg group.

3. Every finite group and every separable profinite group can be
realized as Dx for a Cantor action by a torsion-free, finite
index subgroup of SL(n,Z), n ≥ 3.

4. Dx can be wide-ranging for arboreal representations of
absolute Galois groups of number fields and function fields.

5. Every Cantor action by a finitely generated group G can be
realized by a tower of finite coverings of a closed surface.

Problem: Can one “hear” Dx in the spectrum of leafwise elliptic
operators (e.g. Lapacians) on weak solenoids?
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The inverse limit of a weak solenoid can begin at any level of the
tower of coverings:

M∞ = lim←− {p
`
`+1 : M`+1 → M` | ` ≥ 0}

∼= lim←− {p
`
`+1 : M`+1 → M` | ` ≥ k}

Conclusion: Dynamical invariants for weak solenoids must be
unchanged upon passing to restrictions to clopen subsets which are
adapted to the action of the monodromy.

? Study dynamics up to return equivalence.
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For Cantor action (X,G ,Φ), U ⊂ X is adapted to the action Φ

• U is a non-empty clopen subset,

• for any g ∈ G , Φ(g)(U) ∩ U 6= ∅ implies that Φ(g)(U) = U.

Translates of U form a partition of the Cantor set X.

The set of “return times” to U,

GU = {g ∈ G | ϕ(g)(U) ∩ U 6= ∅}

is a subgroup of finite index in G , called the stabilizer of U.
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Definition: Let Φi : Gi × Xi → Xi be Cantor actions, for i = 1, 2.

Then Φ1 is return equivalent to Φ2 if there exist

• for i = 1, 2 a clopen subset Ui ⊂ Xi adapted for action Φi

• homeomorphism h : U1 → U2

• isomorphism αh : H1 → H2 of the action groups, induced by h,
where Hi = Φi (GUi

) ⊂ Homeo(Ui )

Remark: When Ui = Xi for i = 1, 2, and the actions are effective,
this reduces to the notion of isomorphism, or just topological
conjugacy of the actions, where αh : G1 → G2 intertwines them.

Problem: Find return equivalence invariants of Cantor actions.
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Let (X,G ,Φ) be Cantor action. Fix basepoint x ∈ X and ε > 0.

There exists an adapted clopen set U ⊂ X with x ∈ U and
diam(U) < ε. Iterating this construction, for a given basepoint x ,
one can always construct the following:

Definition: A properly descending chain of clopen sets
U = {U` ⊂ X | ` ≥ 1} is an adapted neighborhood basis at x ∈ X
for the action Φ if

• x ∈ U`+1 ⊂ U` for all ` ≥ 1 with ∩ U` = {x},
• each U` is adapted to the action Φ , set G` = GU`

We obtain a sequence of localized Cantor actions (U`,H`,Ψ`):

H` = Φ`(G`) ⊂ Homeo(U`), Ψ` : H` × U` → U`



Intro Solenoids Dynamics Wild actions

A Cantor action (X,G ,Φ) is either stable or wild.

Depends on whether the “sheaf” of local actions is stable, or not.

Let D(Ψ`) ⊂ Homeo(U`) be discriminant group of (U`,H`,Ψ`).

There is surjective homomorphism ρ` : Dx = D(Ψ0)→ D(Ψ`).

Set K` ≡ ker{ρ`} for ` ≥ 1. Then K1 ⊂ K2 ⊂ · · ·
Theorem [Hurder-Lukina, 2019] The isomorphism class of the
direct limit group

Υ(Φ) = lim−→ {K` ⊂ K`+1 | ` ≥ 1}

is a well-defined conjugacy invariant of a Cantor action (X,G ,Φ).
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A Cantor action (X,G ,Φ) is:

• stable if the chain {K` | ` ≥ 1} is bounded.

That is, if there exists `0 so that K` = K`+1 for ` ≥ `0.

• wild if the chain {K` | ` ≥ 1} is unbounded.

Theorem [Hurder-Lukina, 2019]: The wild property for a Cantor
action is invariant under continuous orbit equivalence.
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Example: The examples of group actions on trees generated by
automata studied by Nekrashevych, Bartholdi, Grigorchuk et al
typically induce wild actions on the boundary of the trees.

Theorem [Lukina, 2019]: Let p and d be distinct odd primes, let
K = Qp be the field of p-adic numbers. Let f (x) = (x + p)d − p.
Then the action of Gal∞(f ) is stable.

Theorem [Lukina, 2018]: Let f (x) be a quadratic polynomial
with critical point c . If the post-critical set PC is infinite, then the
action of Galgeom(f ), and so of Galarith(f ) is wild.
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There is a geometric interpretation of the stable/wild property.

Definition: A topological action Φ: G × X→ X is locally
quasi-analytic (LQA) if there exists ε > 0 such that for any open
set U ⊂ X with diam(U) < ε, and for any open V ⊂ U and
g1, g2 ∈ G if

if Φ(g1)|V = Φ(g2)|V then Φ(g1)|U = Φ(g2)|U .

Alternatively, the action is locally quasi-analytic if and only if for
all g ∈ G if Φ(g)|V = id , then Φ(g)|U = id , for open sets V ⊂ U.

Theorem [Hurder-Lukina, 2017]: A Cantor action (X,G ,Φ)
with G finitely generated is stable, if and only if the pro-finite
action Φ̂ : G(Φ)× X→ X is locally quasi-analytic.
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Here are two further results:

Theorem [Hurder-Lukina, 2018]: Let Φ: G × X→ X be a
Cantor action with G a finitely-generated nilpotent group. Then
the action is stable. Moreover, any Cantor action which is
continuously orbit equivalent must be return equivalent.

Theorem [Hurder-Lukina, 2018]: There exists uncountably
many wild actions of torsion-free finite index subgroups of SL(n,Z)
with distinct pro-isomorphism classes of direct limit groups Υ(Φ).

Problem: The wild property lurks in the spectrum of the leafwise
laplacians for weak solenoids. Find it.
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Thank you for your attention!
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